欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      2012年浙教版初中數(shù)學七年級上3.3立方根練習卷(帶解析)

      時間:2019-05-12 23:56:52下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關的《2012年浙教版初中數(shù)學七年級上3.3立方根練習卷(帶解析)》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《2012年浙教版初中數(shù)學七年級上3.3立方根練習卷(帶解析)》。

      第一篇:2012年浙教版初中數(shù)學七年級上3.3立方根練習卷(帶解析)

      2012年浙教版初中數(shù)學七年級上3.3立方根練習卷(帶解析)

      一、填空題 1.的平方根是______.【答案】±2

      【解析】本題考查的是立方根、平方根的定義 根據(jù)立方根、平方根的定義即可得到結(jié)果。的平方根是

      解答本題的關鍵是掌握好立方根的定義。2.(3x-2)=0.343,則x=______.【答案】0.9

      【解析】本題考查的是立方根的定義 根據(jù)立方根的定義即可得到結(jié)果。

      3解答本題的關鍵是掌握好立方根的定義。3.若+有意義,則

      =______.【答案】

      【解析】本題考查的是算術平方根、立方根的定義

      先根據(jù)負數(shù)沒有平方根求出x的值,再根據(jù)立方根的定義即可求出結(jié)果。由題意得,則

      解答本題的關鍵是掌握好算術平方根、立方根的定義。4.若x<0,則【答案】-x x

      【解析】本題考查的是立方根、算術平方根的定義 根據(jù)立方根、算術平方根的定義即可求出結(jié)果。=______,=______.,解答本題的關鍵是掌握好立方根、算術平方根的定義。5.若x=(【答案】2

      【解析】本題考查的是立方根、算術平方根的定義

      先根據(jù)立方根的定義求出x,再根據(jù)算術平方根的定義求出結(jié)果。由題意得,則),則3=______.解答本題的關鍵是掌握好立方根、算術平方根的定義。

      二、選擇題

      1.下列說法中正確的是()A.-4沒有立方根 B.1的立方根是±1 C.的立方根是

      D.-5的立方根是【答案】D

      【解析】本題考查的是立方根的定義

      根據(jù)立方根的定義依次判斷各項即可得到結(jié)果。A、-4的立方根是,故本選項錯誤;

      B、1的立方根是1,故本選項錯誤; C、的立方根是,故本選項錯誤;,本選項正確; D、-5的立方根是故選D.解答本題的關鍵是掌握好立方根的定義。2.在下列各式中:()

      A.1 B.2 C.3 D.4 【答案】C

      【解析】本題考查的是立方根的定義 =,=0.1,=0.1,-

      =-27,其中正確的個數(shù)是根據(jù)立方根的定義依次判斷各小題即可得到結(jié)果。

      =,本小題正確; =0.1,本小題正確; 無法化簡,故本小題錯誤; -=-(-27)=27,故本小題錯誤;

      其中正確的個數(shù)是3個,故選C.解答本題的關鍵是掌握好立方根的定義。3.若m<0,則m的立方根是()A. B.- C.±

      D.

      【答案】A

      【解析】本題考查的是立方根的定義 根據(jù)立方根的定義即可得到結(jié)果。m的立方根是,故選A.解答本題的關鍵是掌握好立方根的定義。4.如果是6-x的三次算術根,那么()

      A.x<6 B.x=6 C.x≤6 D.x是任意數(shù) 【答案】D

      【解析】本題考查的是立方根的性質(zhì) 根據(jù)任意有理數(shù)均有立方根即可判斷。由題意得x是任意數(shù),故選D.解答本題的關鍵是知道任意有理數(shù)均有立方根。5.下列說法中,正確的是()

      A.一個有理數(shù)的平方根有兩個,它們互為相反數(shù) B.一個有理數(shù)的立方根,不是正數(shù)就是負數(shù) C.負數(shù)沒有立方根

      D.如果一個數(shù)的立方根是這個數(shù)本身,那么這個數(shù)一定是-1,0,1 【答案】D

      【解析】本題考查的是立方根、平方根的定義 根據(jù)立方根、平方根的定義依次判斷各項即可。A、負數(shù)沒有平方根,故本選項錯誤; B、0的立方根還是0,故本選項錯誤; C、負數(shù)的立方根還是負數(shù),故本選項錯誤;

      D.如果一個數(shù)的立方根是這個數(shù)本身,那么這個數(shù)一定是-1,0,1,正確,故選D.解答本題的關鍵是掌握好立方根、平方根的定義.三、解答題

      1.求下列各數(shù)的立方根(1)729(2)-4(3)-

      (4)(-5)

      3【答案】(1)9(2)-(3)-(4)-5 【解析】本題考查的是立方根的定義

      如果一個數(shù)x的立方等于a,那么x是a的立方根,根據(jù)此定義求解即可.(1)∵9的立方是729,∴729的立方根是9;(2)∵-的立方是-4(3)∵-的立方是-,∴-4,∴-

      3的立方根是-; 的立方根是-;

      3(4)∵-5的立方是(-5),∴(-5)的立方根是-5.解答本題的關鍵是掌握好立方根的定義。2.求下式中的x:125x=8 【答案】x=

      【解析】本題考查的是立方根的定義

      先把系數(shù)化為1,再根據(jù)立方根的定義即可得到結(jié)果。3

      解答本題的關鍵是掌握好立方根的定義。3.求出下式中的x:(-2+x)=-216

      3【答案】x=-4

      【解析】本題考查的是立方根的定義 根據(jù)立方根的定義即可得到結(jié)果。

      解答本題的關鍵是掌握好立方根的定義。4.求出下式中的x:【答案】x=-6

      【解析】本題考查的是立方根的定義 根據(jù)立方根的定義即可得到結(jié)果。

      =-2

      解答本題的關鍵是掌握好立方根的定義。5.求出下式中的x:27(x+1)+64=0 【答案】

      【解析】本題考查的是立方根的定義

      先移項,再把系數(shù)化為1,根據(jù)立方根的定義即可得到結(jié)果。

      解答本題的關鍵是掌握好立方根的定義。6.已知【答案】+|b-27|=0,求

      3的立方根.【解析】本題考查的是非負數(shù)的性質(zhì),立方根的定義

      先根據(jù)幾個非負數(shù)的和為0,這幾個數(shù)均為0,得到關于a、b的方程,再根據(jù)立方根的定義即得結(jié)果。由題意得則,解得,立方根為

      解答本題的關鍵是掌握好立方根的定義。

      7.已知第一個正方體紙盒的棱長為6 cm,第二個正方體紙盒的體積比第一個紙盒的體積大3127 cm,求第二個紙盒的棱長.【答案】7cm

      【解析】本題考查了立方根的定義的應用

      根據(jù)題意列出方程,然后根據(jù)立方根的定義進行求解. 設第二個紙盒的棱長為acm,∵已知第一個正方體紙盒的棱長為6cm,第二個正方體紙盒的體積比第一個紙盒的體積大3127cm,∴a-6=127,∴a=127+216=343,∴a=7cm.

      答:求第二個紙盒的棱長為7cm. 解答本題的關鍵是掌握好立方根的定義。8.判斷下列各式是否正確成立.(1)(2)(3)(4)=2=3·=4=5333

      判斷完以后,你有什么體會?你能否得到更一般的結(jié)論?若能,請寫出你的一般結(jié)論.【答案】 =n

      【解析】本題考查的是立方根的綜合應用

      經(jīng)過對上述式子的計算,可得出式子均正確,故可得出結(jié)論為能.

      =n

      .由已知(1)(2)(3)(4)=2=3·=4=5

      =n

      .經(jīng)觀察發(fā)現(xiàn),上述的等式均滿足這樣的規(guī)律:解答本題的關鍵是要具有一定的觀察能力和總結(jié)規(guī)律的能力.

      第二篇:2012年北師大版初中數(shù)學九年級下3.3圓周角和圓心角的關系練習卷(帶解析)

      2012年北師大版初中數(shù)學九年級下3.3圓周角和圓心角的關系練習卷

      (帶解析)

      一、填空題

      1.如圖,等邊三角形ABC的三個頂點都在⊙O上,D是

      上任一點(不與A、C重合),則∠ADC的度數(shù)是________.【答案】120° 【解析】

      試題分析:根據(jù)等邊三角形的性質(zhì)及圓內(nèi)接四邊形的性質(zhì)即可求得結(jié)果.∵等邊三角形ABC ∴∠ABC=60°

      ∴∠ADC=180°-∠ABC=120°.考點:等邊三角形的性質(zhì),圓內(nèi)接四邊形的性質(zhì)

      點評:特殊三角形的性質(zhì)的應用是初中數(shù)學平面圖形中極為重要的知識點,與各個知識點結(jié)合極為容易,是中考中的熱點,在各種題型中均有出現(xiàn),需多加關注.2.如圖,四邊形ABCD的四個頂點都在⊙O上,且AD∥BC,對角線AC與BC相交于點E,那么圖中有_________對全等三角形;________對相似比不等于1的相似三角形.【答案】3,1 【解析】

      試題分析:根據(jù)圓內(nèi)接四邊形的性質(zhì)及圓周角定理即可得到結(jié)果.由題意得△ABE≌△DCE,△ABD≌△DCA,△ABC≌△DCB有3對全等三角形 相似比不等于1的相似三角形有△ADE∽△DCB這一對.考點:圓內(nèi)接四邊形的性質(zhì),圓周角定理

      點評:全等三角形的判定和性質(zhì)的應用貫穿于整個初中學習,是平面圖形中極為重要的知識點,與各個知識點結(jié)合極為容易,是中考中的熱點,在各種題型中均有出現(xiàn),需多加關注.3.已知,如圖,∠BAC的對角∠BAD=100°,則∠BOC=_______度.【答案】160° 【解析】

      試題分析:由∠BAD=100°可得∠BAC的度數(shù),再根據(jù)圓周角定理即可求得結(jié)果.∵∠BAD=100° ∴∠BAC=80° ∴∠BOC=160°.考點:鄰補角定理,圓周角定理

      點評:本題是圓周角定理的基礎應用題,在中考中比較常見,一般以選擇題、填空題形式出現(xiàn),屬于基礎題,難度不大.4.如圖4,A、B、C為⊙O上三點,若∠OAB=46°,則∠ACB=_______度.【答案】44° 【解析】

      試題分析:連接OB,根據(jù)圓的基本性質(zhì)可得∠AOB的度數(shù),再根據(jù)圓周角定理即可求得結(jié)果.連接OB

      ∵∠OAB=46°,OA=OB ∴∠AOB=88° ∴∠ACB=44°.考點:圓的基本性質(zhì),圓周角定理

      點評:輔助線問題是初中數(shù)學學習中的難點,能否根據(jù)具體情況正確作出恰當?shù)妮o助線往往能夠體現(xiàn)一個學生對圖形的理解能力,因而這類問題在中考中比較常見,在各種題型中均有出現(xiàn),一般難度較大,需多加關注.5.如圖,AB是⊙O的直徑, ,∠A=25°,則∠BOD的度數(shù)為________.【答案】50° 【解析】

      試題分析:圓周角定理:同弧或等弧所對的圓周角相等,均等于所對圓心角的一半.∵,∠A=25°

      ∴∠BOD=50°.考點:圓周角定理

      點評:本題是圓周角定理的基礎應用題,在中考中比較常見,一般以選擇題、填空題形式出現(xiàn),屬于基礎題,難度不大.6.如圖,AB是半圓O的直徑,AC=“AD,OC=2,∠CAB=30°,” 則點O到CD的距離OE=____.【答案】【解析】

      試題分析:由AC=AD,∠CAB=30°可得∠CDO的度數(shù),即可得到∠EOD、∠COE的度數(shù),判斷出△COE的形狀再結(jié)合勾股定理即可求得結(jié)果.∵AC=AD,∠CAB=30°,OA=OC ∴∠CDO=75°,∠COD=60° ∴∠EOD=15° ∴∠COE=45°

      ∴△COE為等腰直角三角形 ∵OC=2 ∴OE=.考點:三角形內(nèi)角和定理,勾股定理

      點評:特殊三角形的性質(zhì)的應用是初中數(shù)學平面圖形中極為重要的知識點,與各個知識點結(jié)合極為容易,是中考中的熱點,在各種題型中均有出現(xiàn),需多加關注.二、選擇題

      1.如圖,已知圓心角∠BOC=100°,則圓周角∠BAC的度數(shù)是()

      A.50° B.100° C.130° D.200° 【答案】A 【解析】

      試題分析:圓周角定理:同弧或等弧所對的圓周角相等,均等于所對圓心角的一半.∵∠BOC=100° ∴∠BAC=50° 故選A.考點:圓周角定理

      點評:本題是圓周角定理的基礎應用題,在中考中比較常見,一般以選擇題、填空題形式出現(xiàn),屬于基礎題,難度不大.2.如圖,A、B、C、D四個點在同一個圓上,四邊形ABCD的對角線把四個內(nèi)角分成的八個角中,相等的角有()

      A.2對 B.3對 C.4對 D.5對 【答案】C 【解析】

      試題分析:圓周角定理:同弧或等弧所對的圓周角相等,均等于所對圓心角的一半.相等的角有∠ADB=∠ACB,∠BAC=∠BDC,∠CAD=∠CBD,∠ACD=∠ABC4對,故選C.考點:圓周角定理

      點評:本題是圓周角定理的基礎應用題,在中考中比較常見,一般以選擇題、填空題形式出現(xiàn),屬于基礎題,難度不大.3.如圖,D是弧AC的中點,則圖中與∠ABD相等的角的個數(shù)是()

      A.4個 B.3個 C.2個 D.1個 【答案】B 【解析】

      試題分析:圓周角定理:同弧或等弧所對的圓周角相等,均等于所對圓心角的一半.∵D是弧AC的中點

      ∴∠ABD=∠ACD=∠CBD=∠CAD 故選B.考點:圓周角定理

      點評:本題是圓周角定理的基礎應用題,在中考中比較常見,一般以選擇題、填空題形式出現(xiàn),屬于基礎題,難度不大.4.如圖, ,則∠A+∠B等于()

      A.100° B.80° C.50° D.40° 【答案】C 【解析】

      試題分析:連接CO并延長交圓于點D,根據(jù)圓周角定理即可得到結(jié)果.連接CO并延長交圓于點D

      由圖可得∠A+∠B=∠AOD+∠BOD=∠AOB=50° 故選C.考點:圓周角定理

      點評:輔助線問題是初中數(shù)學學習中的難點,能否根據(jù)具體情況正確作出恰當?shù)妮o助線往往能夠體現(xiàn)一個學生對圖形的理解能力,因而這類問題在中考中比較常見,在各種題型中均有出現(xiàn),一般難度較大,需多加關注.5.在半徑為R的圓中有一條長度為R的弦,則該弦所對的圓周角的度數(shù)是()A.30° B.30°或150° C.60° D.60°或120° 【答案】B 【解析】

      試題分析:根據(jù)圓的性質(zhì)可得這條弦與半徑圍成的三角形為等邊三角形,再根據(jù)圓周角定理即可求得結(jié)果.由題意得這條弦與半徑圍成的三角形為等邊三角形 則該弦所對的圓周角的度數(shù)是30°或150° 故選B.考點:圓周角定理

      點評:特殊三角形的性質(zhì)的應用是初中數(shù)學平面圖形中極為重要的知識點,與各個知識點結(jié)合極為容易,是中考中的熱點,在各種題型中均有出現(xiàn),需多加關注.6.如圖,A、B、C三點都在⊙O上,點D是AB延長線上一點,∠AOC=“140°,” ∠CBD的度數(shù)是()

      A.40° B.50° C.70° D.110° 【答案】C 【解析】

      試題分析:先求得弧ABC所對的圓周角的度數(shù),再根據(jù)圓內(nèi)接四邊形的對角互補可得∠ABC的度數(shù),即可求得結(jié)果.∵∠AOC=140°

      ∴弧ABC所對的圓周角的度數(shù)為70° ∴∠ABC=110° ∴∠CBD=70° 故選C.考點:圓周角定理,圓內(nèi)接四邊形的性質(zhì) 點評:本題是圓周角定理的基礎應用題,在中考中比較常見,一般以選擇題、填空題形式出現(xiàn),屬于基礎題,難度不大.三、解答題

      1.如圖,⊙O的直徑AB=8cm,∠CBD=30°,求弦DC的長.【答案】4cm 【解析】

      試題分析:連接OC、OD,根據(jù)圓周角定理可得∠COD=60°,即可得到△COD是等邊三角形,根據(jù)等邊三角形的性質(zhì)即可求得結(jié)果.連接OC、OD,則OC=OD=4cm,∠COD=60°,故△COD是等邊三角形,從而CD=4cm.考點:圓周角定理,等邊三角形的判定和性質(zhì)

      點評:輔助線問題是初中數(shù)學學習中的難點,能否根據(jù)具體情況正確作出恰當?shù)妮o助線往往能夠體現(xiàn)一個學生對圖形的理解能力,因而這類問題在中考中比較常見,在各種題型中均有出現(xiàn),一般難度較大,需多加關注.2.如圖,A、B、C、D四點都在⊙O上,AD是⊙O的直徑,且AD=6cm,若∠ABC=∠CAD,求弦AC的長.【答案】3【解析】

      試題分析:連接DC,根據(jù)圓周角定理可得∠ADC=∠ABC=∠CAD,即可得到AC=CD,由AD是直徑可得∠ACD=90°,再根據(jù)勾股定理即可求得結(jié)果.連接DC,則∠ADC=∠ABC=∠CAD, 故AC=CD.∵AD是直徑, ∴∠ACD=90°, ∴AC+CD=AD, 即2AC=36,AC=18,AC=32222

      2.考點:圓周角定理,勾股定理

      點評:輔助線問題是初中數(shù)學學習中的難點,能否根據(jù)具體情況正確作出恰當?shù)妮o助線往往能夠體現(xiàn)一個學生對圖形的理解能力,因而這類問題在中考中比較常見,在各種題型中均有出現(xiàn),一般難度較大,需多加關注.3.如圖,AB為半圓O的直徑,弦AD、BC相交于點P,若CD=3,AB=4,求tan∠BPD的值

      【答案】【解析】

      試題分析:連接BD, 根據(jù)圓周角定理可得∠ADB=90°,證得△PCD ∽△PAB,根據(jù)相似三角形的性質(zhì)結(jié)合余弦的定義可得∠BPD的余弦值,再結(jié)合勾股定理即可求得結(jié)果.連接BD,∵AB是直徑, ∴∠ADB=90°.∵∠C=∠A,∠D=∠B, ∴△PCD ∽△PAB, ∴.在Rt△PBD中,cos∠BPD=設PD=3x,PB=4x, 則BD=∴tan∠BPD=

      .=, ,考點:圓周角定理,相似三角形的判定和性質(zhì),勾股定理,三角函數(shù)

      點評:本題綜合性強,知識點較多,因而這類問題在中考中比較常見,在各種題型中均有出現(xiàn),一般難度較大,需多加關注.4.如圖,在⊙O中,AB是直徑,CD是弦,AB⊥CD.(1)P是上一點(不與C、D重合),試判斷∠CPD與∠COB的大小關系, 并說明理由.(2)點P′在劣弧CD上(不與C、D重合時),∠CP′D與∠COB有什么數(shù)量關系?請證明你的結(jié)論.【答案】(1)相等;(2)∠CP′D+∠COB=180° 【解析】

      試題分析:(1)連接OD,根據(jù)垂徑定理可得∠COB=∠DOB,再結(jié)合圓周角定理即可得到結(jié)果;(2)連接P′P,則可得∠P′CD=∠P′PD,∠P′PC=∠P′DC.即可得∠P′CD+∠P′DC=∠CPD,從而可以得到結(jié)果.從而∠CP′D+∠COB=180°.(1)連接OD,∵AB⊥CD,AB是直徑, ∴,∴∠COB= ∠DOB.∵∠COD=2∠P,∴∠COB=∠P,即∠COB=∠CPD.(2)連接P′P,則∠P′CD=∠P′PD,∠P′PC=∠P′DC.∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD.∴∠CP′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB, 從而∠CP′D+∠COB=180°.考點:垂徑定理,圓周角定理

      點評:輔助線問題是初中數(shù)學學習中的難點,能否根據(jù)具體情況正確作出恰當?shù)妮o助線往往能夠體現(xiàn)一個學生對圖形的理解能力,因而這類問題在中考中比較常見,在各種題型中均有出現(xiàn),一般難度較大,需多加關注.5.在足球比賽場上,甲、乙兩名隊員互相配合向?qū)Ψ角蜷TMN進攻.當甲帶球部到A點時,乙隨后沖到B點,如圖所示,此時甲是自己直接射門好,還是迅速將球回傳給乙,讓乙射門好呢?為什么?(不考慮其他因素)

      【答案】讓乙射門較好 【解析】

      試題分析:根據(jù)圓周角定理結(jié)合三角形外角的性質(zhì)分析即可得到結(jié)論.迅速回傳乙,讓乙射門較好,在不考慮其他因素的情況下, 如果兩個點到球門的距離相差不大,要確定較好的射門位置,關鍵看這兩個點各自對球門MN的張角的大小,當張角越大時,射中的機會就越大,如圖所示,則∠A∠A, 從而B處對MN的張角較大,在B處射門射中的機會大些.考點:圓周角定理,三角形外角的性質(zhì)

      點評:本題是圓周角定理的基礎應用題,在中考中比較常見,一般以選擇題、填空題形式出現(xiàn),屬于基礎題,難度不大.6.鉗工車間用圓鋼做方形螺母,現(xiàn)要做邊長為a的方形螺母, 問下料時至少要用直徑多大的圓鋼?

      【答案】【解析】 a

      試題分析:根據(jù)圓內(nèi)接正方形的性質(zhì)結(jié)合勾股定理即可求得結(jié)果.由題意得則下料時至少要用直徑為的圓鋼.考點:圓內(nèi)接正方形的性質(zhì),勾股定理

      點評:特殊四邊形的性質(zhì)的應用是初中數(shù)學平面圖形中極為重要的知識點,與各個知識點結(jié)合極為容易,是中考中的熱點,在各種題型中均有出現(xiàn),需多加關注.

      第三篇:七年級數(shù)學練習卷

      1.若不等式組{1+x>a2x-4≤0有解,則a的取值范圍是_______.2.不等式4-3x≥2x-6的非負整數(shù)解是_________.3.已知關于x的方程2x+4=m-x的解為負數(shù),則m的取值范圍是__________.4.若關于x,y的二元一次方程組{2x+y=3k-1x+2y=-2的解滿足x+y>1,則k的取值范圍是___________.5.若關于x的不等式(1-a)x>2可化為x<2/1-a,則a的取值范圍是____________.6.已知4a-(3x的3-2a次方)>1是關于x 的一元一次不等式,則該不等式的解集為_________.7.醫(yī)學中規(guī)定:人的心臟每分鐘跳動的次數(shù)a的正常范圍不少于60次,且不多于100次,則a的取值范圍可表示為____________.8.若a<b,則{x>ax>b的解集是_________,{x>ax<b的解集是___________,{x<ax<b的解集是_________,{x<ax<b 的解集是___________.9.使式子x/2x-4有意義的x的取值范圍是_____________.10.已知3-2x<1,則化簡 |1-x|-|x| 的結(jié)果是__________.二.解答題。

      11.用若干輛載重為8噸的汽車運一批貨物,若每輛汽車只裝5噸,則剩下10噸貨物。若每輛汽車裝滿8噸,則最后一輛汽車不空也不滿,請問有多少輛汽車?

      12.已知自然數(shù)c滿足8ac-4<3bc,又 |4a-5| 與(4a-b-2)2互為相反數(shù),求c的值。

      第四篇:浙江省慈溪市橫河初級中學七年級數(shù)學上冊 3.3立方根教案 浙教版

      第二章 實數(shù)3.3立方根

      一、學情分析

      在學習了平方根概念的基礎上學習立方根的概念,學生比較容易接受,因此教學重點放在立方根具有唯一性(實數(shù)范圍內(nèi))的討論上.在學生對數(shù)的立方根概念及個數(shù)的唯一性有了一定理解的基礎上,再提出數(shù)的立方根與數(shù)的平方根有什么區(qū)別,學生就容易解決問題.

      二、目標分析 教學目標 ? 知識與技能目標

      1.了解立方根的概念,會用根號表示一個數(shù)的立方根.

      2.會用立方運算求一個數(shù)的立方根,了解開立方與立方互為逆運算. 3.了解立方根的性質(zhì).

      4.區(qū)分立方根與平方根的不同. 過程與方法目標

      1.經(jīng)歷對立方根的探究過程,在探究中學會解決立方根的一些基本方法和策略. 2.在學習了平方根的基礎上,學生經(jīng)歷用類比的方法學習立方根的有關知識,領會類比思想. ? 3.通過對立方根性質(zhì)的探究,在探究中培養(yǎng)學生的逆向思維能力和分類討論的意識. 情感與態(tài)度目標: ?

      1.在立方根概念、符號、運算及性質(zhì)的探究過程中,培養(yǎng)學生聯(lián)系實際、善于觀察、勇于探索和勤于思考的精神.

      2. 學生通過對實際問題的解決,體會數(shù)學的實用價值. ? 教學重點

      立方根的概念及計算. ? 教學難點

      立方根的求法,立方根與平方根的聯(lián)系及區(qū)別.

      三、教法學法

      1.教學方法:類比法.

      2.課前準備:

      教具:教材,軟件Microsoft PowerPoint 2002,電腦.

      學具:教材,練習本.

      四、教學過程

      本節(jié)課設計了七個教學環(huán)節(jié):第一環(huán)節(jié):創(chuàng)設問題情境;第二環(huán)節(jié):復習引入、類比學習;第三環(huán)節(jié):初步探究;第四環(huán)節(jié):嘗試反饋,鞏固練習;第五環(huán)節(jié):深入探究;第六環(huán)節(jié):課時小結(jié);探究與思考;第七環(huán)節(jié):作業(yè)布置及課外探究.

      第一環(huán)節(jié):創(chuàng)設問題情境:

      內(nèi)容:

      某化工廠使用一種球形儲氣罐儲藏氣體,現(xiàn)在要造一個新的球形儲氣罐,如果它的體積是原來的8倍,那么它的半徑是原儲氣罐的多少倍?如果儲氣罐的體積是原來的4倍呢?(球的體積公式為v=43?R,R為球的半徑)提問:怎樣求出半徑R ?學完本節(jié)知識后,相信你會有一個滿意的答案.有關體積的運算和面積的運算有類似之處,讓我們用上節(jié)課解決問題的方法來學習新知識 .

      意圖:通過實際情境引入,讓學生感受新知學習的必要性,激發(fā)學生的求知欲望. 效果:在思考問題的同時,學生既感受了數(shù)學的應用價值,激發(fā)了學生的學習熱情,有很快將問題歸結(jié)為如何確定一個數(shù),它的立方等于4,從而順利引入新課. 第二環(huán)節(jié):復習引入、類比學習

      內(nèi)容:

      提問:(1)什么叫一個數(shù)a的平方根?如何用符號表示數(shù)a(a≥0)的平方根?(2)正數(shù)的平方根有幾個?它們之間的關系是什么?負數(shù)有沒有平方根?0的平方根 是什么?

      (3)平方和開平方運算有何關系?

      (4)算術平方根和平方根有何區(qū)別和聯(lián)系?

      強調(diào):一個正數(shù)的平方根有兩個,且互為相反數(shù);一個負數(shù)沒有平方根;0的平方根是0.(5)為了前面場景的問題中,需要引出一個新的運算,你將如何定義這個新運算?

      1.一般地,如果一個數(shù)x的平方等于a,即x2=a,那么這個數(shù)x就叫做a的平方根(也叫做二次 方根).2.一般地,如果一個數(shù)x的立方等于a,即x3=a,那么這個數(shù)x就叫做a的立方根(cube root, 也 叫做三次方根).如:2是8的立方根,-3是-27的立方根,0是0的立方根.

      意圖:學生通過回顧上節(jié)課的學習內(nèi)容,為進一步研究立方根的概念及性質(zhì)做好鋪墊,同時 突出平方根與立方根的對比,以利于弄清兩者的區(qū)別和聯(lián)系.

      效果:復習引入既復習了平方根的知識,又利于學生類比學習法學習立方根知識.第三環(huán)節(jié):初步探究

      內(nèi)容:

      1做一做:怎樣求下列括號內(nèi)的數(shù)?各題中已知什么數(shù)?求什么數(shù)?

      ()=-(1)()=0.001 ;(2)332764 ;(3)()=0.意圖:通過計算練習,使學生進一步了解求一個數(shù)的立方,與求一個數(shù)的立方根是互為逆運算,感受一個數(shù)的立方根的唯一性,計算中對a的取值分別選為正數(shù)、負數(shù)、0,這樣設計,在此過程中滲透分類討論的思想方法. 2議一議:

      (1)正數(shù)有幾個立方根?(2)0有幾個立方根

      (3)負數(shù)呢?

      意圖:提問,是為了指出平方根與立方根的對比,以利于弄清兩者的區(qū)別和聯(lián)系.

      3在上面的基礎上明晰下列內(nèi)容,對知識進行梳理

      3(1)每個數(shù)a都只有一個立方根,記為“a”,讀作“三次根號a”.例如x3=7時,x3是7的立方根,即7=x;與數(shù)的平方根的表示比較,數(shù)的立方根中根號前沒有“±”符號,但根指數(shù)3不能省略.

      (2)正數(shù)的立方根是正數(shù);0的立方根是0;負數(shù)的立方根是負數(shù).

      (3)求一個數(shù)a的立方根的運算叫做開立方(extrction of cubic root), 其中a叫做被開方數(shù).開立方與立方互為逆運算.

      效果:通過親自運算、探究學習立方運算的逆運算,培養(yǎng)了學生的探究能力,初步掌握立方根的概念.

      第四環(huán)節(jié):嘗試反饋,鞏固練習

      內(nèi)容:

      例1求下列各數(shù)的立方根:(1)-27;(2)

      812538 ;(3)3 ;(4)0.216 ;(5)-5.33解:(1)因為(-3)=-27,所以-27的立方根是-3,即-27=-3;

      82828?2?=;

      (2)因為???,所以的立方根是,即312551255125?5?3233()=(3)因為

      278=338,所以338的立方根是

      33,即33=;

      8223

      33(4)因為(0.6)=0.216,所以0.216的立方根是0.6,即0.216=0.6;

      (5)-5的立方根是3-5.例2 求下列各式的值:

      (1)3?8;(2)30.064;(3)?338125;(4)

      ?9?.

      333解:(1)3?8=3??2???2;(2)30.064=3?0.4??0.4;

      8125?2????5?3(3)?3=?3??25;(4)

      ?9?=9.

      隨堂練習

      1.求下列各數(shù)的立方根: 30.125;3?64; -364;5; 33?316?.32.通過上面的計算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?

      意圖:例1著眼于弄清立方根的概念,因此這里不僅用立方的方法求立方根,而且書寫上采用了語言敘述和符號表示互相補充的做法,學生在熟練以后可以簡化寫法.例2則鞏固立方根的計算,引導學生思考立方根的性質(zhì).

      效果:學生通過練習掌握立方根的概念和計算,通過對計算結(jié)果的分析得出立方根的性質(zhì),若學生不能發(fā)現(xiàn)規(guī)律,教師可以再給出幾個例子,如:3?8=-2=-2; 3=327=3; 38=(2)=8.引導學生觀察被開方數(shù)、根指數(shù)及3333??33

      運算結(jié)果之間的關系,從而得出立方根的性質(zhì);也可以安排學生分小組討論,通過交流,展示學生發(fā)現(xiàn)的規(guī)律;若學生的討論不夠深入,可由教師補充得出結(jié)論. 第五環(huán)節(jié):深入探究

      想一想:

      (1)3a表示a的立方根,那么

      ?a?等于什么?

      333a3呢?

      (2)3-a與-3a有何關系?

      意圖:明晰?a? =a,333a3=a。說明:若學生通過上面的計算得出了立方根的性質(zhì),可以直接展示學生的成果;若沒有得出結(jié)果,可以引導學生分析,如果x3=a,那么x就是a的立方根,即x=3a,所以x=33?a?=a, 同樣,根據(jù)定義,a333是的a三次方,所以a3的立方根就是a, 即a?a,33-a=-3a.

      第六環(huán)節(jié) 課時小結(jié):

      內(nèi)容1:提問通過本節(jié)課的學習你學到了哪些知識?歸納、總結(jié)學生的回答,得出下列內(nèi)容:

      1.了解立方根的概念,會用三次根號表示一個數(shù)的立方根,能用立方運算求一個數(shù)的立方根.

      2.在學習中應注意以下5點:

      (1)符號3a中根指數(shù)“3”不能省略;

      (2)對于立方根,被開方數(shù)沒有限制,正數(shù)、零、負數(shù)都有一個立方根;

      (3)平方根和立方根的區(qū)別:正數(shù)有兩個平方根,但只有一個立方根;

      負數(shù)沒有平方根,但卻有一個立方根;

      33(4)靈活運用公式:(3a)3=a, a?a,3-a=-3a;

      (5)立方與開立方也互為逆運算.我們也可以用立方運算求一個數(shù)的立方根,或檢驗一個數(shù)是不是另一個數(shù)的立方根.

      意圖:引導學生自己小結(jié)本節(jié)課的知識要點及數(shù)學方法,使知識系統(tǒng)化.

      效果:通過小結(jié),學生進一步加深了對類比學習方法的感受,對所學的知識進行了梳理,學習更有條理性.

      內(nèi)容2:回顧引例

      某化工廠使用一種球形儲氣罐儲藏氣體,現(xiàn)在要造一個新的球形儲氣罐,如果它的體積是原來的8倍,那么它的半徑是原儲氣罐半徑的多少倍?如果儲氣罐的體積是原來的4倍呢?

      如有時間,學生學力許可,還可以安排學生探究下列問題:

      1.回顧上節(jié)課的內(nèi)容:已知2x?18=0,求x的值.

      2.求下列各式中的x.

      (1)8x3+27=0;(2)(x-1)3-0.343=0;(3)81(x+1)4=16;(4)32x5-1=0.

      意圖:回顧引例,使得教學環(huán)節(jié)更完整,同時體現(xiàn)了數(shù)學的實用價值.安排有層次的探究問題,可更好地調(diào)動不同學生的學習熱情,讓學生通過練習解決有關問題,培養(yǎng)學生綜合解決問題的能力.

      第七環(huán)節(jié) 教學反思

      主要注意學生的計算,以及對立方根的理解

      第五篇:2012年蘇教版初中政治七上《我是中學生了》練習卷(帶解析)

      2012年蘇教版初中政治七上《我是中學生了》練習卷(帶解析)

      一、單選題

      1.面對新的班級,新的同學,要想盡快適應這一環(huán)境,交更多的朋友,則需要 A.好好學習,因為我們都喜歡和學習好的同學玩 B.彼此之間的真誠和心靈的溝通 C.天天買好東西給朋友吃

      D.教訓那些不聽話的,樹立自己的威信 【答案】B

      【解析】本題考查在新集體中如何結(jié)交新朋友。

      在新班級中要成為朋友需要彼此之間的真誠和心靈的溝通,所以B選項正確,A選項只強調(diào)好好學習是片面的,C選項天天買好東西給朋友吃顯然是錯誤的,D選項教訓那些不聽話的,顯然是違反校紀校規(guī)的。綜合以上分析,本題選B.2.下列屬于能積極主動適應中學新生活的做法有()

      ①見到同學時,等對方開口,才與他打招呼②根據(jù)中學的特點和自身的特點,制定計劃③遵守各項規(guī)章制度④中學活動太多了,會影響學習,能不參加的就不參加 A.②④ B.①③ C.②③ D.③④ 【答案】C

      【解析】本題考查如何主動適應中學的新生活 從題干中要抓住“主動適應”一題來分析。

      ①見到同學時,等對方開口,才與他打招呼顯然是被動適應,本選項錯誤;②根據(jù)中學的特點和自身的特點,制定計劃是主動適應;③遵守各項規(guī)章制度是主動適應;④中學活動太多了,會影響學習,能不參加的就不參加,是一種錯誤的觀念。綜上可見,本題選C。3.下列對優(yōu)良班風的理解正確的是()

      ①優(yōu)良班風主要體現(xiàn)在精神風貌、學習氛圍、同學關系等許多方面②優(yōu)良班風的形成需要每一個人用行動去創(chuàng)造,去維護③愛心是營造良好班風的基礎④優(yōu)良班風主要依靠老師來維護

      A.①②③ B.②③④ C.①③④ D.①②④ 【答案】A

      【解析】本題考查班風的定義以及如何形成良好的班風。

      根據(jù)班風的定義可知,優(yōu)良班風主要體現(xiàn)在精神風貌、學習氛圍、同學關系等許多方面,所以①正確;優(yōu)良的班風的形成需要每一個人用行動去創(chuàng)造,去維護,所以②正確,④錯誤;愛心是營造良好班風的基礎,所以③正確。故本題選A。4.新的學校里,李理感到學校生活豐富多彩,有學生會、廣播站、文學社,學校還定期舉辦有各種競賽活動。李理覺得這是()A.我們學習成才的好機會 B.我們豐富科學知識的好機會 C.發(fā)揮自己聰明才智和特長的好機會

      D.發(fā)展自我、培養(yǎng)個人綜合素質(zhì)的好機會,同時也是新挑戰(zhàn) 【答案】D

      【解析】本題考查初中生如何看待豐富多彩的學?;顒印?/p>

      豐富多彩的校園活動可以使我們發(fā)展自我、培養(yǎng)個人綜合素質(zhì),但同時我們也需要正確處理好活動與學習之間的關系,因此對我們而言也是一種挑戰(zhàn)。所以A、B、C三個選項都是片面的,D選項是正確的。故選D。

      5.在中學,小梅感到與小學不一樣的還有,中學老師管得少,很多事情都得自己做主,自己操心。你的看法是()A.是中學老師太懶的表現(xiàn) B.是中學老師不關心我們 C.有利于提高我們自主管理的能力 D.中學老師還不認識我們 【答案】C

      【解析】本題考查如何適應初中的生活。

      作為中學生,我們不應該只是被動地等待別人告知我們應該做什么,而是應該主動去了解自己要做什么,然后努力地去完成,做一名合格的中學生。題干中老師管得少,很多事情都得自己做主是需要我們提高自我管理能力,而并不是不關心我們,更不是因為老師懶惰。所以A、B、D都是錯誤的。所以本題選擇C。

      6.當我們進入初中以后,初中的學習與小學有很大不同,對此下列說法中正確的是()A.初中老師比小學老師更有學問 B.初中時學校離家要遠很多 C.初中時學習的科目比小學時增多了 D.初中時的課本比小學時的課本厚 【答案】C

      【解析】本題考查初中學習與小學的不同點。

      初中的學習與小學相比,增加了許多新的學習科目,這是最大的不同。所以C正確。A、初中老師比小學老師更有學問,B、初中時學校離家要遠很多,D、初中時的課本比小學時的課本厚顯然都是錯誤的。故本題選擇C。7.小玲在小學時一直是一個很優(yōu)秀的學生,進入中學后,她經(jīng)常放學回家后就顯得心事重重,也不敢與父母說說笑笑了。這主要是因為()A.中學生活新變化帶來的影響 B.小玲的心理素質(zhì)低 C.中學生活壓力太大 D.玲玲還沒有適應中學生活 【答案】D

      【解析】本題考查的是適應學校新生活。

      題干中玲在小學時一直是一個很優(yōu)秀的學生,進入中學后,她經(jīng)常放學回家后就顯得心事重重,也不敢與父母說說笑笑了。是沒有適應中學生活的表現(xiàn)。所以D選項正確,A、B、C三個選項都是不能適應中學生活的具體表現(xiàn)和原因,但都不全面,因此均不正確。故本題選擇D。

      8.當我們邁出小學校門,進入中學以后,會感到豐富的初中生活,也會有許多困惑和擔心,也會感到孤獨和失落。在這個時候,我們應該()A.積極面對 B.畏縮逃避 C.猶豫不決 D.聽其自然 【答案】A

      【解析】本題考查積極面對新環(huán)境。

      面對新的環(huán)境、新的挑戰(zhàn),我們不應畏懼,不能退縮,我們應該有挑起更重擔子的勇氣。所以B選項畏縮逃避是錯誤的。C選項猶豫不決,D選項聽其自然也是不正確的,A選項積極面對是正確的,故本題選擇A。

      9.踏著歡快的步伐,懷著愉悅的心情,我們進入了新的學校。面對新學校、新同學,我們應該()

      A.走自己的路,不管他人怎么樣 B.討好新朋友,送禮給他們 C.各自為政,發(fā)揮所長發(fā)展自己 D.珍視新朋友,與新同學結(jié)伴成長 【答案】D

      【解析】本題考查在新集體中如何與同學交往。

      我們進入了新的學校。面對新學校、新同學,我們應該珍視新朋友,與新同學結(jié)伴成長,所以D選項正確。A選項走自己的路,不管他人怎么樣沒有考慮到同學之間的友誼;B選項討好新朋友,送禮給他們也是一種錯誤的交友方式;C選項各自為政不利于創(chuàng)建團結(jié)的班集體。故本題選D。

      10.小學的時候,小青的學習主要靠老師的安排和家長的輔導。進入中學以后,面對那么多的課程,小青經(jīng)常顧此失彼,跟不上老師的教學進度,放學回家,媽媽也很少陪他寫作業(yè)了。他感到自己學習越來越吃力了,為此,他十分苦惱。對此,你的認識是()A.小青應該回到六年級重讀一遍,才能跟得上初中的學習B.小青的情況很常見,過一段時間自然就會好起來

      C.小青還是要依靠老師和父母,要求老師和父母還要像小學時那樣輔導和幫助自己 D.小青應該提高自己的適應能力,學會自主學習【答案】D

      【解析】本題考查進入新集體的學習適應問題。

      進入初中,我們應該學會自我調(diào)適,要主動調(diào)整生活節(jié)奏,要根據(jù)新的學習任務和要求,制定可行的學習計劃,適應新的作息時間,學會安排自己的業(yè)余生活。所以D選項正確,A、B、C錯誤,故選擇D。

      二、簡答題

      1.中共中央總書記、國家主席胡錦濤指出,實現(xiàn)和諧社會,建設美好社會,始終是人類孜孜以求的一個社會理想,也是包括中國共產(chǎn)黨在內(nèi)的馬克思主義政黨不懈追求的一個社會理想。我們所要建設的社會主義和諧社會,應該是民主法制、誠信友愛、充滿活力、安定有序、人和自然和諧相處的社會。

      “國家是海,個人是水”,營造和諧社會需要人人努力,請同學們聯(lián)系學校生活實際,從學校、學生兩個角度談談怎樣構(gòu)建和諧校園、和諧班級。

      【答案】學校:(1)利用校園電視臺、校報、黑板報等加強構(gòu)建和諧社會、和諧校園的宣傳;(2)積極開展創(chuàng)建“和諧班級”、“五好個人”活動;(3)制定各項規(guī)章制度,打擊各種歪風邪氣。學生:(對照中學生日常行為規(guī)范的內(nèi)容回答)

      【解析】本題考查學生的遷移能力,從材料中的創(chuàng)建和諧社會遷移到創(chuàng)建和諧學校、和諧班級。

      題目中強調(diào)結(jié)合學校生活實際,從學校、學生兩個角度談怎樣構(gòu)建和諧校園、和諧班級。實際就是考查學校構(gòu)建和諧校園,學??梢蚤_展哪些活動,學生應該為構(gòu)建和諧校園、和諧班級做哪些具體的事。從這個角度組織答案為:學校:(1)利用校園電視臺、校報、黑板報等加強構(gòu)建和諧社會、和諧校園的宣傳;(2)積極開展創(chuàng)建“和諧班級”、“五好個人”活動;(3)制定各項規(guī)章制度,打擊各種歪風邪氣。學生:遵守各項規(guī)章制度、樂于助人、為學校、班級做貢獻等(對照中學生日常行為規(guī)范的內(nèi)容回答,言之成理即可)。

      三、綜合題

      1.進入中學后,我們走進了一片嶄新的天地,新的同學,新的校園,對我們來說都很陌生。為了讓大家更快地融入新的集體中,七年級(1)班的班主任老師打算搞一項活動以加快同學之間的相互了解,請你參與。

      (1)你認為本次活動可以采用哪些形式?(2)就其中任意一種形式,設計具體的活動步驟(3)你認為開展本次活動有何意義?

      【答案】(1)可以采取文藝表演、演講比賽,籃球賽等形式;(2)步驟:a選拔出比賽的運動員、拉拉隊,并邀請體育老師擔任裁判;b組織比賽;c賽后總結(jié)。(3)有利于加深同學之間的相互理解,讓大家更快地融入新的集體當中;有利于增強集體凝聚力;有利于良好班風的形成。

      【解析】本題考查學生分析問題、解決問題的綜合能力,題干中“進入中學后,我們走進了一片嶄新的天地,新的同學,新的校園,對我們來說都很陌生。為了讓大家更快地融入新的集體中,”實際上已經(jīng)明確了活動的意義是“讓大家更快地融入新的集體中”。三個小題實際上是思想品德實踐探究題常見的題型,第一問考思想品德中常見的活動形式,學校中常見的活動形式有主題班會、演講比賽、體育比賽、黑板報等等;第二問就一種形式設計活動步驟,步驟一定要科學可行,具體到哪一步應該做什么,以籃球賽為例,可以先選拔出比賽的運動員、拉拉隊,并邀請體育老師擔任裁判,再組織比賽,最后進行賽后總結(jié);第三問開展活動的意義,應該有固定的回答格式,即“有利于………;有利于………;有利于………;”具體到本題可以是有利于加深同學之間的相互理解,讓大家更快地融入新的集體當中;有利于增強集體凝聚力;有利于良好班風的形成。

      下載2012年浙教版初中數(shù)學七年級上3.3立方根練習卷(帶解析)word格式文檔
      下載2012年浙教版初中數(shù)學七年級上3.3立方根練習卷(帶解析).doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發(fā)現(xiàn)有涉嫌版權的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權內(nèi)容。

      相關范文推薦

        最新初中七年級數(shù)學(上)知識點匯總

        2022初中七年級數(shù)學(上)知識點匯總第一章有理數(shù)二.知識概念1.有理數(shù):凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注......

        2013年初中畢業(yè)升學考試(河南卷)政治(帶解析)

        2013年初中畢業(yè)升學考試(河南卷)政治(帶解析) 一、單選題 1.習近平同志在紀念現(xiàn)行憲法公布施行30周年大會上發(fā)表重要講話指出:“維護憲法權威,就是維護黨和人民共同意志的權威,捍衛(wèi)......

        四年級上冊3.3 角的度量練習卷及答案-人教版數(shù)學

        人教版數(shù)學四年級上冊3.3角的度量練習卷評卷人得分一、選擇題1.如果∠1+∠2=∠2+∠3,∠1=35°,那么∠3=A.90°B.55°C.35°2.鐘面上3:00,分針和時針形成的較小角是A.30°B.60°C......

        人教初中數(shù)學七上《3.3 去括號與去分母》word教案

        解一元一次方程—去分母 [教學目標] 1.理解并掌握解一元一次方程的方法和一般步驟,并在此基礎上解決實際問題. 2.能準確分析實際問題中的數(shù)量關系和等量關系,列方程解應用題.......

        2014初中數(shù)學教材教法練習二【解析版】

        2014招教考試教材教法練習二一、填空題(1)數(shù)學教學活動必須建立在學生的認知__________和已有__________基礎上。教師應激發(fā)學生的學習積極性,向?qū)W生提供充分從事數(shù)學_________......

        2014年初中畢業(yè)升學考試(湖北鄂州卷)政治(帶解析)

        2014年初中畢業(yè)升學考試(湖北鄂州卷)政治(帶解析) 一、單選題 1.下面直接反映了地球大氣污染嚴重的是 A.霧霾頻繁出現(xiàn) B.森林資源不斷減少 C.干旱頻繁發(fā)生 D.人畜飲用水短缺 【答案......

        思想品德:3.3《文明交往》教學設計(粵教版七年級上)

        3.3《文明交往》教學設計及課堂教學實錄 1、知識與能力 認識禮貌是文明交往的必要前提,學會使用禮貌用語,掌握基本的交往禮儀與技巧。學會與人溝通的技巧,提高交往的能力。 2、......

        湘教七年級上數(shù)學教學計劃[5篇材料]

        湘教七年級上數(shù)學教學計劃怎么寫?從培養(yǎng)學生學數(shù)學、用數(shù)學的能力入手,持之以恒地開展教研活動。充分發(fā)展學生數(shù)學思維,全面提高教育教學質(zhì)量。這里給大家分享一些關于湘教七......