欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      完全平方公式教學(xué)案例[最終定稿]

      時(shí)間:2019-05-13 01:10:53下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫(xiě)寫(xiě)幫文庫(kù)小編為你整理了多篇相關(guān)的《完全平方公式教學(xué)案例》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫(xiě)寫(xiě)幫文庫(kù)還可以找到更多《完全平方公式教學(xué)案例》。

      第一篇:完全平方公式教學(xué)案例

      完全平方公式教學(xué)案例

      張春艷

      一、教學(xué)目標(biāo) :

      經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推理能力;在變式中,拓展提高; 重點(diǎn):正確理解完全平方公式(a±b)2=a2±2ab+b2,并初步運(yùn)用; 難點(diǎn):完全平方公式的運(yùn)用。

      二、教學(xué)過(guò)程 :

      1.檢查學(xué)生的“預(yù)習(xí)知識(shí)樹(shù)”,導(dǎo)入 課題:

      師:前面學(xué)習(xí)了平方差公式,同學(xué)們對(duì)平方差公式的結(jié)構(gòu)特點(diǎn)、運(yùn)用以及學(xué)習(xí)公式的意義有了初步的認(rèn)識(shí)。今天,我們繼續(xù)學(xué)習(xí)、研究另一種“乘法公式”——完全平方公式。請(qǐng)拿出你的“預(yù)習(xí)知識(shí)樹(shù)”,小組內(nèi)互查并交流,在預(yù)習(xí)中有疑問(wèn)的同學(xué)請(qǐng)?jiān)儐?wèn)。

      (活動(dòng):老師巡視、檢查學(xué)生的預(yù)習(xí)情況,并解答學(xué)生在預(yù)習(xí)中存在的問(wèn)題)生:(互查、討論“預(yù)習(xí)知識(shí)樹(shù)”,有問(wèn)題的詢問(wèn)問(wèn)題。)師:(老師點(diǎn)評(píng)學(xué)生預(yù)習(xí)情況,并出示老師做的“知識(shí)樹(shù)”,引出課題:完全平方公式。)說(shuō)明:把預(yù)習(xí)提到課前,利用“知識(shí)樹(shù)”引導(dǎo)學(xué)生自學(xué),學(xué)生可以獨(dú)立思考、自主學(xué)習(xí),也可合作交流、討論研究,這樣預(yù)習(xí)會(huì)更充分,聽(tīng)講時(shí)就能有準(zhǔn)備、有選擇;一上課,老師就檢查“預(yù)習(xí)知識(shí)樹(shù)”,了解學(xué)生新課學(xué)習(xí)情況,適當(dāng)點(diǎn)撥,在課堂上留出更多的時(shí)間大量拓展、提高,發(fā)展學(xué)生的能力。

      2.自學(xué)檢測(cè),制造通用工具:師:下面進(jìn)行自學(xué)檢測(cè).計(jì)算:⑴(x+3)2;⑵(2x-5)2;⑶(mn+t)2;⑷(-4x+y2)2。

      (活動(dòng):投影顯示練習(xí)題。)生:(四人到黑板上板演,答錯(cuò)了,由學(xué)生糾正,老師再點(diǎn)評(píng)。)師:觀察練習(xí),公式中的a、b可代表什么?

      生:可以表示一個(gè)數(shù),也可以表示一個(gè)單項(xiàng)式、多項(xiàng)式。

      說(shuō)明:點(diǎn)評(píng)時(shí),老師反復(fù)引導(dǎo)學(xué)生分清題目中哪部分相當(dāng)于公式中的a,哪部分相當(dāng)于公式中的b,就是讓學(xué)生明確“公式中的a、b可表示數(shù),也可表示一個(gè)單項(xiàng)式、多項(xiàng)式或其他的式子”的變化規(guī)律,即制造通用工具。在前面學(xué)習(xí)習(xí)近平方差公式時(shí),學(xué)生應(yīng)該認(rèn)識(shí)到這個(gè)道理,在這里再次強(qiáng)化。師:說(shuō)得非常好,明確“公式中的a、b可以表示一個(gè)數(shù),也可以表示一個(gè)單項(xiàng)式、多項(xiàng)式”的變化規(guī)律,就能正確運(yùn)用公式解題了。顯然,剛做的練習(xí)題是由公式變化來(lái)的,若是變下去,能變多少道題?

      生:無(wú)數(shù)道。師:最終是幾道題?生:一道。說(shuō)明:這就是老師的“暗線”語(yǔ)言,引導(dǎo)學(xué)生明白從公式出發(fā),反映在a、b上只是取值不同,可以演變出無(wú)數(shù)道題,是“解壓”的過(guò)程,最終還是利用公式解題,所有的題目只有“一道”,只是形式不同,這又是“壓縮”的過(guò)程,把握了變化規(guī)律才能更好地解題。

      師:你會(huì)變了嗎?請(qǐng)各小組編題。(活動(dòng):四人小組先在組內(nèi)討論、交流,再推選完成最快的兩個(gè)小組出示題目,其他小組同學(xué)練習(xí)。)說(shuō)明:引導(dǎo)學(xué)生現(xiàn)場(chǎng)出題,一是激發(fā)學(xué)生興趣、活躍氣氛,二是驗(yàn)證變化規(guī)律。

      師:下面思考,如何計(jì)算:(a+b+c)2生1:可根據(jù)多項(xiàng)式乘以多項(xiàng)式來(lái)計(jì)算,就是把(a+b+c)2看做(a+b+c)(a+b+c)。

      師:不錯(cuò)。還有其他方法嗎?生2:也可以把其中的(a+b)兩項(xiàng)看成一項(xiàng),變成[(a+b)+c]2的形式,就能直接運(yùn)用完全平方公式了。

      師:說(shuō)得非常好。兩種方法都可以,但哪種更簡(jiǎn)單呢?請(qǐng)你任選一種,完成練習(xí)。

      生:(緊張地做題,同時(shí)找兩個(gè)學(xué)生到黑板上板演。)師:這道題若是變?yōu)?a+b+c+d)2,你會(huì)做嗎?

      生:(齊答)會(huì)。師:怎么辦?生1:把其中(a+b)看做一項(xiàng),(c+d)看做一項(xiàng),還是利用完全平方公式解題。

      生2:還有其他分組方式,如把(a+c)看做一項(xiàng),(b+d)看做一項(xiàng),也能直接運(yùn)用公式解題。

      師:方法一樣嗎?生:一樣的。師:還能變下去嗎?這樣可以變出多少道題?

      生:無(wú)數(shù)道。師:最終是幾道題?生:(齊答)一道題。師:現(xiàn)在,老師相信每個(gè)學(xué)生都會(huì)解這樣的題了。課下,請(qǐng)同學(xué)們思考:如果把(a+b)2的指數(shù)變化一下,又可以變出多少道題,你能計(jì)算出來(lái)嗎?

      (活動(dòng):投影顯示一組題目,如(a+b)

      3、(a+b)4??)說(shuō)明:這就是老師進(jìn)一步利用這個(gè)例子論證“公式中的a、b可表示數(shù),也可表示一個(gè)單項(xiàng)式、多項(xiàng)式或其他的式子”的變化規(guī)律。

      3.通過(guò)大量的習(xí)題驗(yàn)證通用工具,學(xué)生并且自造通用工具。師:通過(guò)前面的檢測(cè),看出同學(xué)們已經(jīng)基本掌握了完全平方公式。下面進(jìn)入達(dá)標(biāo)檢測(cè)。

      (活動(dòng):投影顯示達(dá)標(biāo)檢測(cè)題)1.填空:

      ①(2x+3y)2=______;②(14a-1)2=116a2-____+1;③當(dāng)x=5,y=2,則(x+y)(x-y)-(x-y)2=_________。

      2.計(jì)算:

      ①(-2m-n)2;②(2-3a2)(3a2-2);③(-cd+12)2; 計(jì)算:(x+2y+3)(x+2y-3)

      這節(jié)課我們學(xué)習(xí)、研究了完全平方公式(a±b)2=a2±2ab+b2,知道了公式中a、b,可以是單項(xiàng)式也可以是多項(xiàng)式,能運(yùn)用公式解題了,能力上又有新的提高.課后小記:第一課時(shí)的內(nèi)容,學(xué)生對(duì)公式理解的不錯(cuò),并能準(zhǔn)確。對(duì)底數(shù)不是單個(gè)數(shù)字和單個(gè)字母的,多數(shù)學(xué)學(xué)生能想著加括號(hào),這一點(diǎn)最值得表?yè)P(yáng)。

      第二篇:完全平方公式 教學(xué)設(shè)計(jì)

      14.2.2 完全平方公式 教學(xué)設(shè)計(jì)-2021-2022學(xué)年人教版八年級(jí)數(shù)學(xué)上冊(cè)

      【課標(biāo)內(nèi)容】

      通過(guò)本課的學(xué)習(xí)不斷啟迪學(xué)生思考,發(fā)展學(xué)生的思維能力,讓學(xué)生經(jīng)歷探索新知、鞏固新知和拓展新知這一過(guò)程,發(fā)揮學(xué)生的主體作用,增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣.同時(shí),讓學(xué)生在公式的運(yùn)用中積累解題的經(jīng)驗(yàn),體會(huì)成功的喜悅.【教材分析】

      本節(jié)課的教學(xué)內(nèi)容是完全平方公式,既是多項(xiàng)式乘法的延伸,又是一種特殊形式的多項(xiàng)式的乘法,它在后繼學(xué)習(xí)中如:公式法分解因式、配方法等具有支撐作用,是一種被廣泛應(yīng)用的公式,教材通過(guò)創(chuàng)設(shè)“計(jì)算實(shí)驗(yàn)田面積”的問(wèn)題,引導(dǎo)學(xué)生利用不同的計(jì)算方法得出完全平方公式,同時(shí)也給出了完全平方公式的幾何背景,通過(guò)設(shè)計(jì)“想一想”,對(duì)得出的公式利用已經(jīng)學(xué)過(guò)的多項(xiàng)式乘法法則進(jìn)行驗(yàn)證,進(jìn)而得出(a-b)2=a2-2ab+b2,然后將(a+b)2=a2+2ab+b2與(a-b)2=a2-2ab+b2統(tǒng)稱為“完全平方公式”.通過(guò)設(shè)計(jì)例題和隨堂練習(xí)實(shí)現(xiàn)學(xué)生能運(yùn)用公式進(jìn)行簡(jiǎn)單計(jì)算的目的,通過(guò)設(shè)計(jì)“讀一讀”介紹“楊輝三角”使學(xué)生了解我國(guó)古代數(shù)學(xué)的輝煌成就,并引導(dǎo)學(xué)生發(fā)現(xiàn)新的規(guī)律,為學(xué)生產(chǎn)生思維的飛躍提供了平臺(tái).【學(xué)情分析】

      學(xué)生已熟練掌握了冪的運(yùn)算和整式乘法,但在進(jìn)行多項(xiàng)式乘法運(yùn)算時(shí)常常會(huì)確定錯(cuò)某些項(xiàng)符號(hào)及漏項(xiàng)等問(wèn)題.學(xué)生學(xué)習(xí)完全公式的困難在于對(duì)公式的結(jié)構(gòu)特征以及公式中字母的廣泛含義學(xué)生的理解.因此,教學(xué)中引導(dǎo)學(xué)生分析公式的結(jié)構(gòu)特征,并運(yùn)用變式訓(xùn)練揭示公式的本質(zhì)特征,以加深學(xué)生對(duì)公式的理解.【教學(xué)目標(biāo)】

      1.知識(shí)與技能:學(xué)生通過(guò)推導(dǎo)完全平方公式,了解公式的幾何背景;理解并掌握公式的結(jié)構(gòu)特征,并能進(jìn)行簡(jiǎn)單計(jì)算;

      2.過(guò)程與方法:學(xué)生在探索完全平方公式的過(guò)程中,體會(huì)數(shù)形結(jié)合,進(jìn)一步發(fā)展符號(hào)感和推理能力;

      3.情感態(tài)度與價(jià)值觀:通過(guò)聯(lián)系生活實(shí)際的學(xué)習(xí),體會(huì)到公式的應(yīng)用價(jià)值,在獨(dú)立思考的基礎(chǔ)上,積極參與對(duì)數(shù)學(xué)問(wèn)題的討論,敢于發(fā)表自己的觀點(diǎn),形成良好的學(xué)習(xí)態(tài)度.【教學(xué)重點(diǎn)】

      完全平方公式的結(jié)構(gòu)特征及公式直接應(yīng)用.

      【教學(xué)難點(diǎn)】

      對(duì)公式中字母a、b的廣泛含義的理解與正確應(yīng)用.

      【教學(xué)方法】

      五步教學(xué)法 引導(dǎo)發(fā)現(xiàn)法、類(lèi)比法、啟發(fā)探究 講練結(jié)合【課前準(zhǔn)備】

      學(xué)案 多媒體課件

      【課時(shí)設(shè)置】

      一課時(shí)

      【教學(xué)過(guò)程】

      數(shù)學(xué)教學(xué)過(guò)程是教師引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)活動(dòng)的過(guò)程,是教師和學(xué)生間互動(dòng)的過(guò)程,是師生共同發(fā)展的過(guò)程.根據(jù)構(gòu)建主義課堂教學(xué)觀,為有序、有效地進(jìn)行教學(xué),切實(shí)突出學(xué)生主體地位,主動(dòng)掌握新知.本節(jié)課我將按照以下教學(xué)流程進(jìn)行教學(xué):

      一、預(yù)學(xué)自檢 互助點(diǎn)撥

      (閱讀課本P 109~ 110頁(yè),思考下列問(wèn)題)

      1.計(jì)算,能發(fā)現(xiàn)什么規(guī)律?

      (1)(p+1)2=(p+1)(p+1)=___________ “"

      (”“2)(m+2”“)2=________

      (3)(p-1)2=(p-1)(p-1)=___________

      (4)(m-2)2=______________ ”“

      再計(jì)算:

      ”“ ”“ ”“

      ”“ ”“

      2”“.歸納公式:

      ”“

      文字?jǐn)⑹觯? ”“

      ”“

      文字?jǐn)⑹觯? ”“

      公式中的a、b可以代表 ”“

      3.思考:看課本P109思考圖

      由圖14.2-2得到完全平方公式:

      由圖14.2-3得到完全平方公式:

      ”“

      老師引導(dǎo)學(xué)生觀察、分析、發(fā)現(xiàn)和提出問(wèn)題,讓學(xué)生用自己的方法探究完全平方公式的結(jié)構(gòu)特征,教師引導(dǎo)學(xué)生討論,并對(duì)照“平方差公式”的特征和形式.【設(shè)計(jì)意圖】 讓學(xué)生親自觀察、探究、得出結(jié)論,激發(fā)興趣加深對(duì)公式的理解和掌握通過(guò)引導(dǎo)學(xué)生自主合作、探究、驗(yàn)證,培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的意識(shí)和能力.通過(guò)練習(xí),幫助學(xué)生熟練掌握應(yīng)用完全平方公式進(jìn)行因式分解,從而培養(yǎng)學(xué)生分析問(wèn)題解決問(wèn)題的能力.二、合作互學(xué) 探究新知

      (1)”“(2)”“

      (3)”“(4)”“

      思考:”“相等嗎?

      ”“相等嗎?

      學(xué)生以小組為單位進(jìn)行探索交流,教師可參與到學(xué)生的討論中,對(duì)遇到困難的同學(xué)及時(shí)予以啟發(fā)和幫助,教師引導(dǎo),組織練習(xí),巡回輔導(dǎo),重點(diǎn)問(wèn)題進(jìn)行強(qiáng)化、點(diǎn)撥方法、總結(jié)規(guī)律,共性問(wèn)題做好補(bǔ)教.三、自我檢測(cè) 成果展示

      1.計(jì)算

      (1)”“(2)”“

      (3)”“ ”“(4)”“”“

      判斷題

      (1)”“”“

      (2)”“()

      (3)”“()

      (4)選擇題 ”“是一個(gè)完全平方式,那么m的值是()

      A.4 B.-4 C.”“ D.”“

      通過(guò)計(jì)算和交流,使學(xué)生能夠正確運(yùn)用“兩數(shù)和的完全平方公式”進(jìn)行計(jì)算

      四、應(yīng)用提升 挑戰(zhàn)自我1.已知”“,則”“值是

      【設(shè)計(jì)意圖】 設(shè)置階梯式練習(xí),符合學(xué)生身心發(fā)展的規(guī)律,培養(yǎng)學(xué)生勤于思考、善于動(dòng)腦的良好學(xué)習(xí)習(xí)慣,并讓學(xué)生感受新舊知識(shí)之間的緊密聯(lián)系

      五、經(jīng)驗(yàn)總結(jié) 反思收獲

      本節(jié)課你學(xué)到了什么?寫(xiě)出來(lái) --

      (1)分解因式前注意是否符合公式的形式和特點(diǎn);

      (2)平方項(xiàng)前面是負(fù)數(shù)時(shí),先把負(fù)號(hào)提到括號(hào)前面;

      (3)多項(xiàng)式中有公因式應(yīng)先提公因式,再進(jìn)一步分解;

      (4)完全平方公式中的a和b是多項(xiàng)式時(shí),可以看成一個(gè)整體.教師:點(diǎn)評(píng),總結(jié)方法.學(xué)生總結(jié)發(fā)言.【設(shè)計(jì)意圖】 梳理知識(shí)結(jié)構(gòu)形成知識(shí)體系.【板書(shū)設(shè)計(jì)】

      完全平方公式

      (a+b)2=a2+2ab+b2,(a-b)2 = a2-2ab +b2.【備課反思】

      本節(jié)課的教學(xué)已基本達(dá)到了教學(xué)目的.本課的知識(shí)要點(diǎn)是經(jīng)歷探索完全平方公式的過(guò)程,了解公式的幾何背景,會(huì)應(yīng)公式進(jìn)行簡(jiǎn)單的計(jì)算.理解公式的推導(dǎo)過(guò)程,了解公式的幾何背景,會(huì)應(yīng)用公式進(jìn)行簡(jiǎn)單的計(jì)算.并滲透建模、化歸、對(duì)稱、數(shù)形結(jié)合、邏輯推理等思想方法.經(jīng)歷探索完全平方公式的過(guò)程,培養(yǎng)學(xué)生的發(fā)現(xiàn)能力、求簡(jiǎn)意識(shí)、應(yīng)用意識(shí)、解決問(wèn)題的能力和創(chuàng)新能力.培養(yǎng)學(xué)生敢于挑戰(zhàn),勇于探索的精神和善于觀察,大膽創(chuàng)新的思想品質(zhì).作用在于讓其體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過(guò)程,理解公式的本質(zhì),并會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算,理解公式中的字母含義,及公式的應(yīng)用.但是,在整個(gè)教學(xué)活動(dòng)中也存在著一些不足的地方,從時(shí)間安排來(lái)看,推導(dǎo)公式時(shí)時(shí)間用得稍微多了點(diǎn),以致于后面覺(jué)得時(shí)間緊,學(xué)生活動(dòng)少,雖然該講的地方已講完,但收尾太草率,所以在今后的教學(xué)中應(yīng)把會(huì)發(fā)生的各種問(wèn)題考慮周全,留一定的時(shí)間進(jìn)行糾錯(cuò)或進(jìn)行教學(xué)反饋或加強(qiáng)師生互動(dòng),使新課程的改革從我做起,從我們大家一起做起,為教育事業(yè)的發(fā)展貢獻(xiàn)自己的力量.

      第三篇:完全平方公式教學(xué)反思

      完全平方公式教學(xué)反思

      完全平方公式教學(xué)反思1

      本節(jié)課屬于人教版八年級(jí)數(shù)學(xué)上冊(cè)第十五章《整式乘除與因式分解》第二節(jié)中的內(nèi)容,前一節(jié)已學(xué)習(xí)習(xí)近平方差公式,這一課主要研究完全平方公式的特征及應(yīng)用。教學(xué)關(guān)鍵是引導(dǎo)學(xué)生正確理解完全平方公式的推導(dǎo)過(guò)程,幾何背景,并能準(zhǔn)確應(yīng)用完全平方公式解決相關(guān)問(wèn)題。教學(xué)后我進(jìn)行反思如下:本課的知識(shí)要點(diǎn)是經(jīng)歷探索完全平方公式的過(guò)程,了解公式的幾何背景,會(huì)應(yīng)公式進(jìn)行簡(jiǎn)單的計(jì)算,教學(xué)已基本達(dá)到了預(yù)期目標(biāo),能突出重點(diǎn),兼顧難點(diǎn)。本節(jié)課上學(xué)生體會(huì)了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證;授課思維流暢,知識(shí)發(fā)生發(fā)展過(guò)渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問(wèn)題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。采用以小組自主探究的學(xué)習(xí)方式,同時(shí)各小組展開(kāi)激烈的比賽。整節(jié)課都在緊張而愉快的氣氛中進(jìn)行。學(xué)生非?;钴S。人人都能積極參與。先從代數(shù)式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖的方法,使學(xué)生在動(dòng)手的過(guò)程中發(fā)現(xiàn)規(guī)律,并通過(guò)小組合作,探究歸納公式,然后強(qiáng)調(diào)數(shù)值的計(jì)算,使學(xué)生掌握公式的計(jì)算技巧。從而突出以學(xué)生為主體的探索性學(xué)習(xí)原則。讓學(xué)生自編符合完全平方公式和平方差公式結(jié)構(gòu)的計(jì)算題,從而有效地將兩類(lèi)公式區(qū)分開(kāi),深刻認(rèn)識(shí)公式的結(jié)構(gòu)特征,并大大激發(fā)了學(xué)生的學(xué)習(xí)積極性。

      同時(shí)課后感覺(jué)應(yīng)該引導(dǎo)學(xué)生用文字概括公式的內(nèi)容,從而培養(yǎng)學(xué)生抽象的數(shù)學(xué)思維能力和語(yǔ)言表達(dá)能力。對(duì)需要幫助的學(xué)生進(jìn)行針對(duì)性的個(gè)別指導(dǎo)較少。對(duì)于學(xué)生計(jì)算中存在的問(wèn)題應(yīng)讓學(xué)生自己糾錯(cuò),教師不應(yīng)全權(quán)代勞。如利用兩數(shù)和的公式計(jì)算(a+b)2環(huán)節(jié),兩位學(xué)生分別講述自己的想法之后,教師應(yīng)該讓全體學(xué)生根據(jù)其方法進(jìn)行計(jì)算,自主驗(yàn)證,即使有些學(xué)生寫(xiě)不出來(lái),也會(huì)因?yàn)榻?jīng)過(guò)思考而印象深刻,如果為了節(jié)省時(shí)間教師自己代勞,那樣就不能夠充分體現(xiàn)學(xué)生的主體作用,而且效果也較前者差些。

      在今后的教學(xué)中應(yīng)注意從以下幾個(gè)方面改進(jìn):1、在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式,法則道理的基礎(chǔ)上進(jìn)行記憶,比如:我們要借助面積圖形對(duì)完全平方公式做直觀說(shuō)明。2.必須強(qiáng)調(diào)學(xué)生時(shí)刻把握公式的特征及用途。3.講聯(lián)系、講對(duì)比、講特征,要善于排除新舊知識(shí)間互相干擾的作用,規(guī)范板書(shū)。每節(jié)課的板書(shū)盡量堅(jiān)持做到三保留:重要知識(shí)點(diǎn)保留,典型例題保留,學(xué)生易錯(cuò)點(diǎn)保留。

      完全平方公式教學(xué)反思2

      本節(jié)課的教學(xué)已基本達(dá)到了教學(xué)目的。本課的知識(shí)要點(diǎn)是經(jīng)歷探索完全平方公式的過(guò)程,了解公式的幾何背景,會(huì)應(yīng)公式進(jìn)行簡(jiǎn)單的計(jì)算。

      理解公式的推導(dǎo)過(guò)程,了解公式的幾何背景,會(huì)應(yīng)用公式進(jìn)行簡(jiǎn)單的計(jì)算。并滲透建模、化歸、對(duì)稱、數(shù)形結(jié)合、邏輯推理等思想方法。經(jīng)歷探索完全平方公式的過(guò)程,培養(yǎng)學(xué)生的發(fā)現(xiàn)能力、求簡(jiǎn)意識(shí)、應(yīng)用意識(shí)、解決問(wèn)題的能力和創(chuàng)新能力。培養(yǎng)學(xué)生敢于挑戰(zhàn),勇于探索的精神和善于觀察,大膽創(chuàng)新的思想品質(zhì)。作用在于讓其體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過(guò)程,理解公式的本質(zhì),并會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算,理解公式中的字母含義,及公式的應(yīng)用。

      針對(duì)初一學(xué)生的形象思維大于抽象思維,注意力不能持久等年齡特點(diǎn),及本節(jié)課實(shí)際,采用自主探索、啟發(fā)引導(dǎo)、合作交流展開(kāi)教學(xué)。引導(dǎo)學(xué)生主動(dòng)地進(jìn)行觀察、猜測(cè)、驗(yàn)證和交流,讓不同層次的學(xué)生都能主動(dòng)參與并都能得到充分的發(fā)展。邊啟發(fā),邊探索,邊歸納,突出以學(xué)生為主體的探索性學(xué)習(xí)的原則。

      完全平方公式教學(xué)反思3

      做得較好的方面:

      1、本課的知識(shí)要點(diǎn)是經(jīng)歷探索完全平方公式的過(guò)程,了解公式的幾何背景,會(huì)應(yīng)公式進(jìn)行簡(jiǎn)單的計(jì)算,教學(xué)已基本達(dá)到了預(yù)期目標(biāo),能突出重點(diǎn),兼顧難點(diǎn)。

      2、本節(jié)課上學(xué)生體會(huì)了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證;授課思維流暢,知識(shí)發(fā)生發(fā)展過(guò)渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問(wèn)題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。

      做得不足的方面:

      1、應(yīng)該引導(dǎo)學(xué)生用文字概括公式的內(nèi)容,從而培養(yǎng)學(xué)生抽象的數(shù)學(xué)思維能力和語(yǔ)言表達(dá)能力。

      2、對(duì)需要幫助的學(xué)生進(jìn)行針對(duì)性的個(gè)別指導(dǎo)較少。

      3、對(duì)于學(xué)生計(jì)算中存在的問(wèn)題應(yīng)讓學(xué)生自己糾錯(cuò),教師不應(yīng)全權(quán)代勞。如利用兩數(shù)和的公式計(jì)算(a+b)2環(huán)節(jié),兩位學(xué)生分別講述自己的想法之后,教師應(yīng)該讓全體學(xué)生根據(jù)其方法進(jìn)行計(jì)算,自主驗(yàn)證,即使有些學(xué)生寫(xiě)不出來(lái),也會(huì)因?yàn)榻?jīng)過(guò)思考而印象深刻,如果為了節(jié)省時(shí)間教師自己代勞,那樣就不能夠充分體現(xiàn)學(xué)生的主體作用,而且效果也較前者差些。

      完全平方公式教學(xué)反思4

      公式法進(jìn)行因式分解,除了逆用平方差公式之外,還有兩個(gè)相對(duì)來(lái)說(shuō)較難的公式逆用即完全平方和(或差)公式:(a+b)2=a2+2ab+b2。

      逆用完全平方公式進(jìn)行因式分解關(guān)鍵同樣是搞清完全平方公式的結(jié)構(gòu)特點(diǎn):等號(hào)左邊是一個(gè)二項(xiàng)式的平方,等號(hào)右邊是一個(gè)二次三項(xiàng)式,其中有兩項(xiàng)是公式左邊二項(xiàng)式中每一項(xiàng)的平方,另一項(xiàng)是左邊二項(xiàng)式中那兩項(xiàng)乘積的2倍。或等號(hào)右邊記作:首平方,尾平方,2倍之積中間放。

      有了前邊學(xué)習(xí)完全平方公式為基礎(chǔ),逆用完全平方公式進(jìn)行因式分解只需要“顛倒使用”即可:等號(hào)右邊作為“條件”,左邊作為“結(jié)果”,但對(duì)學(xué)生來(lái)說(shuō),還是相當(dāng)困難的。

      逆用完全平方公式進(jìn)行因式分解的步驟可分三步:

      1、寫(xiě)成“首平方,尾平方,2倍之積中間放”的形式

      2、按公式寫(xiě)出“兩項(xiàng)和的平方”的形式,即因式分解

      3、兩項(xiàng)和中能合并同類(lèi)項(xiàng)的合并。

      例題及練習(xí)的呈現(xiàn)次序盡量本著先易后難、先單一后綜合的螺旋上升原則。

      1、a、b代表單獨(dú)單項(xiàng)式,如:(1)m2-6m+9(2)4a2-4ab+b2

      2、a、b代表多項(xiàng)式,如:(1)(a+2b)2-8a(a+2b)+16a2

      (2)4(x+y)2+25-20(x+y)

      在此要有“整體思想”的意識(shí),注意:相同部分作為一個(gè)整體然后再套用公式。

      3、先提取公因式,再用完全平方和(或差)公式如:

      (1)ay2-2a2y+a3

      (2)16xy2-9x2y-y2

      4、先轉(zhuǎn)化一步,再用完全平方和(或差)公式,如:

      (1)-m2+2mn-n2(2)3a2+6a+27

      盡管課前進(jìn)行了充分的準(zhǔn)備工作,但是學(xué)生作業(yè)中仍暴露出許多問(wèn)題,如部分學(xué)生直接感到無(wú)從下手。

      完全平方公式教學(xué)反思5

      這一節(jié)課主要研究完全平方公式的證明方法,關(guān)鍵是引導(dǎo)學(xué)生正確理解完全平方公式的推導(dǎo)過(guò)程,以及這兩個(gè)公式的幾何背景。

      這節(jié)課我做的比較好的方面:

      經(jīng)歷探索完全平方公式的過(guò)程,通過(guò)拼圖游戲,從形到數(shù)又從數(shù)到形,讓學(xué)生了解公式的幾何背景,學(xué)生體會(huì)了數(shù)形結(jié)合的數(shù)學(xué)思想,并知道猜想的結(jié)論必須加以驗(yàn)證,本節(jié)授課思維流暢,知識(shí)發(fā)生發(fā)展過(guò)程過(guò)渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問(wèn)題的探討得以不斷深入,學(xué)生思考積極,氣氛活躍,教學(xué)效果較好。

      這節(jié)課采用小組自主探究,小組合作的學(xué)習(xí)方式,緊張而愉快,學(xué)生及相互交流的同時(shí)又相互合作,極大的調(diào)動(dòng)了學(xué)生學(xué)習(xí)的熱情同時(shí)我也比較關(guān)注那些積極動(dòng)腦,熱情參與的同學(xué),及時(shí)的給予表?yè)P(yáng)和鼓勵(lì),進(jìn)而促進(jìn)課堂教學(xué)的有效性。

      從幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖游戲,使學(xué)生在動(dòng)手的過(guò)程中發(fā)現(xiàn)結(jié)論,并通過(guò)小組合作,探究歸納公式,從而突出以學(xué)生為主體的的探究性學(xué)習(xí)原則。

      這節(jié)課做的不足的方面有對(duì)學(xué)生個(gè)別指導(dǎo)較少,應(yīng)到各小組當(dāng)中去積極參與學(xué)生的活動(dòng);學(xué)生拼圖時(shí)間略微有些偏長(zhǎng),對(duì)后面的教學(xué)稍有影響,顯的前松后緊。

      完全平方公式教學(xué)反思6

      1. 本節(jié)課學(xué)生的探究活動(dòng)比較多,教師既要全局把握,又要順其自然,千萬(wàn)不可拔苗助長(zhǎng),為了后面多做幾道練習(xí)而人為的主觀裁斷時(shí)間安排,其實(shí)公式的探究活動(dòng)本身既是對(duì)學(xué)生能力的培養(yǎng),又是對(duì)公式的識(shí)記過(guò)程,而且還可以提高他們的應(yīng)用公式的本領(lǐng).因此,不但不可以省,而且還要充分挖掘,以使不同程度的學(xué)生都有事情做且樂(lè)此不疲,更加充分的參與其中.對(duì)于這一點(diǎn),教師一定要轉(zhuǎn)變觀念.

      2. 在完全平方公式的探求過(guò)程中,學(xué)生表現(xiàn)出觀察角度的差異:有些學(xué)生只是側(cè)重觀察某個(gè)單獨(dú)的式子,把它孤立地看,而不知道將幾個(gè)式子聯(lián)系地看;有些學(xué)生則既觀察入微,又統(tǒng)攬全局,表現(xiàn)出了較強(qiáng)的觀察力.教師要善于抓住這個(gè)契機(jī),適當(dāng)對(duì)學(xué)生進(jìn)行學(xué)法指導(dǎo),培養(yǎng)他們“既見(jiàn)樹(shù)木,又見(jiàn)森林”的優(yōu)良觀察品質(zhì).

      3. 對(duì)于公式使用的條件既要把握好“度”,又要把握好“方向”.對(duì)于公式中的字母取值范圍,不必過(guò)分強(qiáng)調(diào)(實(shí)際上,這個(gè)范圍限定的太小了);而對(duì)于公式的特點(diǎn),則應(yīng)當(dāng)左右兼顧,特別是公式的左邊,它是正確應(yīng)用公式的前提,卻往往不被重視,結(jié)果造成幾個(gè)類(lèi)似公式的混淆,給正確解題設(shè)置了障礙.

      4. 教無(wú)定法,教師應(yīng)根據(jù)本班的實(shí)際情況靈活安排教學(xué)步驟,切實(shí)把關(guān)注學(xué)生的發(fā)展放在首位來(lái)考慮,并依此制定合理而科學(xué)的教學(xué)計(jì)劃.如,對(duì)于較好的班級(jí),則可以優(yōu)先發(fā)展,采取居高臨下的教學(xué)思路,先整體把握再對(duì)比擊破,或是將其納入整體結(jié)構(gòu)系統(tǒng),采取類(lèi)比的學(xué)習(xí)方式;而對(duì)于基礎(chǔ)較薄弱的班級(jí),則應(yīng)以提高學(xué)習(xí)興趣、教會(huì)學(xué)習(xí)、培養(yǎng)成功體驗(yàn)為主,千萬(wàn)不可拔苗助長(zhǎng),以防物極必反.

      完全平方公式教學(xué)反思7

      完全平方和(差)公式是某些特殊形式的多項(xiàng)式相乘,只有掌握完全平方和(差)公式的一些本質(zhì)地結(jié)構(gòu)特點(diǎn),才能正確地讓公式更好地幫助我們進(jìn)行簡(jiǎn)單計(jì)算。

      要學(xué)好這部分,首先要注意掌握:

      1、公式本身:(a+b)2=a2+2ab+b2

      文字?jǐn)⑹觯簝蓴?shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積2倍。

      2、公式的結(jié)構(gòu)特點(diǎn):等號(hào)左邊是一個(gè)二項(xiàng)式的平方,等號(hào)右邊是一個(gè)二次三項(xiàng)式,其中有兩項(xiàng)是公式左邊二項(xiàng)式中每一項(xiàng)的平方,另一項(xiàng)是左邊二項(xiàng)式中那兩項(xiàng)乘積的2倍?;虻忍?hào)右邊記作:首平方,尾平方,2倍之積中間放。

      3、公式中字母的廣泛意義:既可以代表任意的數(shù)(正數(shù)、負(fù)數(shù)),又可以代表任意代數(shù)式。注意代表代數(shù)式時(shí),要有“整體思想”的觀念。

      其次要注意易錯(cuò)點(diǎn):

      1、易錯(cuò)寫(xiě):(a+b)2=a2+b2

      許多學(xué)生往往認(rèn)為(a+b)2=a2+b2,甚至認(rèn)為(a+b)3=a3+b3,(a+b)4=a4+b4,等等。為了說(shuō)明這個(gè)問(wèn)題,我首先利用分地的故事引入,第一個(gè)農(nóng)夫分得a2+b2,第二個(gè)分得(a+b)2,然后讓同學(xué)們對(duì)比2個(gè)代數(shù)式,通過(guò)各種方法說(shuō)明這兩者是不同的,比如計(jì)算法,代數(shù)字法,幾何作圖法(聯(lián)系公式的幾何意義),因而加深理解完全平方公式,并借此進(jìn)行強(qiáng)化訓(xùn)練。雖然還有極個(gè)別學(xué)生出現(xiàn)2項(xiàng)的情況,但絕大部分明白了2倍之積中間放的意義。

      2、兩個(gè)公式中的符號(hào)易混:課堂上進(jìn)行了教學(xué)的改進(jìn),把2個(gè)公式(a+b)2與(a-b)2并作一個(gè)公式來(lái)處理。為了避免符號(hào)上出現(xiàn)混亂,把2個(gè)公式的符號(hào)特點(diǎn)進(jìn)行觀察,得出同號(hào)得正,異號(hào)得負(fù)的結(jié)論。由此應(yīng)對(duì)兩項(xiàng)式的平方的符號(hào)問(wèn)題,也省去了一些變號(hào)的煩惱。

      3、兩公式靈活運(yùn)用

      在一些實(shí)際問(wèn)題中,有些題目不能直接運(yùn)用公式,需要一步轉(zhuǎn)化才可以。如計(jì)算:

      (1)(y-x)(x-y)(2)(x+y)(-x-y)

      完全平方公式教學(xué)反思8

      學(xué)習(xí)了乘法公式中的完全平方,一個(gè)是兩數(shù)和的平方,另一個(gè)是兩數(shù)差的平方,兩者僅一個(gè)“符號(hào)”不同。相乘的結(jié)果是兩數(shù)的平方和,加上(或減去)兩數(shù)的積的2倍,兩者也僅差一個(gè)“符號(hào)”不同,運(yùn)用完全平方公式計(jì)算時(shí),要注意:

      (1)切勿把此公式與平方差公式混淆,而隨意寫(xiě)。

      (2)切勿把“乘積項(xiàng)”2ab中的2丟掉。

      (3)計(jì)算時(shí),要先觀察題目是否符合公式的條件。若不符合,應(yīng)先變形為符合公式的條件的形式,再利用公式進(jìn)行計(jì)算;若不能變?yōu)榉蠗l件的形式,則應(yīng)運(yùn)用乘法法則進(jìn)行計(jì)算。

      今后在教學(xué)中,要注意以下幾點(diǎn):

      1、讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計(jì)算題,目的是辨認(rèn)題目的結(jié)構(gòu)特征。

      2、引入完全平方公式,讓學(xué)生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力。

      完全平方公式教學(xué)反思9

      在進(jìn)入三中這個(gè)大家庭里,我感受到了這個(gè)大家庭的愛(ài),有來(lái)自領(lǐng)導(dǎo),師傅,辦公室同事的指導(dǎo),深感欣慰。由于第一次教授初中數(shù)學(xué),對(duì)于備學(xué)生和備教材缺乏全面理解,本節(jié)課的教學(xué)沒(méi)有很好的完成教學(xué)目的標(biāo),本課的知識(shí)要點(diǎn)是經(jīng)歷探索完全平方公式的過(guò)程,了解公式的幾何背景,會(huì)應(yīng)用公式進(jìn)行簡(jiǎn)單的計(jì)算。理解公式的推導(dǎo)過(guò)程,了解公式的幾何背景,會(huì)應(yīng)用公式進(jìn)行簡(jiǎn)單的計(jì)算。探索完全平方公式的過(guò)程,培養(yǎng)學(xué)生的發(fā)現(xiàn)能力、求簡(jiǎn)意識(shí)、應(yīng)用意識(shí)、解決問(wèn)題的能力和創(chuàng)新能力。培養(yǎng)學(xué)生敢于挑戰(zhàn),勇于探索的精神和善于觀察,大膽創(chuàng)新的思想品質(zhì)。

      通過(guò)本課,讓學(xué)生體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過(guò)程,理解公式的本質(zhì),并會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算,理解公式中的字母含義,及公式的應(yīng)用。

      通過(guò)本節(jié)課的教學(xué)得到如下收獲:

      (1)這節(jié)課倡導(dǎo)了以學(xué)生為主,教師為輔的思想,留足了一定的時(shí)間讓學(xué)生去發(fā)現(xiàn)探索、以及做練習(xí)。

      (2)采用了多媒體輔助教學(xué),以較清晰的手段呈現(xiàn)了學(xué)生整個(gè)學(xué)習(xí)過(guò)程,讓課堂更加直觀明了,同時(shí)客容量也增大了。

      (3)讓學(xué)生體會(huì)了數(shù)形結(jié)合及轉(zhuǎn)化的'數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證。

      本節(jié)課采用了以小組自主探究的學(xué)習(xí)方式,整節(jié)課都在緊張而愉快的氣氛中進(jìn)行,學(xué)生活躍,能積極參與。教學(xué)中,比較關(guān)注學(xué)生的情感態(tài)度,對(duì)那些積極動(dòng)腦,熱情參與的同學(xué),都給予了鼓勵(lì)和表?yè)P(yáng),促使學(xué)生的情感和興趣始終保持最佳狀態(tài),進(jìn)而提高課堂教學(xué)的有效性。

      完全平方公式教學(xué)反思10

      這一課主要研究完全平方公式的特征及應(yīng)用。教學(xué)關(guān)鍵是引導(dǎo)學(xué)生正確理解完全平方公式的推導(dǎo)過(guò)程,幾何背景,并能準(zhǔn)確應(yīng)用完全平方公式解決相關(guān)問(wèn)題。

      這節(jié)課我做得較好的方面:

      1、本課的知識(shí)要點(diǎn)是經(jīng)歷探索完全平方公式的過(guò)程,了解公式的幾何背景,會(huì)應(yīng)公式進(jìn)行簡(jiǎn)單的計(jì)算,教學(xué)已基本達(dá)到了預(yù)期目標(biāo),能突出重點(diǎn),兼顧難點(diǎn)。

      2、本節(jié)課上學(xué)生體會(huì)了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證;授課思維流暢,知識(shí)發(fā)生發(fā)展過(guò)渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問(wèn)題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。

      3、采用以小組自主探究的學(xué)習(xí)方式,同時(shí)各小組展開(kāi)激烈的比賽。整節(jié)課都在緊張而愉快的氣氛中進(jìn)行。學(xué)生非?;钴S。人人都能積極參與。教學(xué)中,我比較關(guān)注學(xué)生的情感態(tài)度,對(duì)那些積極動(dòng)腦,熱情參與的同學(xué),都給予了鼓勵(lì)和表?yè)P(yáng)。促使學(xué)生的情感和興趣始終保持最佳狀態(tài),進(jìn)而提高課堂教學(xué)的有效性。

      4、先從代數(shù)式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖的方法,使學(xué)生在動(dòng)手的過(guò)程中發(fā)現(xiàn)規(guī)律,并通過(guò)小組合作,探究歸納公式,然后強(qiáng)調(diào)數(shù)值的計(jì)算,使學(xué)生掌握公式的計(jì)算技巧。從而突出以學(xué)生為主體的探索性學(xué)習(xí)原則。

      5、讓學(xué)生自編符合完全平方公式和平方差公式結(jié)構(gòu)的計(jì)算題,從而有效地將兩類(lèi)公式區(qū)分開(kāi),深刻認(rèn)識(shí)公式的結(jié)構(gòu)特征,并大大激發(fā)了學(xué)生的學(xué)習(xí)積極性。

      這節(jié)課我做得做得不足的方面:

      1、應(yīng)該引導(dǎo)學(xué)生用文字概括公式的內(nèi)容,從而培養(yǎng)學(xué)生抽象的數(shù)學(xué)思維能力和語(yǔ)言表達(dá)能力。

      2、對(duì)需要幫助的學(xué)生進(jìn)行針對(duì)性的個(gè)別指導(dǎo)較少。

      3、對(duì)于學(xué)生計(jì)算中存在的問(wèn)題應(yīng)讓學(xué)生自己糾錯(cuò),教師不應(yīng)全權(quán)代勞。如利用兩數(shù)和的公式計(jì)算(a+b)2環(huán)節(jié),兩位學(xué)生分別講述自己的想法之后,教師應(yīng)該讓全體學(xué)生根據(jù)其方法進(jìn)行計(jì)算,自主驗(yàn)證,即使有些學(xué)生寫(xiě)不出來(lái),也會(huì)因?yàn)榻?jīng)過(guò)思考而印象深刻,如果為了節(jié)省時(shí)間教師自己代勞,那樣就不能夠充分體現(xiàn)學(xué)生的主體作用,而且效果也較前者差些。

      再教設(shè)計(jì):

      1、在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式,法則道理的基礎(chǔ)上進(jìn)行記憶,比如:我們要借助面積圖形對(duì)完全平方公式做直觀說(shuō)明。

      2、講聯(lián)系、講對(duì)比、講特征。學(xué)生在運(yùn)用公式時(shí)出現(xiàn)的(a+b)2=a2+b2的錯(cuò)誤,其原因是把完全平方公式和舊知識(shí)(ab)2=a2b2及分配律弄混淆,要善于排除新舊知識(shí)間互相干擾的作用。

      3、規(guī)范板書(shū)。每節(jié)課的板書(shū)盡量堅(jiān)持做到三保留:重要知識(shí)點(diǎn)保留,典型例題保留,學(xué)生易錯(cuò)點(diǎn)保留。

      完全平方公式教學(xué)反思11

      這課主要研究完全平方公式的特征及應(yīng)用。教學(xué)關(guān)鍵是引導(dǎo)學(xué)生正確理解完全平方公式的推導(dǎo)過(guò)程,幾何背景,并能準(zhǔn)確應(yīng)用完全平方公式解決相關(guān)問(wèn)題。

      這節(jié)課我做得較好的方面:

      1、本課的知識(shí)要點(diǎn)是經(jīng)歷探索完全平方公式的過(guò)程,了解公式的幾何背景,會(huì)應(yīng)公式進(jìn)行簡(jiǎn)單的計(jì)算,教學(xué)已基本達(dá)到了預(yù)期目標(biāo),能突出重點(diǎn),兼顧難點(diǎn)。

      2、本節(jié)課上學(xué)生體會(huì)了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證;授課思維流暢,知識(shí)發(fā)生發(fā)展過(guò)渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問(wèn)題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。

      3、整節(jié)課都在緊張而愉快的氣氛中進(jìn)行。學(xué)生非常活躍。人人都能積極參與。教學(xué)中,我比較關(guān)注學(xué)生的情感態(tài)度,對(duì)那些積極動(dòng)腦,熱情參與的同學(xué),都給予了鼓勵(lì)和表?yè)P(yáng)。促使學(xué)生的情感和興趣始終保持最佳狀態(tài),進(jìn)而提高課堂教學(xué)的有效性。

      4、先從代數(shù)式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖的方法,使學(xué)生在動(dòng)手的過(guò)程中發(fā)現(xiàn)規(guī)律,并通過(guò)小組合作,探究歸納公式,然后強(qiáng)調(diào)數(shù)值的計(jì)算,使學(xué)生掌握公式的計(jì)算技巧。從而突出以學(xué)生為主體的探索性學(xué)習(xí)原則。

      本節(jié)課有待完善的地方:

      1、對(duì)需要幫助的學(xué)生進(jìn)行針對(duì)性的個(gè)別指導(dǎo)較少。

      2、對(duì)于學(xué)生計(jì)算中存在的問(wèn)題應(yīng)讓學(xué)生自己糾錯(cuò),教師不應(yīng)全權(quán)代勞。如利用兩數(shù)和的公式計(jì)算環(huán)節(jié),兩位學(xué)生分別講述自己的想法之后,教師應(yīng)該讓全體學(xué)生根據(jù)其方法進(jìn)行計(jì)算,自主驗(yàn)證,即使有些學(xué)生寫(xiě)不出來(lái),也會(huì)因?yàn)榻?jīng)過(guò)思考而印象深刻,如果為了節(jié)省時(shí)間教師自已代勞,那樣就不能夠充分體現(xiàn)學(xué)生的主體作用,而且效果也較前者差些。

      再教設(shè)計(jì):

      1、在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式,法則道理的基礎(chǔ)上進(jìn)行記憶,要借助面積圖形對(duì)完全平方公式做直觀說(shuō)明。

      2、講聯(lián)系、講對(duì)比、講特征。學(xué)生在運(yùn)用公式時(shí)出現(xiàn)的(a+b)2=a2 +b2的錯(cuò)誤,其原因是把完全平方公式和舊知識(shí)積的乘方弄混淆,要善于排除新舊知識(shí)間互相干擾的作用。

      3、規(guī)范板書(shū)。每節(jié)課的板書(shū)盡量堅(jiān)持做到三保留:重要知識(shí)點(diǎn)保留,典型例題保留,學(xué)生易錯(cuò)點(diǎn)保留。

      完全平方公式教學(xué)反思12

      小班化教學(xué)的理論已經(jīng)學(xué)習(xí)交流了很長(zhǎng)一段時(shí)間,大家都在自己的工作實(shí)踐中進(jìn)行嘗試,也取得了一些效果。通過(guò)本次上公開(kāi)課,對(duì)小班化教學(xué)又有了一點(diǎn)新的認(rèn)識(shí),反思如下。

      從思想上注重學(xué)生的主動(dòng)參與。本節(jié)課我講的內(nèi)容是完全平方公式,在課堂上完成完全平方公式的推導(dǎo)應(yīng)用,完全平方公式的面積表示。如果單純從教學(xué)內(nèi)容上看,用傳統(tǒng)的授課方式,很容易讓學(xué)生記住公式會(huì)用公式。但是,如果注重學(xué)生的參與的話,在公式推導(dǎo)尤其是面積的表達(dá)上,放給學(xué)生自己,花費(fèi)的時(shí)間很長(zhǎng)。這樣做雖然看起來(lái)教學(xué)效率偏低,但實(shí)際上在整個(gè)過(guò)程中,學(xué)生是全身心的投入進(jìn)去了,自己是學(xué)習(xí)的主體,符合小班化教學(xué)的思想。本節(jié)課的主動(dòng)參與還體現(xiàn)在公式的運(yùn)用上,讓學(xué)生出錯(cuò),讓學(xué)生嘗試,讓學(xué)生從錯(cuò)誤中反思,從而學(xué)會(huì)正確的應(yīng)用。這是本節(jié)課里,比較符合小班化理念的做法。

      本節(jié)課里自認(rèn)為不是很理想的一些做法。比如教態(tài)比較嚴(yán)肅,有時(shí)顯得比較急躁。還有,學(xué)生的學(xué)習(xí)效果不是特別理想,學(xué)習(xí)的效率有待于進(jìn)一步提高。

      第四篇:完全平方公式教學(xué)反思

      完全平方公式的教學(xué)反思

      本節(jié)課屬于八年級(jí)數(shù)學(xué)上冊(cè)《整式乘除與因式分解》第二節(jié)中的內(nèi)容,前一節(jié)已學(xué)習(xí)習(xí)近平方差公式,這一課主要研究完全平方公式的特征及應(yīng)用。教學(xué)關(guān)鍵是引導(dǎo)學(xué)生正確理解完全平方公式的推導(dǎo)過(guò)程,幾何背景,并能準(zhǔn)確應(yīng)用完全平方公式解決相關(guān)問(wèn)題。

      教學(xué)后我進(jìn)行反思如下:本課的知識(shí)要點(diǎn)是經(jīng)歷探索完全平方公式的過(guò)程,了解公式的幾何背景,會(huì)應(yīng)公式進(jìn)行簡(jiǎn)單的計(jì)算,教學(xué)已基本達(dá)到了預(yù)期目標(biāo),能突出重點(diǎn),兼顧難點(diǎn)。

      本節(jié)課上學(xué)生體會(huì)了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證;授課思維流暢,知識(shí)發(fā)生發(fā)展過(guò)渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問(wèn)題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。采用以小組自主探究的學(xué)習(xí)方式,同時(shí)各小組展開(kāi)激烈的比賽。整節(jié)課都在緊張而愉快的氣氛中進(jìn)行。學(xué)生非?;钴S。人人都能積極參與。

      先從代數(shù)式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖的方法,使學(xué)生在動(dòng)手的過(guò)程中發(fā)現(xiàn)規(guī)律,并通過(guò)小組合作,探究歸納公式,然后強(qiáng)調(diào)數(shù)值的計(jì)算,使學(xué)生掌握公式的計(jì)算技巧。從而突出以學(xué)生為主體的探索性學(xué)習(xí)原則。讓學(xué)生自編符合完全平方公式和平方差公式結(jié)構(gòu)的計(jì)算題,從而有效地將兩類(lèi)公式區(qū)分開(kāi),深刻認(rèn)識(shí)公式的結(jié)構(gòu)特征,并大大激發(fā)了學(xué)生的學(xué)習(xí)積極性。

      同時(shí)課后感覺(jué)應(yīng)該引導(dǎo)學(xué)生用文字概括公式的內(nèi)容,從而培養(yǎng)學(xué)生抽象的數(shù)學(xué)思維能力和語(yǔ)言表達(dá)能力。對(duì)需要幫助的學(xué)生進(jìn)行針對(duì)性的個(gè)別指導(dǎo)較少。對(duì)于學(xué)生計(jì)算中存在的問(wèn)題應(yīng)讓學(xué)生自己糾錯(cuò),教師不應(yīng)全權(quán)代勞。如利用兩數(shù)和的公式計(jì)算環(huán)節(jié),兩位學(xué)生分別講述自己的想法之后,教師應(yīng)該讓全體學(xué)生根據(jù)其方法進(jìn)行計(jì)算,自主驗(yàn)證,即使有些學(xué)生寫(xiě)不出來(lái),也會(huì)因?yàn)榻?jīng)過(guò)思考而印象深刻,如果為了節(jié)省時(shí)間教師自己代勞,那樣就不能夠充分體現(xiàn)學(xué)生的主體作用,而且效果也較前者差些。

      在今后的教學(xué)中應(yīng)注意從以下幾個(gè)方面改進(jìn):

      1、在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式,法則道理的基礎(chǔ)上進(jìn)行記憶,比如:我們要借助面積圖形對(duì)完全平方公式做直觀說(shuō)明。

      2.必須強(qiáng)調(diào)學(xué)生時(shí)刻把握公式的特征及用途: 特征:左邊是兩個(gè)相同的二項(xiàng)式相乘,右邊是一個(gè)三項(xiàng)式,其中兩項(xiàng)是二項(xiàng)式中每一項(xiàng)的平方和,另一項(xiàng)是二項(xiàng)式中項(xiàng)的乘積的2倍或其相反式。用途:用于解決兩個(gè)完全相同的二項(xiàng)式乘積運(yùn)算.應(yīng)在課堂上大力推行邊啟發(fā)、邊探索、邊歸納,突出以學(xué)生為主體的探索性學(xué)習(xí)原則..既講“法”,又講“理”:在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式,法則道理的基礎(chǔ)上進(jìn)行記憶,比如:我們要借助面積圖形對(duì)完全平方公式做直觀說(shuō)明.3.講聯(lián)系、講對(duì)比、講特征.學(xué)生在運(yùn)用公式時(shí)出現(xiàn)的錯(cuò)誤,其原因是把完全平方公式和舊知識(shí)及分配律弄混淆,要善于排除新舊知識(shí)間互相干擾的作用.規(guī)范板書(shū)。每節(jié)課的板書(shū)盡量堅(jiān)持做到三保留:重要知識(shí)點(diǎn)保留,典型例題保留,學(xué)生易錯(cuò)點(diǎn)保留。

      第五篇:《完全平方公式》教學(xué)設(shè)計(jì)

      教學(xué)目標(biāo)

      在具體情景中進(jìn)一步理解完全平方公式,能正確運(yùn)用完全平方公式和平方差公式進(jìn)行計(jì)算.重點(diǎn)、難點(diǎn)

      根據(jù)公式的特征及問(wèn)題的特征選擇適當(dāng)?shù)墓接?jì)算.教學(xué)過(guò)程

      一、議一議

      1.邊長(zhǎng)為(a+b)的正方形面積是多少?

      2.邊長(zhǎng)分別為a、b拍的兩個(gè)正方形面積和是多少?

      3.你能比較(1)(2)的結(jié)果嗎?說(shuō)明你的理由.師生共同討論:學(xué)生回答

      (1)(a+b)

      (2)a +b

      (3)因?yàn)?a+b)= a +2ab+b ,所以(a+b)-(a +b)=a +2ab+b-a-b =2ab,即(1)中的正方形面積比(2)中的正方形面積大.二、做一做

      例1.利用完全平方式計(jì)算1.102,2.197

      師:要利用完全平方公式計(jì)算,則要?jiǎng)?chuàng)設(shè)符合公式特征的兩數(shù)和或兩數(shù)差的平方,且計(jì)算盡可能簡(jiǎn)便.學(xué)生活動(dòng):在練習(xí)本上演示此題.讓學(xué)生敘述,教師板書(shū).解:1.102 =(100+2)2.197 =(200-3)=100 +2 lOO 2+2,=200-2 2O0 3十3,=10000+400+4 =40000-1200+9 =10404 =38809

      例2.計(jì)算:1.(x-3)-x 2.(2a+b-)(2a-b+)

      師生共同分析:1中(x-3)可利用完全平方公式.學(xué)生動(dòng)筆解答第1題.教師根據(jù)學(xué)生解答情況,板書(shū)如下:解:1.(x-3)-x = x +6x+9-x =6x+9

      師問(wèn):此題還有其他方法解嗎?引導(dǎo)學(xué)生逆用平方差公式,從而培養(yǎng)學(xué)生創(chuàng)新精神.學(xué)生活動(dòng):分小組討論第(2)題的解法.此題學(xué)生解答,難度較大.教師要引導(dǎo)學(xué)生使用加法結(jié)合律,為使用公式創(chuàng)造條件.學(xué)生小組交流派代表進(jìn)行全班交流.最后教師板書(shū)解題過(guò)程.解:2.(2a+b-)(2a-b+)=[2a+(b-)][2a-(b-)]=(2a)-(b-)=4a-(b-3b+)=4a-b +3b-

      三、試一試計(jì)算:

      1.(a+b+c)

      2.(a+b)

      師生共同分析:

      對(duì)于1要把多項(xiàng)式完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方,要使用加法結(jié)合律,為使用完全平方公式創(chuàng)造條件.如(a+b+c)=[a+(b+c)]

      對(duì)于(2)可化為(a+b)=(a+b)(a+b).學(xué)生動(dòng)筆:在練習(xí)本上解答,并與同伴交流你的做法.學(xué)生敘述,教師板書(shū).解:1.(a+b+c)=[a+(b+c)] =(a+b)+2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc

      四、隨堂練習(xí)

      P38

      1五、小結(jié)

      本節(jié)課進(jìn)一步學(xué)習(xí)了完全平方公式,在應(yīng)用此公式運(yùn)算時(shí)注意以下幾點(diǎn).1.使用完全平方公式首先要熟記公式和公式的特征,不能出現(xiàn)(a±b)= a ±b 的錯(cuò)誤,或(a±b)= a ±ab+b(漏掉2倍)等錯(cuò)誤.2.要能根據(jù)公式的特征及題目的特征靈活選擇適當(dāng)?shù)墓接?jì)算.3.用加法結(jié)合律,可為使用公式創(chuàng)造了條件.利用了這種方法,可以把多項(xiàng)式的完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方.六、作業(yè)

      課本習(xí)題1.14 P38 1、2、3.七、教后反思

      下載完全平方公式教學(xué)案例[最終定稿]word格式文檔
      下載完全平方公式教學(xué)案例[最終定稿].doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        完全平方公式教案

        人教新課標(biāo)八年級(jí)上15.2完全平方公式表格式教案 一、復(fù)習(xí)舊知 探究,計(jì)算下列各式,你能發(fā)現(xiàn)什么規(guī)律? (1)(p+1)2 =(p+1)(p+1)=_________; (2)(m+2)2=(m+2)(m+2)=_________; (3)(p-1)2 =(p-1)(p-1)=_________; (4)(m-2)2=(m-2)(m-2)=_......

        9.14完全平方公式[推薦]

        運(yùn)用完全平方公式分解因式(2) 教學(xué)目標(biāo)1.使學(xué)生鞏固地掌握用完全平方公式分解因式。 2.使學(xué)生學(xué)習(xí)多步驟、多方法的分解因式。 重點(diǎn)難點(diǎn) 重點(diǎn):掌握多步驟、多方法的方法。 難點(diǎn):讓......

        完全平方公式教案

        完全平方公式教案1 一、教材分析本節(jié)內(nèi)容在全書(shū)及章節(jié)的地位:《完全平方公式》是人教版數(shù)學(xué)八年級(jí)上冊(cè)第十四章的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了多項(xiàng)式的乘法,這為過(guò)渡到本節(jié)的......

        完全平方公式教案

        學(xué)習(xí)周報(bào)專業(yè)輔導(dǎo)學(xué)生學(xué)習(xí)完全平方公式在代數(shù)、幾何中的兩點(diǎn)運(yùn)用 完全平方公式是中學(xué)階段運(yùn)用較為廣泛的一個(gè)公式.除了在一般計(jì)算過(guò)程中直接運(yùn)用完全平方公式外,在一些代數(shù)......

        完全平方公式教學(xué)設(shè)計(jì)(實(shí)用8篇)

        篇1:《完全平方公式》教學(xué)設(shè)計(jì)一、教材分析:(一)教材的地位與作用本節(jié)內(nèi)容主要研究的是完全平方公式的推導(dǎo)和公式在整式乘法中的應(yīng)用。它是在學(xué)生學(xué)習(xí)了代數(shù)式的概念、整式的加......

        完全平方公式(一)教學(xué)設(shè)計(jì)

        第一章 整式的運(yùn)算 8.完全平方公式(一) 一、 學(xué)生起點(diǎn)分析 學(xué)生的知識(shí)技能基礎(chǔ):學(xué)生通過(guò)對(duì)本章前幾節(jié)課的學(xué)習(xí),已經(jīng)學(xué)習(xí)了整式的概念、整式的加減、冪的運(yùn)算、整式的乘法、平方差......

        14.2.2完全平方公式教學(xué)設(shè)計(jì)

        14.2.2完全平方公式教學(xué)設(shè)計(jì) 教學(xué)目標(biāo): 1、掌握完全平方公式的推導(dǎo)及其應(yīng)用,理解完全平方公式的幾何解釋; 2、在學(xué)習(xí)本課過(guò)程中,培養(yǎng)學(xué)生獨(dú)立思考、觀察探索、推力歸納的能力; 3......

        完全平方公式(二)教學(xué)反思

        完全平方公式教學(xué)反思 觀山湖區(qū)第六中學(xué)余大華 本次課我執(zhí)教的是北師大版七年級(jí)數(shù)學(xué)下冊(cè)《完全平方公式》中的內(nèi)容,前一節(jié)已學(xué)習(xí)了完全平方公式,這一課主要研究完全平方公......