第一篇:奧數(shù)--數(shù)學(xué)世界里永不消逝的美麗xin
論文題目
完成時(shí)間
撰寫人
奧數(shù)——數(shù)學(xué)世界里永不消逝的美麗
摘 要::國(guó)際奧林匹克數(shù)學(xué)競(jìng)賽是國(guó)際中學(xué)生數(shù)學(xué)大賽,在世界上影響非常之大。作為數(shù)學(xué)這個(gè)抽象思維領(lǐng)域的奧林匹克的奧數(shù),它是一個(gè)國(guó)家基礎(chǔ)數(shù)學(xué)教育水平的較量,也有著廣大教育工作者和普通學(xué)生的參與。很多青少年,基于對(duì)數(shù)學(xué)的興趣,愿意學(xué)習(xí)一些課外的知識(shí)而走近奧數(shù),他們學(xué)習(xí)奧數(shù)就像普通民眾參加體育鍛煉,其目的并不是去參加IMO,而是增加數(shù)學(xué)知識(shí),鍛煉自己的數(shù)學(xué)思維,提高自己的數(shù)學(xué)能力。因此,奧數(shù)受到了廣大人們的認(rèn)同,從此源遠(yuǎn)流長(zhǎng)。
關(guān)鍵詞:創(chuàng)新奧數(shù)選拔
在各種學(xué)科中,數(shù)學(xué)是一門很神奇的學(xué)科,我們可以在數(shù)學(xué)學(xué)習(xí)中找到無(wú)限的樂(lè)趣,那是一種不斷迎接挑戰(zhàn),又不斷戰(zhàn)勝困難的快感。而在數(shù)學(xué)這個(gè)大世界里有一片小小的天空稱作奧數(shù),在這片天空里,有不斷綻放的奇跡與美麗,所以?shī)W數(shù)是數(shù)學(xué)世界里永不消逝的美麗,它的美麗體現(xiàn)在以下幾個(gè)方面。
奧數(shù):一般數(shù)學(xué)的延伸與擴(kuò)展
奧數(shù)仍然是屬于數(shù)學(xué)這一門學(xué)科,這是毫無(wú)疑問(wèn)的。奧數(shù)中當(dāng)然也有和我們平時(shí)所學(xué)的課堂上的數(shù)學(xué)相聯(lián)系的部分,是課堂內(nèi)容的深化和提高。數(shù)學(xué)的范圍是極其廣泛的,世界上最權(quán)威的分類法大概把數(shù)學(xué)分成了幾十個(gè)大類,一百多個(gè)小類。我們從小學(xué)的一元一次方程開(kāi)始算起,一直到高中畢業(yè),在七、八年的時(shí)間里,所涉及的數(shù)學(xué)類別也就是平面幾何、三角函數(shù)、線性方程(組)、解析幾何、立體幾何、集合論、不等式、數(shù)列等等。作為數(shù)學(xué)教育,當(dāng)然應(yīng)該以這些內(nèi)容為主,因?yàn)樗鼈兪菙?shù)學(xué)的核心方法和領(lǐng)域,但是這些內(nèi)容就是連初等數(shù)學(xué)的范疇也沒(méi)有完全覆蓋。
所以?shī)W數(shù)其實(shí)就是平常數(shù)學(xué)課上所不講、也沒(méi)有時(shí)間去講的一些數(shù)學(xué)分支的基礎(chǔ)內(nèi)容,比如圖論、組合數(shù)學(xué)、數(shù)論,以及重要的數(shù)學(xué)思想,比如構(gòu)造思想、特殊化思想、化歸思想等等。這些內(nèi)容的選擇是很科學(xué)的,因?yàn)檫@些領(lǐng)域的基本方法和簡(jiǎn)單應(yīng)用是不需要專門的數(shù)學(xué)工具的,而且?guī)в泻軓?qiáng)的趣味性和游戲性。這些方法對(duì)于培養(yǎng)學(xué)生的數(shù)學(xué)興趣,拓展它們的思維和知識(shí)面自然是很有幫助的。
另外,在奧數(shù)里面,特別是中低年級(jí)奧數(shù)中,有很多內(nèi)容是來(lái)自于中國(guó)古代數(shù)學(xué)專著的方法和思想,比如“盈虧問(wèn)題”、“雞兔同籠”,還比如高年級(jí)或中學(xué)奧數(shù)中要介紹的“中國(guó)剩余定理”等等。這些看似簡(jiǎn)單的方法,卻凝聚了中國(guó)古代數(shù)學(xué)家的超凡智慧,并且與西方的數(shù)學(xué)方程思想很不一樣,獨(dú)辟蹊徑,自成一派。
奧數(shù):發(fā)掘數(shù)學(xué)天才的絕佳途徑
奧數(shù)主要是針對(duì)課堂上的數(shù)學(xué)學(xué)得相對(duì)比較扎實(shí),學(xué)有余力且又對(duì)于數(shù)學(xué)有著一定興趣的學(xué)生。所以通過(guò)奧數(shù)的學(xué)習(xí),可以使那些具有數(shù)學(xué)天賦的學(xué)生表現(xiàn)出與眾不同的創(chuàng)造性。
基礎(chǔ)數(shù)學(xué)教育具有大眾性,由于課時(shí)的限制,對(duì)內(nèi)容的選材既要保證把數(shù)學(xué)中最基本的知識(shí)講到,又要顧及到知識(shí)被大部分學(xué)生所接受并理解,教學(xué)的進(jìn)度和難度顧及了大多數(shù)的學(xué)生。對(duì)于喜愛(ài)數(shù)學(xué)、數(shù)學(xué)成績(jī)優(yōu)異的學(xué)生來(lái)說(shuō),數(shù)學(xué)課堂的內(nèi)容已不能滿足他們求知欲望。他們往往會(huì)找出更具有難度的題目來(lái)鉆研,而奧數(shù)中的部分內(nèi)容就是中小學(xué)基礎(chǔ)數(shù)學(xué)中所沒(méi)有的。而這部分內(nèi)容出現(xiàn)在奧數(shù)中,對(duì)于學(xué)有余力的或者對(duì)奧數(shù)感興趣的同學(xué)可以作為課外的知識(shí)補(bǔ)充,提升所學(xué)習(xí)的知識(shí)。奧數(shù)對(duì)發(fā)現(xiàn)和培養(yǎng)一些有數(shù)學(xué)天分的學(xué)生,并引導(dǎo)他們走上數(shù)學(xué)的道路起到了一定的作用。
在《中小學(xué)生數(shù)學(xué)能力心理學(xué)》一文中,克魯切茨基描述了他對(duì)天才兒童的調(diào)查,有些小孩確實(shí)從小就顯示出了數(shù)學(xué)方面的天分,一些杰出的數(shù)學(xué)家更是很小就具有超出他們年齡的數(shù)學(xué)才華。如:年輕的高斯解決從一加到一百的簡(jiǎn)單算法就顯示出了不凡,這已經(jīng)是奧數(shù)中巧算的一個(gè)內(nèi)容了。法國(guó)的伽羅華十七歲時(shí)就寫了一篇關(guān)于《五次方程代數(shù)解法》這個(gè)世界數(shù)學(xué)難題的論文,最先提出了近代數(shù)學(xué)的一個(gè)基本概念——“群”。20世紀(jì)著名數(shù)學(xué)家諾伯特·維納,三歲時(shí)就能讀寫,十四歲時(shí)就大學(xué)畢業(yè)了,幾年后,他又通過(guò)了博士論文答辯,成為美國(guó)哈佛大學(xué)的科學(xué)博士。
對(duì)這些在數(shù)學(xué)上很有天賦的學(xué)生來(lái)說(shuō),他們的數(shù)學(xué)智力允許研究數(shù)學(xué)難題。學(xué)生時(shí)代的求知欲望是很強(qiáng)烈的。一旦他們發(fā)現(xiàn)了數(shù)學(xué)的樂(lè)趣后,他們會(huì)很快投入到數(shù)學(xué)當(dāng)中去,去尋找難題解答,去欣賞前人的優(yōu)秀數(shù)學(xué)成果,最終走上數(shù)學(xué)的道路。對(duì)于中學(xué)生來(lái)說(shuō),奧數(shù)既貼近基礎(chǔ)數(shù)學(xué),又高出基礎(chǔ)數(shù)學(xué),是他們從課堂邁出的第一步。在這里,他們能找到難題,挑戰(zhàn)自己的智力。同時(shí),數(shù)學(xué)競(jìng)賽的開(kāi)展又為這樣的學(xué)生打開(kāi)了一個(gè)對(duì)外的的窗口,讓他們有機(jī)會(huì)結(jié)交到更多的喜愛(ài)數(shù)學(xué)的人,有機(jī)會(huì)接觸到更高層次的數(shù)學(xué)知識(shí)。奧數(shù)為有數(shù)學(xué)天分的學(xué)生指引了一個(gè)方向。
奧數(shù):來(lái)源于生活,又應(yīng)用于生活
數(shù)學(xué)源于生活,同時(shí)又高于生活。對(duì)中小學(xué)生而言,數(shù)學(xué)要能幫他們解決日常生活中的數(shù)學(xué)問(wèn)題,或者能對(duì)現(xiàn)實(shí)生活中的一些現(xiàn)象作出解釋。這樣才會(huì)讓他們覺(jué)得數(shù)學(xué)不只是空洞的理論,從而提升他們學(xué)習(xí)數(shù)學(xué)的興趣。
1、天花板函數(shù)、地板函數(shù)及其簡(jiǎn)單應(yīng)用
[x]表示不超過(guò)x的最大整數(shù),在數(shù)軸上表示x左邊且與x最相近的整數(shù),當(dāng)x為整數(shù)時(shí),[x]就是x本身。取整函數(shù)[x],也常常叫做地板(函數(shù))。因?yàn)樗怀^(guò)x,而又與x距離最近,就好像在我們腳下的地板。如此的定義很形象生動(dòng),如[5.3]=5,[-5.3]=-6,[5.3]=6,[-5.3] =-5.天花板函數(shù)、地板函數(shù)在現(xiàn)實(shí)生活中的應(yīng)用就很多。
如現(xiàn)實(shí)生活中乘車問(wèn)題:根據(jù)總?cè)藬?shù)和每輛車最多所能載的人數(shù),能算出所用車輛數(shù)。當(dāng)計(jì)算的結(jié)果是整數(shù),直接取整就可以了。但是如果不是整數(shù)呢。學(xué)生根據(jù)日常的經(jīng)驗(yàn),知道要取多一輛,這就是天花板函數(shù)的應(yīng)用。
實(shí)際生活中買東西時(shí)零頭都會(huì)討價(jià)還價(jià)去掉,這其實(shí)也是地板函數(shù)或變相的地板函數(shù)的一個(gè)應(yīng)用。像這些根據(jù)實(shí)際問(wèn)題抽象出的數(shù)學(xué)問(wèn)題,其實(shí)就像四舍五入、打折扣等知識(shí)一樣很容易被學(xué)生接收。
2、抽屜原理及在現(xiàn)實(shí)生活中的應(yīng)用
抽屜原理也是與現(xiàn)實(shí)生活聯(lián)系較緊密的一類題型,它的原理非常簡(jiǎn)單。3個(gè)蘋果放入兩個(gè)抽屜,必有一個(gè)抽屜中的蘋果數(shù)?2,這個(gè)簡(jiǎn)單的道理便稱為抽屜原理。更一般地,將m
?m??m?????個(gè)蘋果放入n(m?n)個(gè)抽屜中,必有一個(gè)抽屜中的蘋果數(shù)??n?,?n?就是上面提到的天
花板函數(shù)。
我們看到抽屜原理本身其實(shí)很簡(jiǎn)單,就是蘋果和抽屜,既形象又生動(dòng),結(jié)論很顯然。如此簡(jiǎn)單的原理卻能解決很多看起來(lái)無(wú)從下手的問(wèn)題,因而不僅能被中學(xué)生接受,也能被小學(xué)生所接受。以下是幾個(gè)截取的例子:
題1、18個(gè)小朋友中,___小朋友在同一個(gè)月出生。(第二屆《小數(shù)報(bào)》初賽試題)A恰好有兩個(gè)B至少有2個(gè)C有7個(gè)D最多有7個(gè)
題
2、不透明口袋里有5種不同顏色的球,每種都有20個(gè),最少取出___個(gè)球,才能保證其中定有3個(gè)球的顏色相同。(第三屆“興趣杯”預(yù)賽試題)
題
3、某次數(shù)學(xué)、英語(yǔ)測(cè)試,所有參加測(cè)試者的得分都是自然數(shù),最高得分198,最低169得分,沒(méi)有人得193分、185分和177分,如果不看成績(jī)表就能肯定至少有6人得同一分?jǐn)?shù),參加測(cè)試的至少有_____ 人(第一屆小學(xué)“希望杯”五年級(jí)第2試.)
題
4、若干名小朋友購(gòu)買單價(jià)為3元和5元的兩種商品,每人至少買一件,但每人購(gòu)買的總金額不得超過(guò)15元。小民說(shuō):小朋友中一定至少有三人購(gòu)買的兩種商品數(shù)量完全相同。問(wèn):至少有多少名小朋友?(第十屆“華杯賽”總決賽小學(xué)組第一試)
這些題就是日常生活的應(yīng)用,蘊(yùn)含著豐富的數(shù)學(xué)思想,促進(jìn)了學(xué)生積極思考,培養(yǎng)了學(xué)生的數(shù)學(xué)能力,奧數(shù)有用。
奧數(shù):高級(jí)思維訓(xùn)練的體操,不斷的精彩與燦爛
之所以說(shuō)奧數(shù)是高級(jí)思維訓(xùn)練的體操,就在于要解決奧數(shù)問(wèn)題的技巧性很強(qiáng),這就要求學(xué)生需要具有較高的創(chuàng)造性思維。先看一個(gè)例子:
222ab(a?b)?bc(b?c)?ca(a?c)?0,并說(shuō)明等acb“設(shè),是三角形的三邊長(zhǎng),求證
號(hào)何時(shí)成立?!边@是1983年IMO的一道試題,原聯(lián)邦德國(guó)選手伯恩哈德.李不僅成績(jī)優(yōu)異,得了滿分,而且由于此題的巧妙求解而被授予特別獎(jiǎng)。首先,他記左邊為I,由于多項(xiàng)式I是“輪換對(duì)稱”的,不妨設(shè)a?b,c(優(yōu)化假設(shè)),有
I?a(b?c)2(b?c?a)?b(a?b)(a?c)(a?b?c)?0,顯然,I?0的充分必要條件是a?b?c。
再看一個(gè)例子:
證明:一個(gè)奇數(shù)c為合數(shù)的充要條件是存在自然數(shù)
證:充分性,為一般性命題。證明略。
下證必要性:必要性是存在性問(wèn)題,用構(gòu)造法。
設(shè)c為奇合數(shù),則c可分解為兩個(gè)大于1的奇數(shù)之積,將較小的記為2k?1,較大的記為m,a?c2?1(2a?1)3,使?8c為平方數(shù)。
即c?(2k?1)m,k?2,m?2k?1。
令a?m?k?1,則a?ccc?k?1??1??12k?12k?13,且
(2a?1)2?8c?(2m?2k?1)2?8(2k?1)m
??2m?(2k?1)??8m(2k?1)??2m?(2k?1)?2
2證畢。
在這個(gè)過(guò)程當(dāng)中,大家或許會(huì)有疑問(wèn),我怎么就知道要令a?m?k?1呢?通過(guò)演算,在逆推中找到一個(gè)使結(jié)論成立的充分條件,是構(gòu)造存在實(shí)例常用的方法。就本例而言,假設(shè)存在自然數(shù)a?c?13滿足題目要求,即假設(shè)(2a?1)2?8c?(2t?1)2,化簡(jiǎn)得2c?(t?a)(t?a?1),由題設(shè)c為奇合數(shù),可令c?(2k?1)m,k?2,m?2k?1,m為奇數(shù),于是有2m(2k?1)?(t?a)(t?a?1)。使這個(gè)式子成立的一個(gè)充分條件是a?2m{t
t??a?1?2k?1?a?m?k?1,此即存在實(shí)例。
從這個(gè)題目可以看出逆推的思想也是一種創(chuàng)造性思維,逆向思維不僅僅體現(xiàn)在反證法,從結(jié)論找條件也是一種值得思考的方法。從不同的角度思考問(wèn)題,思維模式就會(huì)不一樣,從而對(duì)問(wèn)題的解決也就有不同的方法,使得數(shù)學(xué)的學(xué)習(xí)也變得妙趣橫生。
奧數(shù):探究永無(wú)止境
奧數(shù)是個(gè)很神奇的東西,類似的題目,雖然可能只變了一點(diǎn)點(diǎn),但都需要不一樣的思維來(lái)思考,奧數(shù)試題正是由于其新穎性、啟示性、方向性,往往能為初等數(shù)學(xué)研究提供新的課題。另一些時(shí)候,又由于競(jìng)賽的權(quán)威性而使古老的問(wèn)題煥發(fā)出新鮮的興趣,說(shuō)“一道題目就開(kāi)辟了一個(gè)研究方向”并不僅僅是藝術(shù)夸張。
1919年得IMO試題Weitzenboeck不等式,因IMO的傳播,已得出了幾十種解法,其本身也得到了加強(qiáng),還推廣到了n維歐式空間,且已納入Pedoe不等式的研究軌道,至今研究還在繼續(xù)。
1986年,中國(guó)首次提供IMO試題,并由此掀起了“周期點(diǎn)列”或“周期數(shù)列”研究的熱潮,范圍深入到循環(huán)數(shù)列與分式遞推數(shù)列的周期,并與函數(shù)的迭代溝通。
奧數(shù)就是存在于這種無(wú)限研究與深入過(guò)程中的活數(shù)學(xué)。
三、結(jié)語(yǔ)
奧數(shù),體現(xiàn)了數(shù)學(xué)與奧林匹克體育運(yùn)動(dòng)精神的共通性,以開(kāi)放、創(chuàng)新的思維模式,為學(xué)有余力、學(xué)有興趣、學(xué)有特長(zhǎng)的學(xué)生提供了一個(gè)展示數(shù)學(xué)才能的舞臺(tái)。如今奧數(shù)已成為數(shù)學(xué)發(fā)展中不可或缺的一部分,不管在現(xiàn)實(shí)中關(guān)于奧數(shù)的利弊問(wèn)題爭(zhēng)得有多么熱烈,奧數(shù)是不可能被禁止的。它肩負(fù)著屬于它的特殊的歷史使命,為數(shù)學(xué)創(chuàng)造一個(gè)又一個(gè)精彩的奇跡,所以它是數(shù)學(xué)世界里永不消逝的美麗。
參閱:
1.王元數(shù)學(xué)競(jìng)賽之我見(jiàn)1990
2.王柯娟 淺談奧數(shù) 科技咨詢 2009.1
43.陳傳理、張同君競(jìng)賽數(shù)學(xué)教程高等教育出版社2004.10
4.黃靜潔 買錯(cuò)的奧數(shù)錯(cuò)在哪里? 教育旬刊 2010.5(上)
5.方立新 奧數(shù)廢了之后怎么辦 教育旬刊 2009.09(上)
6.游安軍 誰(shuí)是奧數(shù)教育的對(duì)象 教育理論與實(shí)踐 2009.10
7.陳華雨 幾道奧數(shù)練習(xí)題的方法再探討 數(shù)學(xué)教學(xué) 2009.3(上)
第二篇:數(shù)學(xué)奧數(shù)
勝不驕敗不餒
尊敬的老師們,親愛(ài)的同學(xué)們:
大家好!我今天要講的主題————“勝不驕敗不餒”。
在我們現(xiàn)實(shí)生活中,每個(gè)人都會(huì)有成功的經(jīng)歷,也有遇到失敗的苦澀,取得成功的時(shí)候,臉上露出的時(shí)燦爛的笑容;遇到挫折的時(shí)候,有的一敗涂地,有的是努力奮進(jìn),迎難而上。對(duì)于我們學(xué)生來(lái)說(shuō),應(yīng)該怎么面對(duì)學(xué)習(xí)和生活的成功和失敗呢?
這就引出來(lái)我今天要講的主題————“勝不驕敗不餒”。古人曾說(shuō)過(guò):“勝者不驕傲,敗者不氣餒?!敝v的就是這個(gè)道理,當(dāng)你經(jīng)過(guò)自己的一番努力取得成功的時(shí)候,決不可沾沾自喜,驕傲于世,目中無(wú)人,而應(yīng)該總結(jié)成功的經(jīng)驗(yàn),再接再厲,向更高、更好的目標(biāo)而努力奮斗;當(dāng)你遇到挫折與失敗的時(shí)候,決不能灰心傷氣,破罐子破摔,而應(yīng)該仔細(xì)檢查自己做的事情,從中找出原因,不斷總結(jié),就會(huì)從一個(gè)失敗走向成功。失敗并不可怕,可怕的是我們不能從中意識(shí)到自己的不足。我們常說(shuō)“失敗是成功之母”,講得就是通往成功的道路上,失敗有時(shí)也是不可避免的,偉大的發(fā)明家愛(ài)迪生不就是經(jīng)過(guò)無(wú)數(shù)次的失敗才走向成功的嗎?經(jīng)歷了無(wú)數(shù)次的失敗-成功,在失敗在成功,最終發(fā)明了電燈。
愛(ài)迪生是這樣,雅典奧運(yùn)會(huì)冠軍劉翔也是一樣,他也是經(jīng)過(guò)了無(wú)數(shù)次的失敗之后才取得了如此驕人的戰(zhàn)績(jī),實(shí)現(xiàn)了亞洲人短跑金牌零的突破,為中國(guó)人爭(zhēng)了光,也為亞洲人爭(zhēng)了光!但是要從失敗中不斷汲取教訓(xùn),多向成功的人士學(xué)習(xí),從心理上要認(rèn)識(shí)失敗是暫時(shí)的,只要你能調(diào)整心態(tài),找出問(wèn)題的所在,在加上自己的刻苦努力,你一定能取得自己滿意的結(jié)果。
我們剛剛進(jìn)行了月考,由于各個(gè)學(xué)生的基礎(chǔ)不一樣,有的同學(xué)通過(guò)自己的努力取得了優(yōu)異的成績(jī),而有的同學(xué)覺(jué)得自己的成績(jī)不理想,沒(méi)有達(dá)到自己的目標(biāo)。這樣就出現(xiàn)了兩種心態(tài)的同學(xué)??荚嚭玫耐瑢W(xué)會(huì)歡欣鼓舞,但絕不可驕傲,還要繼續(xù)前進(jìn);考試暫時(shí)不理性的同學(xué)不要悲觀失望,查漏補(bǔ)缺,終究會(huì)取得優(yōu)異的成績(jī)。我想告訴大家的是:考試只是一種檢測(cè)手段,通過(guò)它反映開(kāi)學(xué)以來(lái)你對(duì)所學(xué)知識(shí)的掌握程度,分?jǐn)?shù)的高低只能代表過(guò)去,不能代表將來(lái)。只要你能從考試中分析自己的失敗的原因,總結(jié)自己的不足之處,相信在以后的考試中你一定會(huì)名列前茅的。
在我們的日常學(xué)習(xí)和生活中,要保持一個(gè)良好的心態(tài),做到勝不驕敗不餒。我真心地希望每位同學(xué),在以后的學(xué)習(xí)中,要克服學(xué)習(xí)上的困難,知難而上,勇攀高峰,力爭(zhēng)做到:課前要認(rèn)真預(yù)習(xí),準(zhǔn)備好必備的學(xué)習(xí)用品;課上要積極思考,大膽發(fā)言,不懂就問(wèn);課后要及時(shí)復(fù)習(xí),認(rèn)真完成老師布置的課堂、家庭作業(yè)。作業(yè)書寫工整,作業(yè)要獨(dú)立完成,作業(yè)要盡量不錯(cuò),錯(cuò)了要立即訂正。我們堅(jiān)信,只要同學(xué)們努力去做,期中,期末考試一定能考出優(yōu)異的成績(jī)。
勝不驕,敗不餒。讓我們永遠(yuǎn)保持一顆奮斗的心,總結(jié)今天的成功與失敗,展望明天的輝煌,經(jīng)過(guò)大家的努力學(xué)習(xí)和拼搏,相信大家都能達(dá)到自己理想的彼岸。
請(qǐng)牢記:“勝不驕,敗不餒,”這句名言,相信它會(huì)為你的人生帶來(lái)極大的鼓勵(lì)和幫助。
謝謝大家!我的演講完畢!
第三篇:小學(xué)數(shù)學(xué)奧數(shù)教案
小學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))
小學(xué)奧數(shù)
第1講 歸一問(wèn)題與歸總問(wèn)題 第2講 年齡問(wèn)題
第3講 雞兔同籠問(wèn)題與假設(shè)法 第1講 歸一問(wèn)題與歸總問(wèn)題
在解答某些應(yīng)用題時(shí),常常需要先找出“單一量”,然后以這個(gè)“單一量”為標(biāo)準(zhǔn),根據(jù)其它條件求出結(jié)果。用這種解題思路解答的應(yīng)用題,稱為歸一問(wèn)題。所謂“單一量”是指單位時(shí)間的工作量、物品的單價(jià)、單位面積的產(chǎn)量、單位時(shí)間所走的路程等。
例1 一種鋼軌,4根共重1900千克,現(xiàn)在有95000千克鋼,可以制造這種鋼軌多少根?(損耗忽略不計(jì))
分析:以一根鋼軌的重量為單一量。
(1)一根鋼軌重多少千克?
1900÷4=475(千克)。
(2)95000千克能制造多少根鋼軌?
95000÷475=200(根)。
解:95000÷(1900÷4)=200(根)。
答:可以制造200根鋼軌。
例2 王家養(yǎng)了5頭奶牛,7天產(chǎn)牛奶630千克,照這樣計(jì)算,8頭奶牛15天可產(chǎn)牛奶多少千克?
分析:以1頭奶牛1天產(chǎn)的牛奶為單一量。
(1)1頭奶牛1天產(chǎn)奶多少千克?
630÷5÷7=18(千克)。
(2)8頭奶牛15天可產(chǎn)牛奶多少千克?
小學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))
18×8×15=2160(千克)。
解:(630÷5÷7)×8×15=2160(千克)。
答:可產(chǎn)牛奶2160千克。
例3 三臺(tái)同樣的磨面機(jī)2.5時(shí)可以磨面粉2400千克,8臺(tái)這樣的磨面機(jī)磨25600千克面粉需要多少時(shí)間?
分析與解:以1臺(tái)磨面機(jī)1時(shí)磨的面粉為單一量。
(1)1臺(tái)磨面機(jī)1時(shí)磨面粉多少千克?
2400÷3÷2.5=320(千克)。
(2)8臺(tái)磨面機(jī)磨25600千克面粉需要多少小時(shí)?
25600÷320÷8=10(時(shí))。
綜合列式為
25600÷(2400÷3÷2.5)÷8=10(時(shí))。
例4 4輛大卡車運(yùn)沙土,7趟共運(yùn)走沙土336噸?,F(xiàn)在有沙土420噸,要求5趟運(yùn)完。問(wèn):需要增加同樣的卡車多少輛? 分析與解:以1輛卡車1趟運(yùn)的沙土為單一量。
(1)1輛卡車1趟運(yùn)沙土多少噸?
336÷4÷7=12(噸)。
(2)5趟運(yùn)走420噸沙土需卡車多少輛?
420÷12÷5=7(輛)。
(3)需要增加多少輛卡車?
7-4=3(輛)。
綜合列式為
420÷(336÷4÷7)÷5-4=3(輛)。
小學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))
與歸一問(wèn)題類似的是歸總問(wèn)題,歸一問(wèn)題是找出“單一量”,而歸總問(wèn)題是找出“總量”,再根據(jù)其它條件求出結(jié)果。所謂“總量”是指總路程、總產(chǎn)量、工作總量、物品的總價(jià)等。
例5 一項(xiàng)工程,8個(gè)人工作15時(shí)可以完成,如果12個(gè)人工作,那么多少小時(shí)可以完成?
分析:(1)工程總量相當(dāng)于1個(gè)人工作多少小時(shí)?
15×8=120(時(shí))。
(2)12個(gè)人完成這項(xiàng)工程需要多少小時(shí)?
120÷12=10(時(shí))。解:15×8÷12=10(時(shí))。
答:12人需10時(shí)完成。
例6 一輛汽車從甲地開(kāi)往乙地,每小時(shí)行60千米,5時(shí)到達(dá)。若要4時(shí)到達(dá),則每小時(shí)需要多行多少千米?
分析:從甲地到乙地的路程是一定的,以路程為總量。
(1)從甲地到乙地的路程是多少千米?
60×5=300(千米)。
(2)4時(shí)到達(dá),每小時(shí)需要行多少千米?
300÷4=75(千米)。
(3)每小時(shí)多行多少千米?
75-60=15(千米)。
解:(60×5)÷4——60=15(千米)。
答:每小時(shí)需要多行15千米。
例7 修一條公路,原計(jì)劃60人工作,80天完成?,F(xiàn)在工作20天后,又增加了30人,這樣剩下的部分再用多少天可以完成?
小學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))
分析:(1)修這條公路共需要多少個(gè)勞動(dòng)日(總量)?
60×80=4800(勞動(dòng)日)。
(2)60人工作20天后,還剩下多少勞動(dòng)日?
4800-60×20=3600(勞動(dòng)日)。
(3)剩下的工程增加30人后還需多少天完成?
3600÷(60+30)=40(天)。
解:(60×80-60×20)÷(60+30)=40(天)。
答:再用40天可以完成。
練習(xí)11
1.2臺(tái)拖拉機(jī)4時(shí)耕地20公頃,照這樣速度,5臺(tái)拖拉機(jī)6時(shí)可耕地多少公頃?
2.4臺(tái)織布機(jī)5時(shí)可以織布2600米,24臺(tái)織布機(jī)幾小時(shí)才能織布24960米?
3.一種幻燈機(jī),5秒鐘可以放映80張片子。問(wèn):48秒鐘可以放映多少?gòu)埰樱?/p>
4.3臺(tái)抽水機(jī)8時(shí)灌溉水田48公頃,照這樣的速度,5臺(tái)同樣的抽水機(jī)6時(shí)可以灌溉水田多小公頃?
5.平整一塊土地,原計(jì)劃8人平整,每天工作7.5時(shí),6天可以完成任務(wù)。由于急需播種,要求5天完成,并且增加1人。問(wèn):每天要工作幾小時(shí)?
6.食堂管理員去農(nóng)貿(mào)市場(chǎng)買雞蛋,原計(jì)劃按每千克3.00元買35千克。結(jié)果雞蛋價(jià)格下調(diào)了,他用這筆錢多買了2.5千克雞蛋。問(wèn):雞蛋價(jià)格下調(diào)后是每千克多少元?
小學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))
7.鍋爐房按照每天4.5噸的用量?jī)?chǔ)備了120天的供暖煤。供暖40天后,由于進(jìn)行了技術(shù)改造,每天能節(jié)約0.9噸煤。問(wèn):這些煤共可以供暖多少天?
第2講 年齡問(wèn)題
年齡問(wèn)題是一類以“年齡為內(nèi)容”的數(shù)學(xué)應(yīng)用題。
年齡問(wèn)題的主要特點(diǎn)是:二人年齡的差保持不變,它不隨歲月的流逝而改變;二人的年齡隨著歲月的變化,將增或減同一個(gè)自然數(shù);二人年齡的倍數(shù)關(guān)系隨著年齡的增長(zhǎng)而發(fā)生變化,年齡增大,倍數(shù)變小。
根據(jù)題目的條件,我們常將年齡問(wèn)題化為“差倍問(wèn)題”、“和差問(wèn)題”、“和倍問(wèn)題”進(jìn)行求解。
例1 兒子今年10歲,5年前母親的年齡是他的6倍,母親今年多少歲? 分析與解:兒子今年10歲,5年前的年齡為5歲,那么5年前母親的年齡為5×6=30(歲),因此母親今年是
30+5=35(歲)。
例2 今年爸爸48歲,兒子20歲,幾年前爸爸的年齡是兒子的5倍? 分析與解:今年爸爸與兒子的年齡差為“48——20”歲,因?yàn)槎说哪挲g差不隨時(shí)間的變化而改變,所以當(dāng)爸爸的年齡為兒子的5倍時(shí),兩人的年齡差還是這個(gè)數(shù),這樣就可以用“差倍問(wèn)題”的解法。當(dāng)爸爸的年齡是兒子年齡的5倍時(shí),兒子的年齡是
(48——20)÷(5——1)=7(歲)。
由20-7=13(歲),推知13年前爸爸的年齡是兒子年齡的5倍。
小學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))例3 兄弟二人的年齡相差5歲,兄3年后的年齡為弟4年前的3倍。問(wèn):兄、弟二人今年各多少歲?
分析與解:根據(jù)題意,作示意圖如下:
由上圖可以看出,兄3年后的年齡比弟4年前的年齡大5+3+4=12(歲),由“差倍問(wèn)題”解得,弟4年前的年齡為(5+3+4)÷(3-1)=6(歲)。由此得到
弟今年6+4=10(歲),兄今年10+5=15(歲)。
例4 今年兄弟二人年齡之和為55歲,哥哥某一年的歲數(shù)與弟弟今年的歲數(shù)相同,那一年哥哥的歲數(shù)恰好是弟弟歲數(shù)的2倍,請(qǐng)問(wèn)哥哥今年多少歲? 分析與解:在哥哥的歲數(shù)是弟弟的歲數(shù)2倍的那一年,若把弟弟歲數(shù)看成一份,那么哥哥的歲數(shù)比弟弟多一份,哥哥與弟弟的年齡差是1份。又因?yàn)槟且荒旮绺鐨q數(shù)與今年弟弟歲數(shù)相等,所以今年弟弟歲數(shù)為2份,今年哥哥歲數(shù)為2+1=3(份)(見(jiàn)下頁(yè)圖)。
由“和倍問(wèn)題”解得,哥哥今年的歲數(shù)為
55÷(3+2)×3=33(歲)。
例5 哥哥5年前的年齡與妹妹4年后的年齡相等,哥哥2年后的年齡與妹妹8年后的年齡和為97歲,請(qǐng)問(wèn)二人今年各多少歲?
小學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))分析與解:由“哥哥5年前的年齡與妹妹4年后的年齡相等”可知兄妹二人的年齡差為“4+5”歲。由“哥哥2年后的年齡與妹妹8年后的年齡和為97歲”,可知兄妹二人今年的年齡和為“97——2——8”歲。由“和差問(wèn)題”解得,兄[(97——2——8)+(4+5)]÷2=48(歲),妹[(97——2——8)-(4+5)]÷2=39(歲)。
例6 1994年父親的年齡是哥哥和弟弟年齡之和的4倍。2000年,父親的年齡是哥哥和弟弟年齡之和的2倍。問(wèn):父親出生在哪一年?
分析與解:如果用1段線表示兄弟二人1994年的年齡和,則父親1994年的年齡要用4段線來(lái)表示(見(jiàn)下頁(yè)圖)。
父親在2000年的年齡應(yīng)是4段線再加6歲,而兄弟二人在2000年的年齡之和是1段線再加2×6=12(歲),它是父親年齡的一半,也就是2段線再加3歲。由
1段+12歲=2段+3歲,推知1段是9歲。所以父親1994年的年齡是9×4=36(歲),他出生于
1994——36=1958(年)。
例7今年父親的年齡為兒子的年齡的4倍,20年后父親的年齡為兒子的年齡的2倍。問(wèn):父子今年各多少歲?
解法一:假設(shè)父親的年齡一直是兒子年齡的4倍,那么每過(guò)一年兒子增加一歲,父親就要增加4歲。這樣,20年后兒子增加20歲,父親就要增加80歲,比兒子多增加了80-20=60(歲)。
小學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))
事實(shí)上,20年后父親的年齡為兒子的年齡的2倍,根據(jù)剛才的假設(shè),多增加的60歲,正好相當(dāng)于20年后兒子年齡的(4——2=)2倍,因此,今年兒子的年齡為
(20×4-20)÷(4-2)-20=10(歲),父親今年的年齡為10×4=40(歲)。
解法二:如果用1段線表示兒子今年的年齡,那么父親今年的年齡要用4段線來(lái)表示(見(jiàn)下圖)。
20年后,父親的年齡應(yīng)是4段線再加上20歲,而兒子的年齡應(yīng)是1段線再加上20歲,是父親年齡的一半,也就是2段線再加上10歲。由
1段+20=2段+10,求得1段是10歲,即兒子今年10歲,從而父親今年40歲。例8 今年?duì)敔?8歲,長(zhǎng)孫27歲,次孫23歲,三孫16歲。問(wèn):幾年后爺爺?shù)哪挲g等于三個(gè)孫子年齡之和?
分析:今年三個(gè)孫子的年齡和為27+23+16=66(歲),爺爺比三個(gè)孫子的年齡和多78——66=12(歲)。每過(guò)一年,爺爺增加一歲,而三個(gè)孫子的年齡和卻要增加1+1+1=3(歲),比爺爺多增加3-1=2(歲)。因而只需求出12里面有幾個(gè)2即可。
解:[78-(27+23+16)]÷(1+1+1-1)=6(年)。
答:6年后爺爺?shù)哪挲g等于三個(gè)孫子年齡的和。
練習(xí)12
1.父親比兒子大30歲,明年父親的年齡是兒子年齡的3倍,那么今年兒子幾歲?
小學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))
2.王梅比舅舅小19歲,舅舅的年齡比王梅年齡的3倍多1歲。問(wèn):他們二人各幾歲?
3.小明今年9歲,父親39歲,再過(guò)多少年父親的年齡正好是小明年齡的2倍?
4.父親年齡是女兒的4倍,三年前父女年齡之和是49歲。問(wèn):父女兩人現(xiàn)在各多少歲?
5.一家三口人,三人年齡之和是74歲,媽媽比爸爸小2歲,媽媽的年齡是兒子年齡的4倍。問(wèn):三人各是多少歲?
6.今年老師46歲,學(xué)生16歲,幾年后老師年齡的2倍與學(xué)生年齡的5倍相等?
7.已知祖孫三人,祖父和父親年齡的差與父親和孫子年齡的差相同,祖父和孫子年齡之和為82歲,明年祖父的年齡恰好等于孫子年齡的5倍。問(wèn):祖孫三人各多少歲?
8.小樂(lè)問(wèn)劉老師今年有多少歲,劉老師說(shuō):“當(dāng)我像你這么大時(shí),你才3歲;當(dāng)你像我這么大時(shí),我已經(jīng)42歲了?!蹦隳芩愠鰟⒗蠋熡卸嗌贇q嗎?
第3講 雞兔同籠問(wèn)題與假設(shè)法
雞兔同籠問(wèn)題是按照題目的內(nèi)容涉及到雞與兔而命名的,它是一類有名的中國(guó)古算題。許多小學(xué)算術(shù)應(yīng)用題,都可以轉(zhuǎn)化為雞兔同籠問(wèn)題來(lái)加以計(jì)算。
小學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))
例1 小梅數(shù)她家的雞與兔,數(shù)頭有16個(gè),數(shù)腳有44只。問(wèn):小梅家的雞與兔各有多少只?
分析:假設(shè)16只都是雞,那么就應(yīng)該有2×16=32(只)腳,但實(shí)際上有44只腳,比假設(shè)的情況多了44-32=12(只)腳,出現(xiàn)這種情況的原因是把兔當(dāng)作雞了。如果我們以同樣數(shù)量的兔去換同樣數(shù)量的雞,那么每換一只,頭的數(shù)目不變,腳數(shù)增加了2只。因此只要算出12里面有幾個(gè)2,就可以求出兔的只數(shù)。
解:有兔(44-2×16)÷(4-2)=6(只),有雞16-6=10(只)。
答:有6只兔,10只雞。
當(dāng)然,我們也可以假設(shè)16只都是兔子,那么就應(yīng)該有4×16=64(只)腳,但實(shí)際上有44只腳,比假設(shè)的情況少了64-44=20(只)腳,這是因?yàn)榘央u當(dāng)作兔了。我們以雞去換兔,每換一只,頭的數(shù)目不變,腳數(shù)減少了4-2=2(只)。因此只要算出20里面有幾個(gè)2,就可以求出雞的只數(shù)。
有雞(4×16-44)÷(4-2)=10(只),有兔16——10=6(只)。
由例1看出,解答雞兔同籠問(wèn)題通常采用假設(shè)法,可以先假設(shè)都是雞,然后以兔換雞;也可以先假設(shè)都是兔,然后以雞換兔。因此這類問(wèn)題也叫置換問(wèn)題。
例2 100個(gè)和尚140個(gè)饃,大和尚1人分3個(gè)饃,小和尚1人分1個(gè)饃。問(wèn):大、小和尚各有多少人?
分析與解:本題由中國(guó)古算名題“百僧分饃問(wèn)題”演變而得。如果將大和尚、小和尚分別看作雞和兔,饃看作腿,那么就成了雞兔同籠問(wèn)題,可以用假設(shè)法來(lái)解。
小學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))
假設(shè)100人全是大和尚,那么共需饃300個(gè),比實(shí)際多300-140=160(個(gè))?,F(xiàn)在以小和尚去換大和尚,每換一個(gè)總?cè)藬?shù)不變,而饃就要減少3——1=2(個(gè)),因?yàn)?60÷2=80,故小和尚有80人,大和尚有
100-80=20(人)。
同樣,也可以假設(shè)100人都是小和尚,同學(xué)們不妨自己試試。
在下面的例題中,我們只給出一種假設(shè)方法。
例3 彩色文化用品每套19元,普通文化用品每套11元,這兩種文化用品共買了16套,用錢280元。問(wèn):兩種文化用品各買了多少套?
分析與解:我們?cè)O(shè)想有一只“怪雞”有1個(gè)頭11只腳,一種“怪兔”有1個(gè)頭19只腳,它們共有16個(gè)頭,280只腳。這樣,就將買文化用品問(wèn)題轉(zhuǎn)換成雞兔同籠問(wèn)題了。
假設(shè)買了16套彩色文化用品,則共需19×16=304(元),比實(shí)際多304——280=24(元),現(xiàn)在用普通文化用品去換彩色文化用品,每換一套少用19——11=8(元),所以
買普通文化用品 24÷8=3(套),買彩色文化用品 16-3=13(套)。
例4 雞、兔共100只,雞腳比兔腳多20只。問(wèn):雞、兔各多少只?
分析:假設(shè)100只都是雞,沒(méi)有兔,那么就有雞腳200只,而兔的腳數(shù)為零。這樣雞腳比兔腳多200只,而實(shí)際上只多20只,這說(shuō)明假設(shè)的雞腳比兔腳多的數(shù)比實(shí)際上多200——20=180(只)。
現(xiàn)在以兔換雞,每換一只,雞腳減少2只,兔腳增加4只,即雞腳比兔腳多的腳數(shù)中就會(huì)減少4+2=6(只),而180÷6=30,因此有兔子30只,雞100——30=70(只)。
解:有兔(2×100——20)÷(2+4)=30(只),小學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))
有雞100——30=70(只)。
答:有雞70只,兔30只。
例5 現(xiàn)有大、小油瓶共50個(gè),每個(gè)大瓶可裝油4千克,每個(gè)小瓶可裝油2千克,大瓶比小瓶共多裝20千克。問(wèn):大、小瓶各有多少個(gè)?
分析:本題與例4非常類似,仿照例4的解法即可。解:小瓶有(4×50-20)÷(4+2)=30(個(gè)),大瓶有50-30=20(個(gè))。
答:有大瓶20個(gè),小瓶30個(gè)。
例6 一批鋼材,用小卡車裝載要45輛,用大卡車裝載只要36輛。已知每輛大卡車比每輛小卡車多裝4噸,那么這批鋼材有多少噸?
分析:要算出這批鋼材有多少噸,需要知道每輛大卡車或小卡車能裝多少噸。
利用假設(shè)法,假設(shè)只用36輛小卡車來(lái)裝載這批鋼材,因?yàn)槊枯v大卡車比每輛小卡車多裝4噸,所以要剩下4×36=144(噸)。根據(jù)條件,要裝完這144噸鋼材還需要45-36=9(輛)小卡車。這樣每輛小卡車能裝144÷9=16(噸)。由此可求出這批鋼材有多少噸。解:4×36÷(45-36)×45=720(噸)。
答:這批鋼材有720噸。
例7 樂(lè)樂(lè)百貨商店委托搬運(yùn)站運(yùn)送500只花瓶,雙方商定每只運(yùn)費(fèi)0.24元,但如果發(fā)生損壞,那么每打破一只不僅不給運(yùn)費(fèi),而且還要賠償1.26元,結(jié)果搬運(yùn)站共得運(yùn)費(fèi)115.5元。問(wèn):搬運(yùn)過(guò)程中共打破了幾只花瓶?
分析:假設(shè)500只花瓶在搬運(yùn)過(guò)程中一只也沒(méi)有打破,那么應(yīng)得運(yùn)費(fèi)0.24×500=120(元)。實(shí)際上只得到115.5元,少得120-115.5=4.5(元)。
小學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))搬運(yùn)站每打破一只花瓶要損失0.24+1.26=1.5(元)。因此共打破花瓶4.5÷1.5=3(只)。
解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。
答:共打破3只花瓶。
例8 小樂(lè)與小喜一起跳繩,小喜先跳了2分鐘,然后兩人各跳了3分鐘,一共跳了780下。已知小喜比小樂(lè)每分鐘多跳12下,那么小喜比小樂(lè)共多跳了多少下?
分析與解:利用假設(shè)法,假設(shè)小喜的跳繩速度減少到與小樂(lè)一樣,那么兩人跳的總數(shù)減少了
12×(2+3)=60(下)。
可求出小樂(lè)每分鐘跳
(780——60)÷(2+3+3)=90(下),小樂(lè)一共跳了90×3=270(下),因此小喜比小樂(lè)共多跳
780——270×2=240(下)。練習(xí)13
1.雞、兔共有頭100個(gè),腳350只,雞、兔各有多少只?
2.學(xué)校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120個(gè)學(xué)生進(jìn)行活動(dòng)。問(wèn):象棋與跳棋各有多少副?
3.班級(jí)購(gòu)買活頁(yè)簿與日記本合計(jì)32本,花錢74元?;铐?yè)簿每本1.9元,日記本每本3.1元。問(wèn):買活頁(yè)簿、日記本各幾本?
4.龜、鶴共有100個(gè)頭,鶴腿比龜腿多20只。問(wèn):龜、鶴各幾只?
5.小蕾花40元錢買了14張賀年卡與明信片。賀年卡每張3元5角,明信片每張2元5角。問(wèn):賀年卡、明信片各買了幾張?
小學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))
6.一個(gè)工人植樹,晴天每天植樹20棵,雨天每天植樹12棵,他接連幾天共植樹112棵,平均每天植樹14棵。問(wèn):這幾天中共有幾個(gè)雨天?
7.振興小學(xué)六年級(jí)舉行數(shù)學(xué)競(jìng)賽,共有20道試題。做對(duì)一題得5分,沒(méi)做或做錯(cuò)一題都要扣3分。小建得了60分,那么他做對(duì)了幾道題?
8.有一批水果,用大筐80只可裝運(yùn)完,用小筐120只也可裝運(yùn)完。已知每只大筐比每只小筐多裝運(yùn)20千克,那么這批水果有多少千克?
9.蜘蛛有8條腿,蜻蜓有6條腿和2對(duì)翅膀,蟬有6條腿和1對(duì)翅膀?,F(xiàn)有三種小蟲共18只,有118條腿和20對(duì)翅膀。問(wèn):每種小蟲各有幾只? 10.雞、兔共有腳100只,若將雞換成兔,兔換成雞,則共有腳92只。問(wèn):雞、兔各幾只?
高冠軍,所以由(1)知乙不是數(shù)學(xué)博士。將上面的結(jié)論依次填入上表,便得到下表:
所以,甲是小畫家和歌唱家,乙是短跑健將和跳高冠軍,丙是數(shù)學(xué)博士和大作家。
例4張明、席輝和李剛在北京、上海和天津工作,他們的職業(yè)是工人、農(nóng)民和教師,已知:(1)張明不在北京工作,席輝不在上海工作;
(2)在北京工作的不是教師;
(3)在上海工作的是工人;
(4)席輝不是農(nóng)民。
問(wèn):這三人各住哪里?各是什么職業(yè)?
小學(xué)奧數(shù)基礎(chǔ)教程(四年級(jí))分析與解:與前面的例題相比,這道題的關(guān)系要復(fù)雜一些,要求我們通過(guò)推理,弄清人物、工作地點(diǎn)、職業(yè)三者之間的關(guān)系。三者的關(guān)系需要兩兩構(gòu)造三個(gè)表,即人物與地點(diǎn),人物與職業(yè),地點(diǎn)與職業(yè)三個(gè)表。
我們先將題目條件中所給出的關(guān)系用下面的表來(lái)表示,由條件(1)得到表1,由條件(4)得到表2,由條件(2)(3)得到表3。
因?yàn)楦鞅碇校啃忻苛兄荒苡幸粋€(gè)“√”,所以表(3)可填全為表(4)。
因?yàn)橄x不在上海工作,在上海工作的是工人,所以席輝不是工人,他又不是農(nóng)民,所以席輝是教師。再由表4知,教師住在天津,即席輝住在天津。至此,表1可填全為表5。
對(duì)照表5和表4,得到:張明住在上海是工人,席輝住在天津是教師,李剛住在北京是農(nóng)民。
第四篇:小學(xué)數(shù)學(xué)奧數(shù)教案
綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
小學(xué)奧數(shù)基礎(chǔ)教程
第1講 速算與巧算
(一)第2講 速算與巧算
(二)第3講 高斯求和
第4講 4,8,9整除的數(shù)的特征 第5講 棄九法
第6講 數(shù)的整除性
(二)第7講 找規(guī)律
(一)第8講 找規(guī)律
(二)第9講 數(shù)字謎
(一)第10講 數(shù)字謎
(二)第11講 歸一問(wèn)題與歸總問(wèn)題 第12講 年齡問(wèn)題
第13講 雞兔同籠問(wèn)題與假設(shè)法 第14講 盈虧問(wèn)題與比較法
(一)第15講 盈虧問(wèn)題與比較法
(二)第16講 數(shù)陣圖
(一)第17講 數(shù)陣圖
(二)第18講 數(shù)陣圖
(三)第19將 乘法原理 第20講 加法原理
(一)第21講 加法原理
(二)第22講 還原問(wèn)題
(一)第23講 還原問(wèn)題
(二)第24講 頁(yè)碼問(wèn)題 第25講 智取火柴 第26講 邏輯問(wèn)題
(一)第27講 邏輯問(wèn)題
(二)第28講 最不利原則 第29講 抽屜原理
(一)第30講 抽屜原理
(二)綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程第1講 速算與巧算
(一)計(jì)算是數(shù)學(xué)的基礎(chǔ),小學(xué)生要學(xué)好數(shù)學(xué),必須具有過(guò)硬的計(jì)算本領(lǐng)。準(zhǔn)確、快速的計(jì)算能力既是一種技巧,也是一種思維訓(xùn)練,既能提高計(jì)算效率、節(jié)省計(jì)算時(shí)間,更可以鍛煉記憶力,提高分析、判斷能力,促進(jìn)思維和智力的發(fā)展。
我們?cè)谌昙?jí)已經(jīng)講過(guò)一些四則運(yùn)算的速算與巧算的方法,本講和下一講主要介紹加法的基準(zhǔn)數(shù)法和乘法的補(bǔ)同與同補(bǔ)速算法。
例1 四年級(jí)一班第一小組有10名同學(xué),某次數(shù)學(xué)測(cè)驗(yàn)的成績(jī)(分?jǐn)?shù))如下:
86,78,77,83,91,74,92,69,84,75。
求這10名同學(xué)的總分。
分析與解:通常的做法是將這10個(gè)數(shù)直接相加,但這些數(shù)雜亂無(wú)章,直接相加既繁且易錯(cuò)。觀察這些數(shù)不難發(fā)現(xiàn),這些數(shù)雖然大小不等,但相差不大。我們可以選擇一個(gè)適當(dāng)?shù)臄?shù)作“基準(zhǔn)”,比如以“80”作基準(zhǔn),這10個(gè)數(shù)與80的差如下:
6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”號(hào)表示這個(gè)數(shù)比80小。于是得到
總和=80×10+(6-2-3+3+11-6+12-11+4-5)
=800+9=809。
實(shí)際計(jì)算時(shí)只需口算,將這些數(shù)與80的差逐一累加。為了清楚起見(jiàn),將這一過(guò)程表示如下:
通過(guò)口算,得到差數(shù)累加為9,再加上80×10,就可口算出結(jié)果為809。
例1所用的方法叫做加法的基準(zhǔn)數(shù)法。這種方法適用于加數(shù)較多,而且所有的加數(shù)相差不大的情況。作為“基準(zhǔn)”的數(shù)(如例1的80)叫做基準(zhǔn)數(shù),各數(shù)與基準(zhǔn)數(shù)的差的和叫做累計(jì)差。由例1得到:
總和數(shù)=基準(zhǔn)數(shù)×加數(shù)的個(gè)數(shù)+累計(jì)差,平均數(shù)=基準(zhǔn)數(shù)+累計(jì)差÷加數(shù)的個(gè)數(shù)。
在使用基準(zhǔn)數(shù)法時(shí),應(yīng)選取與各數(shù)的差較小的數(shù)作為基準(zhǔn)數(shù),這樣才容易計(jì)算累計(jì)差。同時(shí)考慮到基準(zhǔn)數(shù)與加數(shù)個(gè)數(shù)的乘法能夠方便地計(jì)算出來(lái),所以基準(zhǔn)數(shù)應(yīng)盡量選取整
十、整百的數(shù)。
例2 某農(nóng)場(chǎng)有10塊麥田,每塊的產(chǎn)量如下(單位:千克):
462,480,443,420,473,429,468,439,475,461。求平均每塊麥田的產(chǎn)量。解:選基準(zhǔn)數(shù)為450,則
累計(jì)差=12+30-7-30+23-21+18-11+25+11
=50,平均每塊產(chǎn)量=450+50÷10=455(千克)。
答:平均每塊麥田的產(chǎn)量為455千克。
求一位數(shù)的平方,在乘法口訣的九九表中已經(jīng)被同學(xué)們熟知,如7×7=49(七七四十九)。對(duì)于兩位數(shù)的平方,大多數(shù)同學(xué)只是背熟了10~20的平方,而21~99的平方就不大熟悉了。有沒(méi)有什么竅門,能夠迅速算出兩位數(shù)的平方呢?這里向同學(xué)們介紹一種方法——湊整補(bǔ)零法。所謂湊整補(bǔ)零法,就是用所求數(shù)與最接近的整十?dāng)?shù)的差,通過(guò)移多補(bǔ)少,將所求數(shù)轉(zhuǎn)化成一個(gè)整十?dāng)?shù)乘以另一數(shù),再加上零頭的平方數(shù)。下面通過(guò)例題來(lái)說(shuō)明這一方法。例3 求292和822的值。解:292=29×29
=(29+1)×(29-1)+12
=30×28+1
=840+1
=841。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
822=82×82
=(82-2)×(82+2)+2=80×84+4
=6720+4
=6724。
由上例看出,因?yàn)?9比30少1,所以給29“補(bǔ)”1,這叫“補(bǔ)少”;因?yàn)?2比80多2,所以從82中“移走”2,這叫“移多”。因?yàn)槭莾蓚€(gè)相同數(shù)相乘,所以對(duì)其中一個(gè)數(shù)“移多補(bǔ)少”后,還需要在另一個(gè)數(shù)上“找齊”。本例中,給一個(gè)29補(bǔ)1,就要給另一個(gè)29減1;給一個(gè)82減了2,就要給另一個(gè)82加上2。最后,還要加上“移多補(bǔ)少”的數(shù)的平方。
由湊整補(bǔ)零法計(jì)算352,得
35×35=40×30+52=1225。這與三年級(jí)學(xué)的個(gè)位數(shù)是5的數(shù)的平方的速算方法結(jié)果相同。
這種方法不僅適用于求兩位數(shù)的平方值,也適用于求三位數(shù)或更多位數(shù)的平方值。例4 求9932和20042的值。解:9932=993×993
=(993+7)×(993-7)+72
=1000×986+49
=986000+49
=986049。
20042=2004×2004
=(2004-4)×(2004+4)+42
=2000×2008+16
=4016000+16
=4016016。
下面,我們介紹一類特殊情況的乘法的速算方法。
請(qǐng)看下面的算式:
66×46,73×88,19×44。
這幾道算式具有一個(gè)共同特點(diǎn),兩個(gè)因數(shù)都是兩位數(shù),一個(gè)因數(shù)的十位數(shù)與個(gè)位數(shù)相同,另一因數(shù)的十位數(shù)與個(gè)位數(shù)之和為10。這類算式有非常簡(jiǎn)便的速算方法。例5 88×64=?
分析與解:由乘法分配律和結(jié)合律,得到
88×64
=(80+8)×(60+4)
=(80+8)×60+(80+8)×4
=80×60+8×60+80×4+8×4
=80×60+80×6+80×4+8×4
=80×(60+6+4)+8×4
=80×(60+10)+8×4
=8×(6+1)×100+8×4。
于是,我們得到下面的速算式:
由上式看出,積的末兩位數(shù)是兩個(gè)因數(shù)的個(gè)位數(shù)之積,本例為8×4;積中從百位起前面的數(shù)是“個(gè)位與十位相同的因數(shù)”的十位數(shù)與“個(gè)位與十位之和為10的因數(shù)”的十位數(shù)加1的乘積,本例為8×(6+1)。例6 77×91=?
解:由例3的解法得到 綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
由上式看出,當(dāng)兩個(gè)因數(shù)的個(gè)位數(shù)之積是一位數(shù)時(shí),應(yīng)在十位上補(bǔ)一個(gè)0,本例為7×1=07。
用這種速算法只需口算就可以方便地解答出這類兩位數(shù)的乘法計(jì)算。練習(xí)1
1.求下面10個(gè)數(shù)的總和:
165,152,168,171,148,156,169,161,157,149。
2.農(nóng)業(yè)科研小組測(cè)定麥苗的生長(zhǎng)情況,量出12株麥苗的高度分別為(單位:厘米):
26,25,25,23,27,28,26,24,29,27,27,25。求這批麥苗的平均高度。
3.某車間有9個(gè)工人加工零件,他們加工零件的個(gè)數(shù)分別為:
68,91,84,75,78,81,83,72,79。
他們共加工了多少個(gè)零件?
4.計(jì)算:
13+16+10+11+17+12+15+12+16+13+12。
5.計(jì)算下列各題:
(1)372;(2)532;(3)912;
(4)682:(5)1082;(6)3972。
6.計(jì)算下列各題:
(1)77×28;(2)66×55;(3)33×19;(4)82×44;(5)37×33;(6)46×99。
練習(xí)1 答案
1.1596。2.26厘米。
3.711個(gè)。4.147。
5.(1)1369;(2)2809;(3)8281;
(4)4624;(5)11664;(6)157609。
6.(1)2156;(2)3630;(3)627;
(4)3608;(5)1221;(6)4554。第2講 速算與巧算
(二)上一講我們介紹了一類兩位數(shù)乘法的速算方法,這一講討論乘法的“同補(bǔ)”與“補(bǔ)同”速算法。
兩個(gè)數(shù)之和等于10,則稱這兩個(gè)數(shù)互補(bǔ)。在整數(shù)乘法運(yùn)算中,常會(huì)遇到像72×78,26×86等被乘數(shù)與乘數(shù)的十位數(shù)字相同或互補(bǔ),或被乘數(shù)與乘數(shù)的個(gè)位數(shù)字相同或互補(bǔ)的情況。72×78的被乘數(shù)與乘數(shù)的十位數(shù)字相同、個(gè)位數(shù)字互補(bǔ),這類式子我們稱為“頭相同、尾互補(bǔ)”型;26×86的被乘數(shù)與乘數(shù)的十位數(shù)字互補(bǔ)、個(gè)位數(shù)字相同,這類式子我們稱為“頭互補(bǔ)、尾相同”型。計(jì)算這兩類題目,有非常簡(jiǎn)捷的速算方法,分別稱為“同補(bǔ)”速算法和“補(bǔ)同”速算法。
例1(1)76×74=?(2)31×39=?
分析與解:本例兩題都是“頭相同、尾互補(bǔ)”類型。
(1)由乘法分配律和結(jié)合律,得到 76×74 =(70+6)×(70+4)
=(70+6)×70+(70+6)×4=70×70+6×70+70×4+6×4 =70×(70+6+4)+6×4 =70×(70+10)+6×4 綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程=7×(7+1)×100+6×4。于是,我們得到下面的速算式:
(2)與(1)類似可得到下面的速算式:
由例1看出,在“頭相同、尾互補(bǔ)”的兩個(gè)兩位數(shù)乘法中,積的末兩位數(shù)是兩個(gè)因數(shù)的個(gè)位數(shù)之積(不夠兩位時(shí)前面補(bǔ)0,如1×9=09),積中從百位起前面的數(shù)是被乘數(shù)(或乘數(shù))的十位數(shù)與十位數(shù)加1的乘積?!巴a(bǔ)”速算法簡(jiǎn)單地說(shuō)就是: 積的末兩位是“尾×尾”,前面是“頭×(頭+1)”。
我們?cè)谌昙?jí)時(shí)學(xué)到的15×15,25×25,?,95×95的速算,實(shí)際上就是“同補(bǔ)”速算法。
例2(1)78×38=?(2)43×63=?
分析與解:本例兩題都是“頭互補(bǔ)、尾相同”類型。(1)由乘法分配律和結(jié)合律,得到
78×38 =(70+8)×(30+8)
=(70+8)×30+(70+8)×8 =70×30+8×30+70×8+8×8 =70×30+8×(30+70)+8×8 =7×3×100+8×100+8×8 =(7×3+8)×100+8×8。于是,我們得到下面的速算式:
(2)與(1)類似可得到下面的速算式:
由例2看出,在“頭互補(bǔ)、尾相同”的兩個(gè)兩位數(shù)乘法中,積的末兩位數(shù)是兩個(gè)因數(shù)的個(gè)位數(shù)之積(不夠兩位時(shí)前面補(bǔ)0,如3×3=09),積中從百位起前面的數(shù)是兩個(gè)因數(shù)的十位數(shù)之積加上被乘數(shù)(或乘數(shù))的個(gè)位數(shù)?!把a(bǔ)同”速算法簡(jiǎn)單地說(shuō)就是: 積的末兩位數(shù)是“尾×尾”,前面是“頭×頭+尾”。
例1和例2介紹了兩位數(shù)乘以兩位數(shù)的“同補(bǔ)”或“補(bǔ)同”形式的速算法。當(dāng)被乘數(shù)和乘數(shù)多于兩位時(shí),情況會(huì)發(fā)生什么變化呢?
我們先將互補(bǔ)的概念推廣一下。當(dāng)兩個(gè)數(shù)的和是10,100,1000,?時(shí),這兩個(gè)數(shù)互為補(bǔ)數(shù),簡(jiǎn)稱互補(bǔ)。如43與57互補(bǔ),99與1互補(bǔ),555與445互補(bǔ)。
在一個(gè)乘法算式中,當(dāng)被乘數(shù)與乘數(shù)前面的幾位數(shù)相同,后面的幾位數(shù)互補(bǔ)時(shí),這個(gè)算式就是“同補(bǔ)”型,即“頭相同,尾互補(bǔ)”型。例如,因?yàn)楸怀藬?shù)與乘數(shù)的綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程前兩位數(shù)相同,都是70,后兩位數(shù)互補(bǔ),77+23=100,所以是“同補(bǔ)”型。又如,等都是“同補(bǔ)”型。
當(dāng)被乘數(shù)與乘數(shù)前面的幾位數(shù)互補(bǔ),后面的幾位數(shù)相同時(shí),這個(gè)乘法算式就是“補(bǔ)同”型,即“頭互補(bǔ),尾相同”型。例如,等都是“補(bǔ)同”型。
在計(jì)算多位數(shù)的“同補(bǔ)”型乘法時(shí),例1的方法仍然適用。例3(1)702×708=?(2)1708×1792=? 解:(1)
(2)
計(jì)算多位數(shù)的“同補(bǔ)”型乘法時(shí),將“頭×(頭+1)”作為乘積的前幾位,將兩個(gè)互補(bǔ)數(shù)之積作為乘積的后幾位。
注意:互補(bǔ)數(shù)如果是n位數(shù),則應(yīng)占乘積的后2n位,不足的位補(bǔ)“0”。
在計(jì)算多位數(shù)的“補(bǔ)同”型乘法時(shí),如果“補(bǔ)”與“同”,即“頭”與“尾”的位數(shù)相同,那么例2的方法仍然適用(見(jiàn)例4);如果“補(bǔ)”與“同”的位數(shù)不相同,那么例2的方法不再適用,因?yàn)闆](méi)有簡(jiǎn)捷實(shí)用的方法,所以就不再討論了。例4 2865×7265=?
解:
練習(xí)2
計(jì)算下列各題:
1.68×62; 2.93×97;
3.27×87; 4.79×39;
5.42×62; 6.603×607;
7.693×607; 8.4085×6085。第3講 高斯求和
德國(guó)著名數(shù)學(xué)家高斯幼年時(shí)代聰明過(guò)人,上學(xué)時(shí),有一天老師出了一道題讓同學(xué)們計(jì)算:
1+2+3+4+?+99+100=?
老師出完題后,全班同學(xué)都在埋頭計(jì)算,小高斯卻很快算出答案等于5050。高斯為什么算得又快又準(zhǔn)呢?原來(lái)小高斯通過(guò)細(xì)心觀察發(fā)現(xiàn):
1+100=2+99=3+98=?=49+52=50+51。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
1~100正好可以分成這樣的50對(duì)數(shù),每對(duì)數(shù)的和都相等。于是,小高斯把這道題巧算為
(1+100)×100÷2=5050。
小高斯使用的這種求和方法,真是聰明極了,簡(jiǎn)單快捷,并且廣泛地適用于“等差數(shù)列”的求和問(wèn)題。
若干個(gè)數(shù)排成一列稱為數(shù)列,數(shù)列中的每一個(gè)數(shù)稱為一項(xiàng),其中第一項(xiàng)稱為首項(xiàng),最后一項(xiàng)稱為末項(xiàng)。后項(xiàng)與前項(xiàng)之差都相等的數(shù)列稱為等差數(shù)列,后項(xiàng)與前項(xiàng)之差稱為公差。例如:
(1)1,2,3,4,5,?,100;
(2)1,3,5,7,9,?,99;(3)8,15,22,29,36,?,71。
其中(1)是首項(xiàng)為1,末項(xiàng)為100,公差為1的等差數(shù)列;(2)是首項(xiàng)為1,末項(xiàng)為99,公差為2的等差數(shù)列;(3)是首項(xiàng)為8,末項(xiàng)為71,公差為7的等差數(shù)列。
由高斯的巧算方法,得到等差數(shù)列的求和公式: 和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2。例1 1+2+3+?+1999=?
分析與解:這串加數(shù)1,2,3,?,1999是等差數(shù)列,首項(xiàng)是1,末項(xiàng)是1999,共有1999個(gè)數(shù)。由等差數(shù)列求和公式可得
原式=(1+1999)×1999÷2=1999000。
注意:利用等差數(shù)列求和公式之前,一定要判斷題目中的各個(gè)加數(shù)是否構(gòu)成等差數(shù)列。例2 11+12+13+?+31=?
分析與解:這串加數(shù)11,12,13,?,31是等差數(shù)列,首項(xiàng)是11,末項(xiàng)是31,共有31-11+1=21(項(xiàng))。
原式=(11+31)×21÷2=441。
在利用等差數(shù)列求和公式時(shí),有時(shí)項(xiàng)數(shù)并不是一目了然的,這時(shí)就需要先求出項(xiàng)數(shù)。根據(jù)首項(xiàng)、末項(xiàng)、公差的關(guān)系,可以得到 項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1,末項(xiàng)=首項(xiàng)+公差×(項(xiàng)數(shù)-1)。例3 3+7+11+?+99=?
分析與解:3,7,11,?,99是公差為4的等差數(shù)列,項(xiàng)數(shù)=(99-3)÷4+1=25,原式=(3+99)×25÷2=1275。
例4 求首項(xiàng)是25,公差是3的等差數(shù)列的前40項(xiàng)的和。解:末項(xiàng)=25+3×(40-1)=142,和=(25+142)×40÷2=3340。
利用等差數(shù)列求和公式及求項(xiàng)數(shù)和末項(xiàng)的公式,可以解決各種與等差數(shù)列求和有關(guān)的問(wèn)題。例5 在下圖中,每個(gè)最小的等邊三角形的面積是12厘米2,邊長(zhǎng)是1根火柴棍。問(wèn):(1)最大三角形的面積是多少平方厘米?(2)整個(gè)圖形由多少根火柴棍擺成?
分析:最大三角形共有8層,從上往下擺時(shí),每層的小三角形數(shù)目及所用火柴數(shù)目如下表: 綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程由上表看出,各層的小三角形數(shù)成等差數(shù)列,各層的火柴數(shù)也成等差數(shù)列。
解:(1)最大三角形面積為
(1+3+5+?+15)×12 =[(1+15)×8÷2]×12 =768(厘米2)。
2)火柴棍的數(shù)目為
3+6+9+?+24 =(3+24)×8÷2=108(根)。
答:最大三角形的面積是768厘米2,整個(gè)圖形由108根火柴擺成。
例6 盒子里放有三只乒乓球,一位魔術(shù)師第一次從盒子里拿出一只球,將它變成3只球后放回盒子里;第二次又從盒子里拿出二只球,將每只球各變成3只球后放回盒子里??第十次從盒子里拿出十只球,將每只球各變成3只球后放回到盒子里。這時(shí)盒子里共有多少只乒乓球?
分析與解:一只球變成3只球,實(shí)際上多了2只球。第一次多了2只球,第二次多了2×2只球??第十次多了2×10只球。因此拿了十次后,多了
2×1+2×2+?+2×10 =2×(1+2+?+10)=2×55=110(只)。
加上原有的3只球,盒子里共有球110+3=113(只)。
綜合列式為:
(3-1)×(1+2+?+10)+3 =2×[(1+10)×10÷2]+3=113(只)。
練習(xí)3
1.計(jì)算下列各題:
(1)2+4+6+?+200;
(2)17+19+21+?+39;(3)5+8+11+14+?+50;(4)3+10+17+24+?+101。
2.求首項(xiàng)是5,末項(xiàng)是93,公差是4的等差數(shù)列的和。
3.求首項(xiàng)是13,公差是5的等差數(shù)列的前30項(xiàng)的和。
4.時(shí)鐘在每個(gè)整點(diǎn)敲打,敲打的次數(shù)等于該鐘點(diǎn)數(shù),每半點(diǎn)鐘也敲一下。問(wèn):時(shí)鐘一晝夜敲打多少次?
5.求100以內(nèi)除以3余2的所有數(shù)的和。
6.在所有的兩位數(shù)中,十位數(shù)比個(gè)位數(shù)大的數(shù)共有多少個(gè)?
第四講
我們?cè)谌昙?jí)已經(jīng)學(xué)習(xí)了能被2,3,5整除的數(shù)的特征,這一講我們將討論整除的性質(zhì),并講解能被4,8,9整除的數(shù)的特征。
數(shù)的整除具有如下性質(zhì): 綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程性質(zhì)1 如果甲數(shù)能被乙數(shù)整除,乙數(shù)能被丙數(shù)整除,那么甲數(shù)一定能被丙數(shù)整除。例如,48能被16整除,16能被8整除,那么48一定能被8整除。性質(zhì)2 如果兩個(gè)數(shù)都能被一個(gè)自然數(shù)整除,那么這兩個(gè)數(shù)的和與差也一定能被這個(gè)自然數(shù)整除。例如,21與15都能被3整除,那么21+15及21-15都能被3整除。
性質(zhì)3 如果一個(gè)數(shù)能分別被兩個(gè)互質(zhì)的自然數(shù)整除,那么這個(gè)數(shù)一定能被這兩個(gè)互質(zhì)的自然數(shù)的乘積整除。例如,126能被9整除,又能被7整除,且9與7互質(zhì),那么126能被9×7=63整除。
利用上面關(guān)于整除的性質(zhì),我們可以解決許多與整除有關(guān)的問(wèn)題。為了進(jìn)一步學(xué)習(xí)數(shù)的整除性,我們把學(xué)過(guò)的和將要學(xué)習(xí)的一些整除的數(shù)字特征列出來(lái):
(1)一個(gè)數(shù)的個(gè)位數(shù)字如果是0,2,4,6,8中的一個(gè),那么這個(gè)數(shù)就能被2整除。
(2)一個(gè)數(shù)的個(gè)位數(shù)字如果是0或5,那么這個(gè)數(shù)就能被5整除。
(3)一個(gè)數(shù)各個(gè)數(shù)位上的數(shù)字之和如果能被3整除,那么這個(gè)數(shù)就能被3整除。
(4)一個(gè)數(shù)的末兩位數(shù)如果能被4(或25)整除,那么這個(gè)數(shù)就能被4(或25)整除。
(5)一個(gè)數(shù)的末三位數(shù)如果能被8(或125)整除,那么這個(gè)數(shù)就能被8(或125)整除。
(6)一個(gè)數(shù)各個(gè)數(shù)位上的數(shù)字之和如果能被9整除,那么這個(gè)數(shù)就能被9整除。
其中(1)(2)(3)是三年級(jí)學(xué)過(guò)的內(nèi)容,(4)(5)(6)是本講要學(xué)習(xí)的內(nèi)容。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
因?yàn)?00能被4(或25)整除,所以由整除的性質(zhì)1知,整百的數(shù)都能被4(或25)整除。因?yàn)槿魏巫匀粩?shù)都能分成一個(gè)整百的數(shù)與這個(gè)數(shù)的后兩位數(shù)之和,所以由整除的性質(zhì)2知,只要這個(gè)數(shù)的后兩位數(shù)能被4(或25)整除,這個(gè)數(shù)就能被4(或25)整除。這就證明了(4)。
類似地可以證明(5)。
(6)的正確性,我們用一個(gè)具體的數(shù)來(lái)說(shuō)明一般性的證明方法。
837=800+30+7 =8×100+3×10+7 =8×(99+1)+3×(9+1)+7 =8×99+8+3×9+3+7 =(8×99+3×9)+(8+3+7)。
因?yàn)?9和9都能被9整除,所以根據(jù)整除的性質(zhì)1和性質(zhì)2知,(8x99+3x9)能被9整除。再根據(jù)整除的性質(zhì)2,由(8+3+7)能被9整除,就能判斷837能被9整除。
利用(4)(5)(6)還可以求出一個(gè)數(shù)除以4,8,9的余數(shù):(4‘)一個(gè)數(shù)除以4的余數(shù),與它的末兩位除以4的余數(shù)相同。(5')一個(gè)數(shù)除以8的余數(shù),與它的末三位除以8的余數(shù)相同。(6')一個(gè)數(shù)除以9的余數(shù),與它的各位數(shù)字之和除以9的余數(shù)相同。例1 在下面的數(shù)中,哪些能被4整除?哪些能被8整除?哪些能被9整除? 234,789,7756,8865,3728.8064。解:能被4整除的數(shù)有7756,3728,8064;
能被8整除的數(shù)有3728,8064; 能被9整除的數(shù)有234,8865,8064。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程例2 在四位數(shù)56□2中,被蓋住的十位數(shù)分別等于幾時(shí),這個(gè)四位數(shù)分別能被9,8,4整除?
解:如果56□2能被9整除,那么
5+6+□+2=13+□
應(yīng)能被9整除,所以當(dāng)十位數(shù)是5,即四位數(shù)是5652時(shí)能被9整除;
如果56□2能被8整除,那么6□2應(yīng)能被8整除,所以當(dāng)十位數(shù)是3或7,即四位數(shù)是5632或5672時(shí)能被8整除;
如果56□2能被4整除,那么□2應(yīng)能被4整除,所以當(dāng)十位數(shù)是1,3,5,7,9,即四位數(shù)是5612,5632,5652,5672,5692時(shí)能被4整除。
到現(xiàn)在為止,我們已經(jīng)學(xué)過(guò)能被2,3,5,4,8,9整除的數(shù)的特征。根據(jù)整除的性質(zhì)3,我們可以把判斷整除的范圍進(jìn)一步擴(kuò)大。例如,判斷一個(gè)數(shù)能否被6整除,因?yàn)?=2×3,2與3互質(zhì),所以如果這個(gè)數(shù)既能被2整除又能被3整除,那么根據(jù)整除的性質(zhì)3,可判定這個(gè)數(shù)能被6整除。同理,判斷一個(gè)數(shù)能否被12整除,只需判斷這個(gè)數(shù)能否同時(shí)被3和4整除;判斷一個(gè)數(shù)能否被72整除,只需判斷這個(gè)數(shù)能否同時(shí)被8和9整除;如此等等。
例3 從0,2,5,7四個(gè)數(shù)字中任選三個(gè),組成能同時(shí)被2,5,3整除的數(shù),并將這些數(shù)從小到大進(jìn)行排列。
解:因?yàn)榻M成的三位數(shù)能同時(shí)被2,5整除,所以個(gè)位數(shù)字為0。根據(jù)三位數(shù)能被3整除的特征,數(shù)字和2+7+0與5+7+0都能被3整除,因此所求的這些數(shù)為270,570,720,750。例4 五位數(shù)分析與解:已知以能被72整除,問(wèn):A與B各代表什么數(shù)字?
能被72整除。因?yàn)?2=8×9,8和9是互質(zhì)數(shù),所既能被8整除,又能被9整除。根據(jù)能被8整除的數(shù)的特征,要求綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程能被8整除,由此可確定B=6。再根據(jù)能被9整除的數(shù)的特征,的各位數(shù)字之和為
A+3+2+9+B=A+3-f-2+9+6=A+20,因?yàn)閘≤A≤9,所以21≤A+20≤29。在這個(gè)范圍內(nèi)只有27能被9整除,所以A=7。
解答例4的關(guān)鍵是把72分解成8×9,再分別根據(jù)能被8和9整除的數(shù)的特征去討論B和A所代表的數(shù)字。在解題順序上,應(yīng)先確定B所代表的數(shù)字,因?yàn)锽代表的數(shù)字不受A的取值大小的影響,一旦B代表的數(shù)字確定下來(lái),A所代表的數(shù)字就容易確定了。例5 六位數(shù)是6的倍數(shù),這樣的六位數(shù)有多少個(gè)?
分析與解:因?yàn)?=2×3,且2與3互質(zhì),所以這個(gè)整數(shù)既能被2整除又能被3整除。由六位數(shù)能被2整除,推知A可取0,2,4,6,8這五個(gè)值。再由六位數(shù)能被3整除,推知 3+A+B+A+B+A=3+3A+2B
能被3整除,故2B能被3整除。B可取0,3,6,9這4個(gè)值。由于B可以取4個(gè)值,A可以取5個(gè)值,題目沒(méi)有要求A≠B,所以符合條件的六位數(shù)共有5×4=20(個(gè))。例6 要使六位數(shù)表什么數(shù)字?
分析與解:因?yàn)?6=4×9,且4與9互質(zhì),所以這個(gè)六位數(shù)應(yīng)既能被4整除又能被9整除。六位數(shù)此C可取1,3,5,7,9。
要使所得的商最小,就要使
這個(gè)六位數(shù)盡可能小。因此首先是A的能被4整除,就要
能被4整除,因
能被36整除,而且所得的商最小,問(wèn)A,B,C各代盡量小,其次是B盡量小,最后是C盡量小。先試取A=0。六位數(shù)綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程各位數(shù)字之和為12+B+C。它應(yīng)能被9整除,因此B+C=6或B+C=15。因?yàn)锽,C應(yīng)盡量小,所以B+C=6,而C只能取1,3,5,7,9,所以要使盡可能小,應(yīng)取B=1,C=5。
當(dāng)A=0,B=1,C=5時(shí),六位數(shù)能被36整除,而且所得商最小,為150156÷36=4171。練習(xí)4
1.6539724能被4,8,9,24,36,72中的哪幾個(gè)數(shù)整除?
2.個(gè)位數(shù)是5,且能被9整除的三位數(shù)共有多少個(gè)?
3.一些四位數(shù),百位上的數(shù)字都是3,十位上的數(shù)字都是6,并且它們既能被2整除又能被3整除。在這樣的四位數(shù)中,最大的和最小的各是多少?
4.五位數(shù)能被12整除,求這個(gè)五位數(shù)。
5.有一個(gè)能被24整除的四位數(shù)□23□,這個(gè)四位數(shù)最大是幾?最小是幾?
6.從0,2,3,6,7這五個(gè)數(shù)碼中選出四個(gè),可以組成多少個(gè)可以被8整除的沒(méi)有重復(fù)數(shù)字的四位數(shù)?
7.在123的左右各添一個(gè)數(shù)碼,使得到的五位數(shù)能被72整除。
8.學(xué)校買了72只小足球,發(fā)票上的總價(jià)有兩個(gè)數(shù)字已經(jīng)辨認(rèn)不清,只看到是□67.9□元,你知道每只小足球多少錢嗎? 第5講 棄九法
從第4講知道,如果一個(gè)數(shù)的各個(gè)數(shù)位上的數(shù)字之和能被9整除,那么這個(gè)數(shù)能被9整除;如果一個(gè)數(shù)各個(gè)數(shù)位上的數(shù)字之和被9除余數(shù)是幾,那么這個(gè)數(shù)被9除的余數(shù)也一定是幾。利用這個(gè)性質(zhì)可以迅速地判斷一個(gè)數(shù)能否被9整除或者求出被9除的余數(shù)是幾。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
例如,3645732這個(gè)數(shù),各個(gè)數(shù)位上的數(shù)字之和為
3+6+4+5+7+3+2=30,30被9除余3,所以3645732這個(gè)數(shù)不能被9整除,且被9除后余數(shù)為3。
但是,當(dāng)一個(gè)數(shù)的數(shù)位較多時(shí),這種計(jì)算麻煩且易錯(cuò)。有沒(méi)有更簡(jiǎn)便的方法呢?
因?yàn)槲覀冎皇桥袛噙@個(gè)式子被9除的余數(shù),所以凡是若干個(gè)數(shù)的和是9時(shí),就把這些數(shù)劃掉,如3+6=9,4+5=9,7+2=9,把這些數(shù)劃掉后,最多只剩下一個(gè)3(如下圖),所以這個(gè)數(shù)除以9的余數(shù)是3。
這種將和為9或9的倍數(shù)的數(shù)字劃掉,用剩下的數(shù)字和求除以9的余數(shù)的方法,叫做棄九法。
一個(gè)數(shù)被9除的余數(shù)叫做這個(gè)數(shù)的九余數(shù)。利用棄九法可以計(jì)算一個(gè)數(shù)的九余數(shù),還可以檢驗(yàn)四則運(yùn)算的正確性。例1 求多位數(shù)764582***15除以9的余數(shù)。分析與解:利用棄九法,將和為9的數(shù)依次劃掉。
只剩下7,6,1,5四個(gè)數(shù),這時(shí)口算一下即可??谒阒?,6,5的和是9的倍數(shù),又可劃掉,只剩下1。所以這個(gè)多位數(shù)除以9余1。例2 將自然數(shù)1,2,3,?依次無(wú)間隔地寫下去組成一個(gè)數(shù)***3?如果一直寫到自然數(shù)100,那么所得的數(shù)除以9的余數(shù)是多少? 綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程分析與解:因?yàn)檫@個(gè)數(shù)太大,全部寫出來(lái)很麻煩,在使用棄九法時(shí)不能逐個(gè)劃掉和為9或9的倍數(shù)的數(shù),所以要配合適當(dāng)?shù)姆治?。我們已?jīng)熟知
1+2+3+?+9=45,而45是9的倍數(shù),所以每一組1,2,3,?,9都可以劃掉。在1~99這九十九個(gè)數(shù)中,個(gè)位數(shù)有十組1,2,3,?,9,都可劃掉;十位數(shù)也有十組1,2,3,?,9,也都劃掉。這樣在這個(gè)大數(shù)中,除了0以外,只剩下最后的100中的數(shù)字1。所以這個(gè)數(shù)除以9余1。
在上面的解法中,并沒(méi)有計(jì)算出這個(gè)數(shù)各個(gè)數(shù)位上的數(shù)字和,而是利用棄九法分析求解。本題還有其它簡(jiǎn)捷的解法。因?yàn)橐粋€(gè)數(shù)與它的各個(gè)數(shù)位上的數(shù)字之和除以9的余數(shù)相同,所以題中這個(gè)數(shù)各個(gè)數(shù)位上的數(shù)字之和,與1+2+?+100除以9的余數(shù)相同。
利用高斯求和法,知此和是5050。因?yàn)?050的數(shù)字和為5+0+5+0=10,利用棄九法,棄去一個(gè)9余1,故5050除以9余1。因此題中的數(shù)除以9余1。
例3 檢驗(yàn)下面的加法算式是否正確:
2638457+3521983+6745785=12907225。
分析與解:若干個(gè)加數(shù)的九余數(shù)相加,所得和的九余數(shù)應(yīng)當(dāng)?shù)扔谶@些加數(shù)的和的九余數(shù)。如果不等,那么這個(gè)加法算式肯定不正確。上式中,三個(gè)加數(shù)的九余數(shù)依次為8,4,6,8+4+6的九余數(shù)為0;和的九余數(shù)為1。因?yàn)?≠1,所以這個(gè)算式不正確。例4 檢驗(yàn)下面的減法算式是否正確:
7832145-2167953=5664192。
分析與解:被減數(shù)的九余數(shù)減去減數(shù)的九余數(shù)(若不夠減,可在被減數(shù)的九余數(shù)上加9,然后再減)應(yīng)當(dāng)?shù)扔诓畹木庞鄶?shù)。如果不等,那么這個(gè)減綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程法計(jì)算肯定不正確。上式中被減數(shù)的九余數(shù)是3,減數(shù)的九余數(shù)是6,由(9+3)-6=6知,原題等號(hào)左邊的九余數(shù)是6。等號(hào)右邊的九余數(shù)也是6。因?yàn)?=6,所以這個(gè)減法運(yùn)算可能正確。
值得注意的是,這里我們用的是“可能正確”。利用棄九法檢驗(yàn)加法、減法、乘法(見(jiàn)例5)運(yùn)算的結(jié)果是否正確時(shí),如果等號(hào)兩邊的九余數(shù)不相等,那么這個(gè)算式肯定不正確;如果等號(hào)兩邊的九余數(shù)相等,那么還不能確定算式是否正確,因?yàn)榫庞鄶?shù)只有0,1,2,?,8九種情況,不同的數(shù)可能有相同的九余數(shù)。所以用棄九法檢驗(yàn)運(yùn)算的正確性,只是一種粗略的檢驗(yàn)。
例5 檢驗(yàn)下面的乘法算式是否正確:
46876×9537=447156412。
分析與解:兩個(gè)因數(shù)的九余數(shù)相乘,所得的數(shù)的九余數(shù)應(yīng)當(dāng)?shù)扔趦蓚€(gè)因數(shù)的乘積的九余數(shù)。如果不等,那么這個(gè)乘法計(jì)算肯定不正確。上式中,被乘數(shù)的九余數(shù)是4,乘數(shù)的九余數(shù)是6,4×6=24,24的九余數(shù)是6。乘積的九余數(shù)是7。6≠7,所以這個(gè)算式不正確。
說(shuō)明:因?yàn)槌ㄊ浅朔ǖ哪孢\(yùn)算,被除數(shù)=除數(shù)×商+余數(shù),所以當(dāng)余數(shù)為零時(shí),利用棄九法驗(yàn)算除法可化為用棄九法去驗(yàn)算乘法。例如,檢驗(yàn)383801÷253=1517的正確性,只需檢驗(yàn)1517×253=383801的正確性。練習(xí)5
1.求下列各數(shù)除以9的余數(shù):
(1)7468251;(2)36298745;
(3)2657348;(4)6678254193。
2.求下列各式除以9的余數(shù):
(1)67235+82564;(2)97256-47823; 綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
(3)2783×6451;(4)3477+265×841。
3.用棄九法檢驗(yàn)下列各題計(jì)算的正確性:
(1)228×222=50616;
(2)334×336=112224;
(3)23372428÷6236=3748;
(4)12345÷6789=83810105。
4.有一個(gè)2000位的數(shù)A能被9整除,數(shù)A的各個(gè)數(shù)位上的數(shù)字之和是B,數(shù)B的各個(gè)數(shù)位上的數(shù)字之和是C,數(shù)C的各個(gè)數(shù)位上的數(shù)字之和是D。求D。
第6講 數(shù)的整除性
(二)這一講主要講能被11整除的數(shù)的特征。
一個(gè)數(shù)從右邊數(shù)起,第1,3,5,?位稱為奇數(shù)位,第2,4,6,?位稱為偶數(shù)位。也就是說(shuō),個(gè)位、百位、萬(wàn)位??是奇數(shù)位,十位、千位、十萬(wàn)位??是偶數(shù)位。例如9位數(shù)768325419中,奇數(shù)位與偶數(shù)位如下圖所示:
能被11整除的數(shù)的特征:一個(gè)數(shù)的奇數(shù)位上的數(shù)字之和與偶數(shù)位上的數(shù)字之和的差(大數(shù)減小數(shù))如果能被11整除,那么這個(gè)數(shù)就能被11整除。例1 判斷七位數(shù)1839673能否被11整除。
分析與解:奇數(shù)位上的數(shù)字之和為1+3+6+3=13,偶數(shù)位上的數(shù)字之和為8+9+7=24,因?yàn)?4-13=11能被11整除,所以1839673能被11整除。
根據(jù)能被11整除的數(shù)的特征,也能求出一個(gè)數(shù)除以11的余數(shù)。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
一個(gè)數(shù)除以11的余數(shù),與它的奇數(shù)位上的數(shù)字之和減去偶數(shù)位上的數(shù)字之和所得的差除以11的余數(shù)相同。如果奇數(shù)位上的數(shù)字之和小于偶數(shù)位上的數(shù)字之和,那么應(yīng)在奇數(shù)位上的數(shù)字之和上再增加11的整數(shù)倍,使其大于偶數(shù)位上的數(shù)字之和。例2 求下列各數(shù)除以11的余數(shù):
(1)41873;(2)296738185。
分析與解:(1)[(4+8+3)-(1+7)]÷11
=7÷11=0??7,所以41873除以11的余數(shù)是7。
(2)奇數(shù)位之和為2+6+3+1+5=17,偶數(shù)位之和為9+7+8+8=32。因?yàn)?7<32,所以應(yīng)給17增加11的整數(shù)倍,使其大于32。
(17+11×2)-32=7,所以296738185除以11的余數(shù)是7。
需要說(shuō)明的是,當(dāng)奇數(shù)位數(shù)字之和遠(yuǎn)遠(yuǎn)小于偶數(shù)位數(shù)字之和時(shí),為了計(jì)算方便,也可以用偶數(shù)位數(shù)字之和減去奇數(shù)位數(shù)字之和,再除以11,所得余數(shù)與11的差即為所求。如上題(2)中,(32-17)÷11=1??4,所求余數(shù)是11-4=7。例3 求除以11的余數(shù)。
分析與解:奇數(shù)位是101個(gè)1,偶數(shù)位是100個(gè)9。
(9×100-1×101)÷11
=799÷11=72??7,11-7=4,所求余數(shù)是4。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
例3還有其它簡(jiǎn)捷解法,例如每個(gè)“19”奇偶數(shù)位上的數(shù)字相差9-1=8,奇數(shù)位上的數(shù)字和與偶數(shù)位上的數(shù)字和相差8×99=8×9×11,能被11整除。所以例3相當(dāng)于求最后三位數(shù)191除以11的余數(shù)。例4 用3,3,7,7四個(gè)數(shù)碼能排出哪些能被11整除的四位數(shù)? 解:只要奇數(shù)位和偶數(shù)位上各有一個(gè)3和一個(gè)7即可。有3377,3773,7337,7733。
例5 用1~9九個(gè)數(shù)碼組成能被11整除的沒(méi)有重復(fù)數(shù)字的最大九位數(shù)。分析與解:最大的沒(méi)有重復(fù)數(shù)字的九位數(shù)是987654321,由
(9+7+5+3+1)-(8+6+4+2)=5
知,987654321不能被11整除。為了保證這個(gè)數(shù)盡可能大,我們盡量調(diào)整低位數(shù)字,只要使奇數(shù)位的數(shù)字和增加3(偶數(shù)位的數(shù)字和自然就減少3),奇數(shù)位的數(shù)字之和與偶數(shù)位的數(shù)字之和的差就變?yōu)?+3×2=11,這個(gè)數(shù)就能被11整除。調(diào)整“4321”,只要4調(diào)到奇數(shù)位,1調(diào)到偶數(shù)位,奇數(shù)位就比原來(lái)增大3,就可達(dá)到目的。此時(shí),4,3在奇數(shù)位,2,1在偶數(shù)位,后四位最大是2413。所求數(shù)為987652413。例6 六位數(shù)能被99整除,求A和B。
分析與解:由99=9×11,且9與11互質(zhì),所以六位數(shù)既能被9整除又能被11整除。因?yàn)榱粩?shù)能被9整除,所以
A+2+8+7+5+B
=22+A+B
應(yīng)能被9整除,由此推知A+B=5或14。又因?yàn)榱粩?shù)能被11整除,所以
(A+8+5)-(2+7+B)綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
=A-B+4
應(yīng)能被11整除,即
A-B+4=0或A-B+4=11。
化簡(jiǎn)得B-A=4或A-B=7。
因?yàn)锳+B與A-B同奇同偶,所以有
在(1)中,A≤5與A≥7不能同時(shí)滿足,所以無(wú)解。
在(2)中,上、下兩式相加,得
(B+A)+(B-A)=14+4,2B=18,B=9。
將B=9代入A+B=14,得A=5。
所以,A=5,B=9。
練習(xí)6
1.為使五位數(shù)6□295能被11整除,□內(nèi)應(yīng)當(dāng)填幾?
2.用1,2,3,4四個(gè)數(shù)碼能排出哪些能被11整除的沒(méi)有重復(fù)數(shù)字的四位數(shù)?
3.求能被11整除的最大的沒(méi)有重復(fù)數(shù)字的五位數(shù)。
4.求下列各數(shù)除以11的余數(shù):
(1)2485;(2)63582;(3)987654321。
5.求
6.六位數(shù)除以11的余數(shù)。
5A634B能被33整除,求A+B。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
7.七位數(shù)3A8629B是88的倍數(shù),求A和B。
第7講 找規(guī)律
(一)我們?cè)谌昙?jí)已經(jīng)見(jiàn)過(guò)“找規(guī)律”這個(gè)題目,學(xué)習(xí)了如何發(fā)現(xiàn)圖形、數(shù)表和數(shù)列的變化規(guī)律。這一講重點(diǎn)學(xué)習(xí)具有“周期性”變化規(guī)律的問(wèn)題。什么是周期性變化規(guī)律呢?比如,一年有春夏秋冬四季,百花盛開(kāi)的春季過(guò)后就是夏天,赤日炎炎的夏季過(guò)后就是秋天,果實(shí)累累的秋季過(guò)后就是冬天,白雪皚皚的冬季過(guò)后又到了春天。年復(fù)一年,總是按照春、夏、秋、冬四季變化,這就是周期性變化規(guī)律。再比如,數(shù)列0,1,2,0,1,2,0,1,2,0,?是按照0,1,2三個(gè)數(shù)重復(fù)出現(xiàn)的,這也是周期性變化問(wèn)題。
下面,我們通過(guò)一些例題作進(jìn)一步講解。
例1 節(jié)日的夜景真漂亮,街上的彩燈按照5盞紅燈、再接4盞藍(lán)燈、再接3盞黃燈,然后又是5盞紅燈、4盞藍(lán)燈、3盞黃燈、??這樣排下去。問(wèn):
(1)第100盞燈是什么顏色?
(2)前150盞彩燈中有多少盞藍(lán)燈?
分析與解:這是一個(gè)周期變化問(wèn)題。彩燈按照5紅、4藍(lán)、3黃,每12盞燈一個(gè)周期循環(huán)出現(xiàn)。
(1)100÷12=8??4,所以第100盞燈是第9個(gè)周期的第4盞燈,是紅燈。
(2)150÷12=12??6,前150盞燈共有12個(gè)周期零6盞燈,12個(gè)周期中有藍(lán)燈4×12=48(盞),最后的6盞燈中有1盞藍(lán)燈,所以共有藍(lán)燈48+1=49(盞)。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程例2 有一串?dāng)?shù),任何相鄰的四個(gè)數(shù)之和都等于25。已知第1個(gè)數(shù)是3,第6個(gè)數(shù)是6,第11個(gè)數(shù)是7。問(wèn):這串?dāng)?shù)中第24個(gè)數(shù)是幾?前77個(gè)數(shù)的和是多少?
分析與解:因?yàn)榈?,2,3,4個(gè)數(shù)的和等于第2,3,4,5個(gè)數(shù)的和,所以第1個(gè)數(shù)與第5個(gè)數(shù)相同。進(jìn)一步可推知,第1,5,9,13,?個(gè)數(shù)都相同。
同理,第2,6,10,14,?個(gè)數(shù)都相同,第3,7,11,15,?個(gè)數(shù)都相同,第4,8,12,16?個(gè)數(shù)都相同。
也就是說(shuō),這串?dāng)?shù)是按照每四個(gè)數(shù)為一個(gè)周期循環(huán)出現(xiàn)的。所以,第2個(gè)數(shù)等于第6個(gè)數(shù),是6;第3個(gè)數(shù)等于第11個(gè)數(shù),是7。前三個(gè)數(shù)依次是3,6,7,第四個(gè)數(shù)是
25-(3+6+7)=9。
這串?dāng)?shù)按照3,6,7,9的順序循環(huán)出現(xiàn)。第24個(gè)數(shù)與第4個(gè)數(shù)相同,是9。由77÷4=9??1知,前77個(gè)數(shù)是19個(gè)周期零1個(gè)數(shù),其和為25×19+3=478。
例3 下面這串?dāng)?shù)的規(guī)律是:從第3個(gè)數(shù)起,每個(gè)數(shù)都是它前面兩個(gè)數(shù)之和的個(gè)位數(shù)。問(wèn):這串?dāng)?shù)中第88個(gè)數(shù)是幾?
628088640448?
分析與解:這串?dāng)?shù)看起來(lái)沒(méi)有什么規(guī)律,但是如果其中有兩個(gè)相鄰數(shù)字與前面的某兩個(gè)相鄰數(shù)字相同,那么根據(jù)這串?dāng)?shù)的構(gòu)成規(guī)律,這兩個(gè)相鄰數(shù)字后面的數(shù)字必然與前面那兩個(gè)相鄰數(shù)字后面的數(shù)字相同,也就是說(shuō)將出現(xiàn)周期性變化。我們?cè)囍鴮⑦@串?dāng)?shù)再多寫出幾位:
綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
當(dāng)寫出第21,22位(豎線右面的兩位)時(shí)就會(huì)發(fā)現(xiàn),它們與第1,2位數(shù)相同,所以這串?dāng)?shù)按每20個(gè)數(shù)一個(gè)周期循環(huán)出現(xiàn)。由88÷20=4??8知,第88個(gè)數(shù)與第8個(gè)數(shù)相同,所以第88個(gè)數(shù)是4。
從例3看出,周期性規(guī)律有時(shí)并不明顯,要找到它還真得動(dòng)點(diǎn)腦筋。例4 在下面的一串?dāng)?shù)中,從第五個(gè)數(shù)起,每個(gè)數(shù)都是它前面四個(gè)數(shù)之和的個(gè)位數(shù)字。那么在這串?dāng)?shù)中,能否出現(xiàn)相鄰的四個(gè)數(shù)是“2000”?
***7134?
分析與解:無(wú)休止地將這串?dāng)?shù)寫下去,顯然不是聰明的做法。按照例3的方法找到一周期,因?yàn)檫@個(gè)周期很長(zhǎng),所以也不是好方法。那么怎么辦呢?仔細(xì)觀察會(huì)發(fā)現(xiàn),這串?dāng)?shù)的前四個(gè)數(shù)都是奇數(shù),按照“每個(gè)數(shù)都是它前面四個(gè)數(shù)之和的個(gè)位數(shù)字”,如果不看具體數(shù),只看數(shù)的奇偶性,那么將這串?dāng)?shù)依次寫出來(lái),得到
奇奇奇奇偶奇奇奇奇偶奇??
可以看出,這串?dāng)?shù)是按照四個(gè)奇數(shù)一個(gè)偶數(shù)的規(guī)律循環(huán)出現(xiàn)的,永遠(yuǎn)不會(huì)出現(xiàn)四個(gè)偶數(shù)連在一起的情況,即不會(huì)出現(xiàn)“2000”。
例5 A,B,C,D四個(gè)盒子中依次放有8,6,3,1個(gè)球。第1個(gè)小朋友找到放球最少的盒子,然后從其它盒子中各取一個(gè)球放入這個(gè)盒子;第2個(gè)小朋友也找到放球最少的盒子,然后也從其它盒子中各取一個(gè)球放入這個(gè)盒子??當(dāng)100位小朋友放完后,A,B,C,D四個(gè)盒子中各放有幾個(gè)球? 分析與解:按照題意,前六位小朋友放過(guò)后,A,B,C,D四個(gè)盒子中的球數(shù)如下表: 綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
可以看出,第6人放過(guò)后與第2人放過(guò)后四個(gè)盒子中球的情況相同,所以從第2人放過(guò)后,每經(jīng)過(guò)4人,四個(gè)盒子中球的情況重復(fù)出現(xiàn)一次。
(100-1)÷4=24??3,所以第100次后的情況與第4次(3+1=4)后的情況相同,A,B,C,D盒中依次有4,6,3,5個(gè)球。
練習(xí)7
1.有一串很長(zhǎng)的珠子,它是按照5顆紅珠、3顆白珠、4顆黃珠、2顆綠珠的順序重復(fù)排列的。問(wèn):第100顆珠子是什么顏色?前200顆珠子中有多少顆紅珠?
2.將1,2,3,4,?除以3的余數(shù)依次排列起來(lái),得到一個(gè)數(shù)列。求這個(gè)數(shù)列前100個(gè)數(shù)的和。
3.有一串?dāng)?shù),前兩個(gè)數(shù)是9和7,從第三個(gè)數(shù)起,每個(gè)數(shù)是它前面兩個(gè)數(shù)乘積的個(gè)位數(shù)。這串?dāng)?shù)中第100個(gè)數(shù)是幾?前100個(gè)數(shù)之和是多少?
4.有一列數(shù),第一個(gè)數(shù)是6,以后每一個(gè)數(shù)都是它前面一個(gè)數(shù)與7的和的個(gè)位數(shù)。這列數(shù)中第88個(gè)數(shù)是幾?
5.小明按1~3報(bào)數(shù),小紅按1~4報(bào)數(shù)。兩人以同樣的速度同時(shí)開(kāi)始報(bào)數(shù),當(dāng)兩人都報(bào)了100個(gè)數(shù)時(shí),有多少次兩人報(bào)的數(shù)相同?
6.A,B,C,D四個(gè)盒子中依次放有9,6,3,0個(gè)小球。第1個(gè)小朋友找到放球最多的盒子,從中拿出3個(gè)球放到其它盒子中各1個(gè)球;第2綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程個(gè)小朋友也找到放球最多的盒子,也從中拿出3個(gè)球放到其它盒子中各1個(gè)球??當(dāng)100個(gè)小朋友放完后,A,B,C,D四個(gè)盒子中各放有幾個(gè)球?
第8講 找規(guī)律
(二)整數(shù)a與它本身的乘積,即a×a叫做這個(gè)數(shù)的平方,記作a2,即a2=a×a;同樣,三個(gè)a的乘積叫做a的三次方,記作a3,即a3=a×a×a。一般地,n個(gè)a相乘,叫做a的n次方,記作an,即
本講主要講an的個(gè)位數(shù)的變化規(guī)律,以及an除以某數(shù)所得余數(shù)的變化規(guī)律。
因?yàn)榉e的個(gè)位數(shù)只與被乘數(shù)的個(gè)位數(shù)和乘數(shù)的個(gè)位數(shù)有關(guān),所以an的個(gè)位數(shù)只與a的個(gè)位數(shù)有關(guān),而a的個(gè)位數(shù)只有0,1,2,?,9共十種情況,故我們只需討論這十種情況。
為了找出一個(gè)整數(shù)a自乘n次后,乘積的個(gè)位數(shù)字的變化規(guī)律,我們列出下頁(yè)的表格,看看a,a2,a3,a4,?的個(gè)位數(shù)字各是什么。
從表看出,an的個(gè)位數(shù)字的變化規(guī)律可分為三類:
(1)當(dāng)a的個(gè)位數(shù)是0,1,5,6時(shí),an的個(gè)位數(shù)仍然是0,1,5,6。
(2)當(dāng)a的個(gè)位數(shù)是4,9時(shí),隨著n的增大,an的個(gè)位數(shù)按每?jī)蓚€(gè)數(shù)為一周期循環(huán)出現(xiàn)。其中a的個(gè)位數(shù)是4時(shí),按4,6的順序循環(huán)出現(xiàn);a的個(gè)位數(shù)是9時(shí),按9,1的順序循環(huán)出現(xiàn)。
(3)當(dāng)a的個(gè)位數(shù)是2,3,7,8時(shí),隨著n的增大,an的個(gè)位數(shù)按每四個(gè)數(shù)為一周期循環(huán)出現(xiàn)。其中a的個(gè)位數(shù)是2時(shí),按2,4,8,6的順序循環(huán)出現(xiàn);a的個(gè)位數(shù)是3時(shí),按3,9,7,1的順序循環(huán)出現(xiàn);當(dāng)a的綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程個(gè)位數(shù)是7時(shí),按7,9,3,1的順序循環(huán)出現(xiàn);當(dāng)a的個(gè)位數(shù)是8時(shí),按8,4,2,6的順序循環(huán)出現(xiàn)。
例1 求67999的個(gè)位數(shù)字。
分析與解:因?yàn)?7的個(gè)位數(shù)是7,所以67n的個(gè)位數(shù)隨著n的增大,按7,9,3,1四個(gè)數(shù)的順序循環(huán)出現(xiàn)。
999÷4=249??3,所以67999的個(gè)位數(shù)字與73的個(gè)位數(shù)字相同,即67999的個(gè)位數(shù)字是3。例2 求291+3291的個(gè)位數(shù)字。
分析與解:因?yàn)?n的個(gè)位數(shù)字按2,4,8,6四個(gè)數(shù)的順序循環(huán)出現(xiàn),91÷4=22??3,所以,291的個(gè)位數(shù)字與23的個(gè)位數(shù)字相同,等于8。
類似地,3n的個(gè)位數(shù)字按3,9,7,1四個(gè)數(shù)的順序循環(huán)出現(xiàn),291÷4=72??3,所以3291與33的個(gè)位數(shù)相同,等于7。
最后得到291+3291的個(gè)位數(shù)字與8+7的個(gè)位數(shù)字相同,等于5。例3 求28128-2929的個(gè)位數(shù)字。
解:由128÷4=32知,28128的個(gè)位數(shù)與84的個(gè)位數(shù)相同,等于6。由29÷2=14??1知,2929的個(gè)位數(shù)與91的個(gè)位數(shù)相同,等于9。因?yàn)?<9,在減法中需向十位借位,所以所求個(gè)位數(shù)字為16-9=7。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程例4 求下列各除法運(yùn)算所得的余數(shù):
(1)7855÷5;
(2)555÷3。
分析與解:(1)由55÷4=13??3知,7855的個(gè)位數(shù)與83的個(gè)位數(shù)相同,等于2,所以7855可分解為10×a+2。因?yàn)?0×a能被5整除,所以7855除以5的余數(shù)是2。
(2)因?yàn)閍÷3的余數(shù)不僅僅與a的個(gè)位數(shù)有關(guān),所以不能用求555的個(gè)位數(shù)的方法求解。為了尋找5n÷3的余數(shù)的規(guī)律,先將5的各次方除以3的余數(shù)列表如下:
注意:表中除以3的余數(shù)并不需要計(jì)算出5n,然后再除以3去求,而是用上次的余數(shù)乘以5后,再除以3去求。比如,52除以3的余數(shù)是1,53除以3的余數(shù)與1×5=5除以3的余數(shù)相同。這是因?yàn)?2=3×8+1,其中3×8能被3整除,而
53=(3×8+1)×5=(3×8)×5+1×5,(3×8)×5能被3整除,所以53除以3的余數(shù)與1×5除以3的余數(shù)相同。
由上表看出,5n除以3的余數(shù),隨著n的增大,按2,1的順序循環(huán)出現(xiàn)。由55÷2=27??1知,555÷3的余數(shù)與51÷3的余數(shù)相同,等于2。例5 某種細(xì)菌每小時(shí)分裂一次,每次1個(gè)細(xì)茵分裂成3個(gè)細(xì)菌。20時(shí)后,將這些細(xì)菌每7個(gè)分為一組,還剩下幾個(gè)細(xì)菌?
分析與解:1時(shí)后有1×3=31(個(gè))細(xì)菌,2時(shí)后有31×3=32(個(gè))細(xì)菌??20時(shí)后,有320個(gè)細(xì)菌,所以本題相當(dāng)于“求320÷7的余數(shù)”。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
由例4(2)的方法,將3的各次方除以7的余數(shù)列表如下:
由上表看出,3n÷7的余數(shù)以六個(gè)數(shù)為周期循環(huán)出現(xiàn)。由20÷6=3??2知,320÷7的余數(shù)與32÷7的余數(shù)相同,等于2。所以最后還剩2個(gè)細(xì)菌。
最后再說(shuō)明一點(diǎn),an÷b所得余數(shù),隨著n的增大,必然會(huì)出現(xiàn)周期性變化規(guī)律,因?yàn)樗糜鄶?shù)必然小于b,所以在b個(gè)數(shù)以內(nèi)必會(huì)重復(fù)出現(xiàn)。
練習(xí)8
1.求下列各數(shù)的個(gè)位數(shù)字:
(1)3838;(2)2930;
(3)6431;(4)17215。2.求下列各式運(yùn)算結(jié)果的個(gè)位數(shù)字:(1)9222+5731;(2)615+487+349;(3)469-6211;(4)37×48+59×610。3.求下列各除法算式所得的余數(shù):(1)5100÷4;(2)8111÷6;(3)488÷7 第9講 數(shù)字謎
(一)我們?cè)谌昙?jí)已經(jīng)學(xué)習(xí)過(guò)一些簡(jiǎn)單的數(shù)字謎問(wèn)題。這兩講除了復(fù)習(xí)鞏固學(xué)過(guò)的知識(shí)外,還要學(xué)習(xí)一些新的內(nèi)容。
例1 在下面算式等號(hào)左邊合適的地方添上括號(hào),使等式成立:
5+7×8+12÷4-2=20。
分析:等式右邊是20,而等式左邊算式中的7×8所得的積比20大得多。因此必須設(shè)法使這個(gè)積縮小一定的倍數(shù),化大為小。
從整個(gè)算式來(lái)看,7×8是4的倍數(shù),12也是4的倍數(shù),5不能被4整除,因此可在7×8+12前后添上小括號(hào),再除以4得17,5+17-2=20。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程解:5+(7×8+12)÷4-2=20。
例2 把1~9這九個(gè)數(shù)字填到下面的九個(gè)□里,組成三個(gè)等式(每個(gè)數(shù)字只能填一次):
分析與解:如果從加法與減法兩個(gè)算式入手,那么會(huì)出現(xiàn)許多種情形。如果從乘法算式入手,那么只有下面兩種可能:
2×3=6或2×4=8,所以應(yīng)當(dāng)從乘法算式入手。
因?yàn)樵诩臃ㄋ闶健?□=□中,等號(hào)兩邊的數(shù)相等,所以加法算式中的三個(gè)□內(nèi)的三個(gè)數(shù)的和是偶數(shù);而減法算式□-□=可以變形為加法算式□=□+□,所以減法算式中的三個(gè)□內(nèi)的三個(gè)數(shù)的和也是偶數(shù)。于是可知,原題加減法算式中的六個(gè)數(shù)的和應(yīng)該是偶數(shù)。
若乘法算式是2×4=8,則剩下的六個(gè)數(shù)1,3,5,6,7,9的和是奇數(shù),不合題意;
若乘法算式是2×3=6,則剩下的六個(gè)數(shù)1,4,5,7,8,9可分為兩組:
4+5=9,8-7=1(或8-1=7);
1+7=8,9-5=4(或9-4=5)。
所以答案為 與
綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程例3 下面的算式是由1~9九個(gè)數(shù)字組成的,其中“7”已填好,請(qǐng)將其余各數(shù)填入□,使得等式成立:
□□□÷□□=□-□=□-7。
分析與解:因?yàn)樽蠖顺ㄊ阶拥纳瘫卮笥诘扔?,所以右端被減數(shù)只能填9,由此知左端被除數(shù)的百位數(shù)只能填1,故中間減式有8-6,6-4,5-3和4-2四種可能。經(jīng)逐一驗(yàn)證,8-6,6-4和4-2均無(wú)解,只有當(dāng)中間減式為5-3時(shí)有如下兩組解:
128÷64=5-3=9-7,或 164÷82=5-3=9-7。
例4 將1~9九個(gè)數(shù)字分別填入下面四個(gè)算式的九個(gè)□中,使得四個(gè)等式都成立:
□+□=6,□×□=8,□-□=6,□□÷□=8。
分析與解:因?yàn)槊總€(gè)□中要填不同的數(shù)字,對(duì)于加式只有兩種填法:1+5或2+4;對(duì)于乘式也只有兩種填法:1×8或2×4。加式與乘式的數(shù)字不能相同,搭配后只有兩種可能:(1)加式為1+5,乘式為2×4;(2)加式為2+4,乘式為1×8。
對(duì)于(1),還剩3,6,7,8,9五個(gè)數(shù)字未填,減式只能是9-3,此時(shí)除式無(wú)法滿足;
對(duì)于(2),還剩3,5,6,7,9五個(gè)數(shù)字未填,減式只能是9-3,此時(shí)除式可填56÷7。答案如下:
2+4=6,1×8=8,9-3=6,56÷7=8。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
例2~例4都是對(duì)題目經(jīng)過(guò)初步分析后,將滿足題目條件的所有可能情況全部列舉出來(lái),再逐一試算,決定取舍。這種方法叫做枚舉法,也叫窮舉法或列舉法,它適用于只有幾種可能情況的題目,如果可能的情況很多,那么就不宜用枚舉法。
例5 從1~9這九個(gè)自然數(shù)中選出八個(gè)填入下式的八個(gè)○內(nèi),使得算式的結(jié)果盡可能大:
[○÷○×(○+○)]-[○×○+○-○]。
分析與解:為使算式的結(jié)果盡可能大,應(yīng)當(dāng)使前一個(gè)中括號(hào)內(nèi)的結(jié)果盡量大,后一個(gè)中括號(hào)內(nèi)的結(jié)果盡量小。為敘述方便,將原式改寫為:
[A÷B×(C+D)]-[E×F+G-H]。
通過(guò)分析,A,C,D,H應(yīng)盡可能大,且A應(yīng)最大,C,D次之,H再次之;B,E,F(xiàn),G應(yīng)盡可能小,且B應(yīng)最小,E,F(xiàn)次之,G再次之。于是得到A=9,C=8,D=7,H=6,B=1,E=2,F(xiàn)=3,G=4,其中C與D,E與F的值可互換。將它們代入算式,得到
[9÷1×(8+7)]-[2×3+4-6]=131。
練習(xí)9
1.在下面的算式里填上括號(hào),使等式成立:
(1)4×6+24÷6-5=15;
(2)4×6+24÷6-5=35;
(3)4×6+24÷6-5=48;
(4)4×6+24÷6-5=0。
2.加上適當(dāng)?shù)倪\(yùn)算符號(hào)和括號(hào),使下式成立:
=100。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
3.把0~9這十個(gè)數(shù)字填到下面的□里,組成三個(gè)等式(每個(gè)數(shù)字只能填一次):
□+□=□,□-□=□,□×□=□□。
4.在下面的□里填上+,-,×,÷,()等符號(hào),使各個(gè)等式成立:
4□4□4□4=1,4□4□4□4=3,4□4□4□4=5,4□4□4□4=9。
5.將2~7這六個(gè)數(shù)字分別填入下式的□中,使得等式成立:
□+□-□=□×□÷□。
6.將1~9分別填入下式的九個(gè)□內(nèi),使算式取得最大值:
□□□×□□□×□□□。
7.將1~8分別填入下式的八個(gè)□內(nèi),使算式取得最小值: □□×□□×□□×□□。
第10講 數(shù)字謎
(二)例1 把下面算式中缺少的數(shù)字補(bǔ)上:
分析與解:一個(gè)四位數(shù)減去一個(gè)三位數(shù),差是一個(gè)兩位數(shù),也就是說(shuō)被減數(shù)與減數(shù)相差不到100。四位數(shù)與三位數(shù)相差不到100,三位數(shù)必然大于900,四位數(shù)必然小于1100。由此我們找出解決本題的突破口在百位數(shù)上。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
(1)填百位與千位。由于被減數(shù)是四位數(shù),減數(shù)是三位數(shù),差是兩位數(shù),所以減數(shù)的百位應(yīng)填9,被減數(shù)的千位應(yīng)填1,百位應(yīng)填0,且十位相減時(shí)必須向百位借1。
(2)填個(gè)位。由于被減數(shù)個(gè)位數(shù)字是0,差的個(gè)位數(shù)字是1,所以減數(shù)的個(gè)位數(shù)字是9。
(3)填十位。由于個(gè)位向十位借1,十位又向百位借1,所以被減數(shù)十位上的實(shí)際數(shù)值是18,18分解成兩個(gè)一位數(shù)的和,只能是9與9,因此,減數(shù)與差的十位數(shù)字都是9。
所求算式如右式。
由例1看出,考慮減法算式時(shí),借位是一個(gè)重要條件。
例2 在下列各加法算式中,相同的漢字代表相同的數(shù)字,不同的漢字代表不同的數(shù)字,求出這兩個(gè)算式:
分析與解:(1)這是一道四個(gè)數(shù)連加的算式,其特點(diǎn)是相同數(shù)位上的數(shù)字相同,且個(gè)位與百位上的數(shù)字相同,即都是漢字“學(xué)”。
從個(gè)位相同數(shù)相加的情況來(lái)看,和的個(gè)位數(shù)字是8,有兩種可能情況:2+2+2+2=8與7+7+7+7=28,即“學(xué)”=2或7。
如果“學(xué)”=2,那么要使三個(gè)“數(shù)”所代表的數(shù)字相加的和的個(gè)位數(shù)字為8,“數(shù)”只能代表數(shù)字6。此時(shí),百位上的和為“學(xué)”+“學(xué)”+1=2+2+1=5≠4。因此“學(xué)”≠2。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
如果“學(xué)”=7,那么要使三個(gè)“數(shù)”所代表的數(shù)字相加再加上個(gè)位進(jìn)位的2,和的個(gè)位數(shù)字為8,“數(shù)”只能代表數(shù)字2。百位上兩個(gè)7相加要向千位進(jìn)位1,由此可得“我”代表數(shù)字3。
滿足條件的解如右式。
(2)由千位看出,“努”=4。由千、百、十、個(gè)位上都有“努”,5432-4444=988,可將豎式簡(jiǎn)化為左下式。同理,由左下式看出,“力”=8,988-888=100,可將左下式簡(jiǎn)化為下中式,從而求出“學(xué)”=9,“習(xí)”=1。
滿足條件的算式如右下式。
例2中的兩題形式類似,但題目特點(diǎn)并不相同,解法也不同,請(qǐng)同學(xué)們注意比較。
例3 下面豎式中每個(gè)漢字代表一個(gè)數(shù)字,不同的漢字代表不同的數(shù)字,求被乘數(shù)。
分析與解:由于個(gè)位上的“賽”ד賽”所得的積不再是“賽”,而是另一個(gè)數(shù),所以“賽”的取值只能是2,3,4,7,8,9。
下面采用逐一試驗(yàn)的方法求解。
(1)若“賽”=2,則“數(shù)”=4,積=444444。被乘數(shù)為444444÷2=222222,而被乘數(shù)各個(gè)數(shù)位上的數(shù)字各不相同,所以“賽”≠2。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
(2)若“賽”=3,則“數(shù)”=9,仿(1)討論,也不行。
(3)若“賽”=4,則“數(shù)”=6,積=666666。666666÷4得不到整數(shù)商,不合題意。
(4)若“賽”=7,則“數(shù)”=9,積=999999。被乘數(shù)為999999÷7=142857,符合題意。
(5)若“賽”=8或9,仿上討論可知,不合題意。
所以,被乘數(shù)是142857。
例4 在□內(nèi)填入適當(dāng)?shù)臄?shù)字,使左下式的乘法豎式成立。
分析與解:為清楚起見(jiàn),我們用A,B,C,D,?表示□內(nèi)應(yīng)填入的數(shù)字(見(jiàn)右上式)。
由被乘數(shù)大于500知,E=1。由于乘數(shù)的百位數(shù)與被乘數(shù)的乘積的末位數(shù)是5,故B,C中必有一個(gè)是5。若C=5,則有
6□□×5=(600+□□)×5=3000+□□×5,不可能等于□5□5,與題意不符,所以B=5。再由B=5推知G=0或5。若G=5,則F=A=9,此時(shí)被乘數(shù)為695,無(wú)論C為何值,它與695的積不可能等于□5□5,與題意不符,所以G=0,F(xiàn)=A=4。此時(shí)已求出被乘數(shù)是645,經(jīng)試驗(yàn)只有645×7滿足□5□5,所以C=7;最后由B=5,G=0知D為偶數(shù),經(jīng)試驗(yàn)知D=2。
右式為所求豎式。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
此類乘法豎式題應(yīng)根據(jù)已給出的數(shù)字、乘法及加法的進(jìn)位情況,先填比較容易的未知數(shù),再依次填其余未知數(shù)。有時(shí)某未知數(shù)有幾種可能取值,需逐一試驗(yàn)決定取舍。
例5 在□內(nèi)填入適當(dāng)數(shù)字,使左下方的除法豎式成立。
分析與解:把左上式改寫成右上式。根據(jù)除法豎式的特點(diǎn)知,B=0,D=G=1,E=F=H=9,因此除數(shù)應(yīng)是99的兩位數(shù)的約數(shù),可能取值有11,33和99,再由商的個(gè)位數(shù)是5以及5與除數(shù)的積是兩位數(shù)得到除數(shù)是11,進(jìn)而知A=C-9。至此,除數(shù)與商都已求出,其余未知數(shù)都可填出(見(jiàn)右式)。
此類除法豎式應(yīng)根據(jù)除法豎式的特點(diǎn),如商的空位補(bǔ)0、余數(shù)必須小于除數(shù),以及空格間的相互關(guān)系等求解,只要求出除數(shù)和商,問(wèn)題就迎刃而解了。
例6 把左下方除法算式中的*號(hào)換成數(shù)字,使之成為一個(gè)完整的式子(各*所表示的數(shù)字不一定相同)。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
分析與解:由上面的除法算式容易看出,商的十位數(shù)字“*”是0,即商為。
因?yàn)槌龜?shù)與8的積是兩位數(shù),除數(shù)與商的千位數(shù)字的積是三位數(shù),知商的千位數(shù)是9,即商為9807。
因?yàn)椤俺龜?shù)×9”是三位數(shù),所以除數(shù)≥12;又因?yàn)椤俺龜?shù)×8”是兩位數(shù),所以除數(shù)≤12。推知除數(shù)只能是12。被除數(shù)為9807×12=117684。
除法算式如上頁(yè)右式。練習(xí)10
1.在下面各豎式的□內(nèi)填入合適的數(shù)字,使豎式成立:
2.右面的加法算式中,相同的漢字代表相同的數(shù)字,不同的漢字代表不同的數(shù)字。問(wèn):“小”代表什么數(shù)字?
3.在下列各算式中,不同的漢字代表不同的數(shù)字相同的漢字代表相同的數(shù)字。求出下列各式: 綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
4.在下列各算式中,相同的字母代表相同的數(shù)字,不同的字母代表不同的數(shù)字。這些算式中各字母分別代表什么數(shù)字?
第11講 歸一問(wèn)題與歸總問(wèn)題
在解答某些應(yīng)用題時(shí),常常需要先找出“單一量”,然后以這個(gè)“單一量”為標(biāo)準(zhǔn),根據(jù)其它條件求出結(jié)果。用這種解題思路解答的應(yīng)用題,稱為歸一問(wèn)題。所謂“單一量”是指單位時(shí)間的工作量、物品的單價(jià)、單位面積的產(chǎn)量、單位時(shí)間所走的路程等。
例1 一種鋼軌,4根共重1900千克,現(xiàn)在有95000千克鋼,可以制造這種鋼軌多少根?(損耗忽略不計(jì))
分析:以一根鋼軌的重量為單一量。
(1)一根鋼軌重多少千克?
1900÷4=475(千克)。
(2)95000千克能制造多少根鋼軌?
95000÷475=200(根)。
解:95000÷(1900÷4)=200(根)。
答:可以制造200根鋼軌。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程例2 王家養(yǎng)了5頭奶牛,7天產(chǎn)牛奶630千克,照這樣計(jì)算,8頭奶牛15天可產(chǎn)牛奶多少千克?
分析:以1頭奶牛1天產(chǎn)的牛奶為單一量。
(1)1頭奶牛1天產(chǎn)奶多少千克?
630÷5÷7=18(千克)。
(2)8頭奶牛15天可產(chǎn)牛奶多少千克?
18×8×15=2160(千克)。
解:(630÷5÷7)×8×15=2160(千克)。
答:可產(chǎn)牛奶2160千克。
例3 三臺(tái)同樣的磨面機(jī)2.5時(shí)可以磨面粉2400千克,8臺(tái)這樣的磨面機(jī)磨25600千克面粉需要多少時(shí)間?
分析與解:以1臺(tái)磨面機(jī)1時(shí)磨的面粉為單一量。
(1)1臺(tái)磨面機(jī)1時(shí)磨面粉多少千克?
2400÷3÷2.5=320(千克)。
(2)8臺(tái)磨面機(jī)磨25600千克面粉需要多少小時(shí)?
25600÷320÷8=10(時(shí))。
綜合列式為
25600÷(2400÷3÷2.5)÷8=10(時(shí))。
例4 4輛大卡車運(yùn)沙土,7趟共運(yùn)走沙土336噸?,F(xiàn)在有沙土420噸,要求5趟運(yùn)完。問(wèn):需要增加同樣的卡車多少輛? 分析與解:以1輛卡車1趟運(yùn)的沙土為單一量。
(1)1輛卡車1趟運(yùn)沙土多少噸?
336÷4÷7=12(噸)。
(2)5趟運(yùn)走420噸沙土需卡車多少輛? 綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
420÷12÷5=7(輛)。
(3)需要增加多少輛卡車?
7-4=3(輛)。
綜合列式為
420÷(336÷4÷7)÷5-4=3(輛)。
與歸一問(wèn)題類似的是歸總問(wèn)題,歸一問(wèn)題是找出“單一量”,而歸總問(wèn)題是找出“總量”,再根據(jù)其它條件求出結(jié)果。所謂“總量”是指總路程、總產(chǎn)量、工作總量、物品的總價(jià)等。
例5 一項(xiàng)工程,8個(gè)人工作15時(shí)可以完成,如果12個(gè)人工作,那么多少小時(shí)可以完成?
分析:(1)工程總量相當(dāng)于1個(gè)人工作多少小時(shí)?
15×8=120(時(shí))。
(2)12個(gè)人完成這項(xiàng)工程需要多少小時(shí)?
120÷12=10(時(shí))。解:15×8÷12=10(時(shí))。
答:12人需10時(shí)完成。
例6 一輛汽車從甲地開(kāi)往乙地,每小時(shí)行60千米,5時(shí)到達(dá)。若要4時(shí)到達(dá),則每小時(shí)需要多行多少千米?
分析:從甲地到乙地的路程是一定的,以路程為總量。
(1)從甲地到乙地的路程是多少千米?
60×5=300(千米)。
(2)4時(shí)到達(dá),每小時(shí)需要行多少千米?
300÷4=75(千米)。
(3)每小時(shí)多行多少千米? 綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
75-60=15(千米)。
解:(60×5)÷4——60=15(千米)。
答:每小時(shí)需要多行15千米。
例7 修一條公路,原計(jì)劃60人工作,80天完成?,F(xiàn)在工作20天后,又增加了30人,這樣剩下的部分再用多少天可以完成?
分析:(1)修這條公路共需要多少個(gè)勞動(dòng)日(總量)?
60×80=4800(勞動(dòng)日)。
(2)60人工作20天后,還剩下多少勞動(dòng)日?
4800-60×20=3600(勞動(dòng)日)。
(3)剩下的工程增加30人后還需多少天完成?
3600÷(60+30)=40(天)。
解:(60×80-60×20)÷(60+30)=40(天)。
答:再用40天可以完成。
練習(xí)11
1.2臺(tái)拖拉機(jī)4時(shí)耕地20公頃,照這樣速度,5臺(tái)拖拉機(jī)6時(shí)可耕地多少公頃?
2.4臺(tái)織布機(jī)5時(shí)可以織布2600米,24臺(tái)織布機(jī)幾小時(shí)才能織布24960米?
3.一種幻燈機(jī),5秒鐘可以放映80張片子。問(wèn):48秒鐘可以放映多少?gòu)埰樱?/p>
4.3臺(tái)抽水機(jī)8時(shí)灌溉水田48公頃,照這樣的速度,5臺(tái)同樣的抽水機(jī)6時(shí)可以灌溉水田多小公頃? 綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
5.平整一塊土地,原計(jì)劃8人平整,每天工作7.5時(shí),6天可以完成任務(wù)。由于急需播種,要求5天完成,并且增加1人。問(wèn):每天要工作幾小時(shí)?
6.食堂管理員去農(nóng)貿(mào)市場(chǎng)買雞蛋,原計(jì)劃按每千克3.00元買35千克。結(jié)果雞蛋價(jià)格下調(diào)了,他用這筆錢多買了2.5千克雞蛋。問(wèn):雞蛋價(jià)格下調(diào)后是每千克多少元?
7.鍋爐房按照每天4.5噸的用量?jī)?chǔ)備了120天的供暖煤。供暖40天后,由于進(jìn)行了技術(shù)改造,每天能節(jié)約0.9噸煤。問(wèn):這些煤共可以供暖多少天?
第12講 年齡問(wèn)題
年齡問(wèn)題是一類以“年齡為內(nèi)容”的數(shù)學(xué)應(yīng)用題。
年齡問(wèn)題的主要特點(diǎn)是:二人年齡的差保持不變,它不隨歲月的流逝而改變;二人的年齡隨著歲月的變化,將增或減同一個(gè)自然數(shù);二人年齡的倍數(shù)關(guān)系隨著年齡的增長(zhǎng)而發(fā)生變化,年齡增大,倍數(shù)變小。
根據(jù)題目的條件,我們常將年齡問(wèn)題化為“差倍問(wèn)題”、“和差問(wèn)題”、“和倍問(wèn)題”進(jìn)行求解。
例1 兒子今年10歲,5年前母親的年齡是他的6倍,母親今年多少歲? 分析與解:兒子今年10歲,5年前的年齡為5歲,那么5年前母親的年齡為5×6=30(歲),因此母親今年是
30+5=35(歲)。
例2 今年爸爸48歲,兒子20歲,幾年前爸爸的年齡是兒子的5倍? 分析與解:今年爸爸與兒子的年齡差為“48——20”歲,因?yàn)槎说哪挲g差不隨時(shí)間的變化而改變,所以當(dāng)爸爸的年齡為兒子的5倍時(shí),兩人的年綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程齡差還是這個(gè)數(shù),這樣就可以用“差倍問(wèn)題”的解法。當(dāng)爸爸的年齡是兒子年齡的5倍時(shí),兒子的年齡是
(48——20)÷(5——1)=7(歲)。
由20-7=13(歲),推知13年前爸爸的年齡是兒子年齡的5倍。例3 兄弟二人的年齡相差5歲,兄3年后的年齡為弟4年前的3倍。問(wèn):兄、弟二人今年各多少歲?
分析與解:根據(jù)題意,作示意圖如下:
由上圖可以看出,兄3年后的年齡比弟4年前的年齡大5+3+4=12(歲),由“差倍問(wèn)題”解得,弟4年前的年齡為(5+3+4)÷(3-1)=6(歲)。由此得到
弟今年6+4=10(歲),兄今年10+5=15(歲)。
例4 今年兄弟二人年齡之和為55歲,哥哥某一年的歲數(shù)與弟弟今年的歲數(shù)相同,那一年哥哥的歲數(shù)恰好是弟弟歲數(shù)的2倍,請(qǐng)問(wèn)哥哥今年多少歲? 分析與解:在哥哥的歲數(shù)是弟弟的歲數(shù)2倍的那一年,若把弟弟歲數(shù)看成一份,那么哥哥的歲數(shù)比弟弟多一份,哥哥與弟弟的年齡差是1份。又因?yàn)槟且荒旮绺鐨q數(shù)與今年弟弟歲數(shù)相等,所以今年弟弟歲數(shù)為2份,今年哥哥歲數(shù)為2+1=3(份)(見(jiàn)下頁(yè)圖)。
由“和倍問(wèn)題”解得,哥哥今年的歲數(shù)為
55÷(3+2)×3=33(歲)。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
例5 哥哥5年前的年齡與妹妹4年后的年齡相等,哥哥2年后的年齡與妹妹8年后的年齡和為97歲,請(qǐng)問(wèn)二人今年各多少歲?
分析與解:由“哥哥5年前的年齡與妹妹4年后的年齡相等”可知兄妹二人的年齡差為“4+5”歲。由“哥哥2年后的年齡與妹妹8年后的年齡和為97歲”,可知兄妹二人今年的年齡和為“97——2——8”歲。由“和差問(wèn)題”解得,兄[(97——2——8)+(4+5)]÷2=48(歲),妹[(97——2——8)-(4+5)]÷2=39(歲)。
例6 1994年父親的年齡是哥哥和弟弟年齡之和的4倍。2000年,父親的年齡是哥哥和弟弟年齡之和的2倍。問(wèn):父親出生在哪一年?
分析與解:如果用1段線表示兄弟二人1994年的年齡和,則父親1994年的年齡要用4段線來(lái)表示(見(jiàn)下頁(yè)圖)。
父親在2000年的年齡應(yīng)是4段線再加6歲,而兄弟二人在2000年的年齡之和是1段線再加2×6=12(歲),它是父親年齡的一半,也就是2段線再加3歲。由
1段+12歲=2段+3歲,推知1段是9歲。所以父親1994年的年齡是9×4=36(歲),他出生于 綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
1994——36=1958(年)。
例7今年父親的年齡為兒子的年齡的4倍,20年后父親的年齡為兒子的年齡的2倍。問(wèn):父子今年各多少歲?
解法一:假設(shè)父親的年齡一直是兒子年齡的4倍,那么每過(guò)一年兒子增加一歲,父親就要增加4歲。這樣,20年后兒子增加20歲,父親就要增加80歲,比兒子多增加了80-20=60(歲)。
事實(shí)上,20年后父親的年齡為兒子的年齡的2倍,根據(jù)剛才的假設(shè),多增加的60歲,正好相當(dāng)于20年后兒子年齡的(4——2=)2倍,因此,今年兒子的年齡為
(20×4-20)÷(4-2)-20=10(歲),父親今年的年齡為10×4=40(歲)。
解法二:如果用1段線表示兒子今年的年齡,那么父親今年的年齡要用4段線來(lái)表示(見(jiàn)下圖)。
20年后,父親的年齡應(yīng)是4段線再加上20歲,而兒子的年齡應(yīng)是1段線再加上20歲,是父親年齡的一半,也就是2段線再加上10歲。由
1段+20=2段+10,求得1段是10歲,即兒子今年10歲,從而父親今年40歲。例8 今年?duì)敔?8歲,長(zhǎng)孫27歲,次孫23歲,三孫16歲。問(wèn):幾年后爺爺?shù)哪挲g等于三個(gè)孫子年齡之和?
分析:今年三個(gè)孫子的年齡和為27+23+16=66(歲),爺爺比三個(gè)孫子的年齡和多78——66=12(歲)。每過(guò)一年,爺爺增加一歲,而三個(gè)綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程孫子的年齡和卻要增加1+1+1=3(歲),比爺爺多增加3-1=2(歲)。因而只需求出12里面有幾個(gè)2即可。
解:[78-(27+23+16)]÷(1+1+1-1)=6(年)。
答:6年后爺爺?shù)哪挲g等于三個(gè)孫子年齡的和。
練習(xí)12
1.父親比兒子大30歲,明年父親的年齡是兒子年齡的3倍,那么今年兒子幾歲?
2.王梅比舅舅小19歲,舅舅的年齡比王梅年齡的3倍多1歲。問(wèn):他們二人各幾歲?
3.小明今年9歲,父親39歲,再過(guò)多少年父親的年齡正好是小明年齡的2倍?
4.父親年齡是女兒的4倍,三年前父女年齡之和是49歲。問(wèn):父女兩人現(xiàn)在各多少歲?
5.一家三口人,三人年齡之和是74歲,媽媽比爸爸小2歲,媽媽的年齡是兒子年齡的4倍。問(wèn):三人各是多少歲?
6.今年老師46歲,學(xué)生16歲,幾年后老師年齡的2倍與學(xué)生年齡的5倍相等?
7.已知祖孫三人,祖父和父親年齡的差與父親和孫子年齡的差相同,祖父和孫子年齡之和為82歲,明年祖父的年齡恰好等于孫子年齡的5倍。問(wèn):祖孫三人各多少歲?
8.小樂(lè)問(wèn)劉老師今年有多少歲,劉老師說(shuō):“當(dāng)我像你這么大時(shí),你才3歲;當(dāng)你像我這么大時(shí),我已經(jīng)42歲了?!蹦隳芩愠鰟⒗蠋熡卸嗌贇q嗎?
第13講 雞兔同籠問(wèn)題與假設(shè)法 綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
雞兔同籠問(wèn)題是按照題目的內(nèi)容涉及到雞與兔而命名的,它是一類有名的中國(guó)古算題。許多小學(xué)算術(shù)應(yīng)用題,都可以轉(zhuǎn)化為雞兔同籠問(wèn)題來(lái)加以計(jì)算。
例1 小梅數(shù)她家的雞與兔,數(shù)頭有16個(gè),數(shù)腳有44只。問(wèn):小梅家的雞與兔各有多少只?
分析:假設(shè)16只都是雞,那么就應(yīng)該有2×16=32(只)腳,但實(shí)際上有44只腳,比假設(shè)的情況多了44-32=12(只)腳,出現(xiàn)這種情況的原因是把兔當(dāng)作雞了。如果我們以同樣數(shù)量的兔去換同樣數(shù)量的雞,那么每換一只,頭的數(shù)目不變,腳數(shù)增加了2只。因此只要算出12里面有幾個(gè)2,就可以求出兔的只數(shù)。
解:有兔(44-2×16)÷(4-2)=6(只),有雞16-6=10(只)。
答:有6只兔,10只雞。
當(dāng)然,我們也可以假設(shè)16只都是兔子,那么就應(yīng)該有4×16=64(只)腳,但實(shí)際上有44只腳,比假設(shè)的情況少了64-44=20(只)腳,這是因?yàn)榘央u當(dāng)作兔了。我們以雞去換兔,每換一只,頭的數(shù)目不變,腳數(shù)減少了4-2=2(只)。因此只要算出20里面有幾個(gè)2,就可以求出雞的只數(shù)。
有雞(4×16-44)÷(4-2)=10(只),有兔16——10=6(只)。
由例1看出,解答雞兔同籠問(wèn)題通常采用假設(shè)法,可以先假設(shè)都是雞,然后以兔換雞;也可以先假設(shè)都是兔,然后以雞換兔。因此這類問(wèn)題也叫置換問(wèn)題。
例2 100個(gè)和尚140個(gè)饃,大和尚1人分3個(gè)饃,小和尚1人分1個(gè)饃。問(wèn):大、小和尚各有多少人? 綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程分析與解:本題由中國(guó)古算名題“百僧分饃問(wèn)題”演變而得。如果將大和尚、小和尚分別看作雞和兔,饃看作腿,那么就成了雞兔同籠問(wèn)題,可以用假設(shè)法來(lái)解。
假設(shè)100人全是大和尚,那么共需饃300個(gè),比實(shí)際多300-140=160(個(gè))。現(xiàn)在以小和尚去換大和尚,每換一個(gè)總?cè)藬?shù)不變,而饃就要減少3——1=2(個(gè)),因?yàn)?60÷2=80,故小和尚有80人,大和尚有
100-80=20(人)。
同樣,也可以假設(shè)100人都是小和尚,同學(xué)們不妨自己試試。
在下面的例題中,我們只給出一種假設(shè)方法。
例3 彩色文化用品每套19元,普通文化用品每套11元,這兩種文化用品共買了16套,用錢280元。問(wèn):兩種文化用品各買了多少套?
分析與解:我們?cè)O(shè)想有一只“怪雞”有1個(gè)頭11只腳,一種“怪兔”有1個(gè)頭19只腳,它們共有16個(gè)頭,280只腳。這樣,就將買文化用品問(wèn)題轉(zhuǎn)換成雞兔同籠問(wèn)題了。
假設(shè)買了16套彩色文化用品,則共需19×16=304(元),比實(shí)際多304——280=24(元),現(xiàn)在用普通文化用品去換彩色文化用品,每換一套少用19——11=8(元),所以
買普通文化用品 24÷8=3(套),買彩色文化用品 16-3=13(套)。
例4 雞、兔共100只,雞腳比兔腳多20只。問(wèn):雞、兔各多少只?
分析:假設(shè)100只都是雞,沒(méi)有兔,那么就有雞腳200只,而兔的腳數(shù)為零。這樣雞腳比兔腳多200只,而實(shí)際上只多20只,這說(shuō)明假設(shè)的雞腳比兔腳多的數(shù)比實(shí)際上多200——20=180(只)。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程
現(xiàn)在以兔換雞,每換一只,雞腳減少2只,兔腳增加4只,即雞腳比兔腳多的腳數(shù)中就會(huì)減少4+2=6(只),而180÷6=30,因此有兔子30只,雞100——30=70(只)。
解:有兔(2×100——20)÷(2+4)=30(只),有雞100——30=70(只)。
答:有雞70只,兔30只。
例5 現(xiàn)有大、小油瓶共50個(gè),每個(gè)大瓶可裝油4千克,每個(gè)小瓶可裝油2千克,大瓶比小瓶共多裝20千克。問(wèn):大、小瓶各有多少個(gè)?
分析:本題與例4非常類似,仿照例4的解法即可。解:小瓶有(4×50-20)÷(4+2)=30(個(gè)),大瓶有50-30=20(個(gè))。
答:有大瓶20個(gè),小瓶30個(gè)。
例6 一批鋼材,用小卡車裝載要45輛,用大卡車裝載只要36輛。已知每輛大卡車比每輛小卡車多裝4噸,那么這批鋼材有多少噸?
分析:要算出這批鋼材有多少噸,需要知道每輛大卡車或小卡車能裝多少噸。
利用假設(shè)法,假設(shè)只用36輛小卡車來(lái)裝載這批鋼材,因?yàn)槊枯v大卡車比每輛小卡車多裝4噸,所以要剩下4×36=144(噸)。根據(jù)條件,要裝完這144噸鋼材還需要45-36=9(輛)小卡車。這樣每輛小卡車能裝144÷9=16(噸)。由此可求出這批鋼材有多少噸。解:4×36÷(45-36)×45=720(噸)。
答:這批鋼材有720噸。綠藤星教育(***)----小學(xué)奧數(shù)基礎(chǔ)教程例7 樂(lè)樂(lè)百貨商店委托搬運(yùn)站運(yùn)送500只花瓶,雙方商定每只運(yùn)費(fèi)0.24元,但如果發(fā)生損壞,那么每打破一只不僅不給運(yùn)費(fèi),而且還要賠償1.26元,結(jié)果搬運(yùn)站共得運(yùn)費(fèi)115.5元。問(wèn):搬運(yùn)過(guò)程中共打破了幾只花瓶?
分析:假設(shè)500只花瓶在搬運(yùn)過(guò)程中一只也沒(méi)有打破,那么應(yīng)得運(yùn)費(fèi)0.24×500=120(元)。實(shí)際上只得到115.5元,少得120-115.5=4.5(元)。搬運(yùn)站每打破一只花瓶要損失0.24+1.26=1.5(元)。因此共打破花瓶4.5÷1.5=3(只)。
解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。
答:共打破3只花瓶。
例8 小樂(lè)與小喜一起跳繩,小喜先跳了2分鐘,然后兩人各跳了3分鐘,一共跳了780下。已知小喜比小樂(lè)每分鐘多跳12下,那么小喜比小樂(lè)共多跳了多少下?
分析與解:利用假設(shè)法,假設(shè)小喜的跳繩速度減少到與小樂(lè)一樣,那么兩人跳的總數(shù)減少了
12×(2+3)=60(下)。
可求出小樂(lè)每分鐘跳
(780——60)÷(2+3+3)=90(下),小樂(lè)一共跳了90×3=270(下),因此小喜比小樂(lè)共多跳
780——270×2=240(下)。練習(xí)13
1.雞、兔共有頭100個(gè),腳350只,雞、兔各有多少只?
2.學(xué)校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120個(gè)學(xué)生進(jìn)行活動(dòng)。問(wèn):象棋與跳棋各有多少副?
第五篇:三年級(jí)數(shù)學(xué)奧數(shù)應(yīng)用題
1.39個(gè)同學(xué)在操場(chǎng)上跳繩,每3人一組,可以分成多少組?
2.4棵楊樹苗48元,3棵松樹苗63元,哪種樹苗每棵的價(jià)錢貴一些?
3.三(1)班小朋友做玩具,一共做了48個(gè),送給幼兒園15個(gè),其余的平均分給一年級(jí)3個(gè)班,每班可以分得幾個(gè)?
4.張教師帶100元去商場(chǎng)買3個(gè)小足球,找回了7元,你能知道每個(gè)小足球多少元嗎?
5.一本《故事大王》共65頁(yè),小明打算4天看完,小花打算6天看完,小明平均每天要看多少頁(yè)?小花呢?
6.張大伯家養(yǎng)了18只鴨,養(yǎng)雞的只數(shù)是鴨的2倍,張大伯家養(yǎng)雞和鴨一共多少只?
7.停車場(chǎng)有大汽車45輛,小汽車比大汽車多17輛,大汽車和小汽車一共有多少輛?
8.明明有42張郵票,芳芳比他少15張,他們倆人一共有郵票多少?gòu)垼?/p>
9.一件上衣45元,褲子比上衣便宜12元,買一套衣服要多少元?
10.小白兔拔了14個(gè)蘿卜,小灰兔拔的是它的3倍。小白兔比小灰兔少拔了多少棵?
11.校園里有水杉樹24棵,松樹的棵數(shù)是水杉樹的3倍。水杉樹和松樹一共有多少棵?水杉樹比松樹少多少棵?
12.公園里有黑天鵝28只,白天鵝的只數(shù)比黑天鵝的3倍多9只。白天鵝有多少只?
13.三年級(jí)去圖書館借書,上午借了420本,下午比上午多借20本。這一天三年級(jí)共借書多少本?
14.用6個(gè)邊長(zhǎng)1厘米的小正方形拼成一個(gè)大長(zhǎng)方形,拼成的長(zhǎng)方形的長(zhǎng)和寬各是多少厘米?周長(zhǎng)是多少厘米?
15.一個(gè)長(zhǎng)方形操場(chǎng),長(zhǎng)55米,寬35米,小華沿操場(chǎng)的邊跑了2圈,跑了多少米?
16.用一根線正好圍成一個(gè)邊長(zhǎng)是8厘米的正方形。這根線長(zhǎng)多少厘米?
17.養(yǎng)魚場(chǎng)去年放養(yǎng)魚苗896尾,今年放養(yǎng)的魚苗數(shù)是去年的2倍。今年放養(yǎng)多少尾?
18.科學(xué)館上午有3批學(xué)生來(lái)參觀,每批169人,下午又有213名學(xué)生前來(lái)參觀。這一天一共有多少學(xué)生來(lái)參觀?
19.一頭牛一天要吃32千克草。2頭牛4天要吃多少千克草?
20.有一塊土地,用來(lái)種西紅柿,用來(lái)種茄子,其余用種西瓜。西瓜占地幾分之幾?
21.李大伯家養(yǎng)了200只雞,第一天先賣128只,平均每只雞可賣9元,李大伯這天能賣多少元?剩下的雞第二天賣,每8只裝一籠,能裝多少籠?
22.48個(gè)同學(xué)去采集昆蟲標(biāo)本,每3人分一組,可以分成多少組?
23.同學(xué)們要種93棵樹,已經(jīng)種了18棵,剩下的樹苗平均分給5個(gè)小組,每個(gè)小組還要種多少棵?
24.上海市六月份降水量是42毫米,七月份比六月份少了14毫米。
六、七兩個(gè)月一共降水多少毫米?
25.玩具廠每小時(shí)可以生產(chǎn)玩具600個(gè),從上午十時(shí)到下午二時(shí),大約可以生產(chǎn)玩具多少個(gè)?
26.一個(gè)正方形花圃,邊長(zhǎng)是15米。它的周長(zhǎng)是多少米?
27.在一塊長(zhǎng)16米,寬8米的長(zhǎng)方形地的周圍圍上圍欄,圍欄一共長(zhǎng)是多少米?
28.少年宮學(xué)習(xí)繪畫的小朋友共108人,學(xué)習(xí)書法的小朋友人數(shù)比學(xué)習(xí)繪畫的2倍少36人。少年宮學(xué)習(xí)書法的有多少人?
29.每根跳繩長(zhǎng)2米。65米長(zhǎng)的一根繩子,最多能剪多少根跳繩?還剩幾米?
30.李教師買了2副羽毛球拍,付出70元,找回6元。每副羽毛球拍多少元?
31.一本科普書,小明準(zhǔn)備6天看完,平均每天要看多少頁(yè)?
32.同學(xué)們做了80朵紙花,每5朵扎一束,可以扎幾束?每4朵扎一束,可以扎幾束?
33.一種練習(xí)本每本的單價(jià)是4角。王教師用5元錢,最多可以買多少本這樣的練習(xí)本?
34.小華去商店里買飲料,買了5瓶,付給營(yíng)業(yè)員100元,找回35元。每瓶飲料多少錢?
35.同學(xué)們到果園參加義務(wù)勞動(dòng),男同學(xué)有40人,女同學(xué)有38人。每6人分一組,一共可以分成多少個(gè)小組?
36.三(2)班有男生26人,女生22人。全班同學(xué)平均分成4個(gè)小隊(duì)。平均每個(gè)小隊(duì)有多少名同學(xué)?如果每個(gè)同學(xué)發(fā)2本數(shù)學(xué)練習(xí)本,全班一共需要多少本數(shù)學(xué)練習(xí)本?
37.學(xué)校舞蹈隊(duì)里有18名男生,女生人數(shù)是男生的2倍。舞蹈隊(duì)男、女生一共有多少人?
38.去天文臺(tái)參觀的女生有9人,男生去的人數(shù)比女生的3倍還多1人。40座的汽車夠坐嗎?
39.一批貨物,已經(jīng)運(yùn)走了8噸,剩下的是運(yùn)走的5倍。這批貨物一共有多少噸?
40.小明買了6套體育畫片,每套4元,又買了一本描紅字帖15元。小明一共花了多少元?
41.一場(chǎng)球賽從14:45開(kāi)始,到16:18結(jié)束。這場(chǎng)球賽進(jìn)行了多長(zhǎng)時(shí)間?
42.同學(xué)們?nèi)澊?。男同學(xué)去了27人,女同學(xué)去了29人,每4人坐一條船。一共需要租多少條船?
43.王大伯家養(yǎng)了15只鵝,養(yǎng)鴨的只數(shù)是鵝的4倍,養(yǎng)的雞比鴨多38只。王大伯家養(yǎng)鴨多少只?養(yǎng)雞多少只?
44.一幅畫,長(zhǎng)50厘米,寬30厘米。用一根長(zhǎng)150厘米的木條做它的邊框,夠不夠?
45.每袋鹽重500克,6袋鹽一共有多少克?合多少千克?
46.家禽養(yǎng)殖場(chǎng)飼養(yǎng)了257只鴨,還飼養(yǎng)了158籠雞,每籠有5只。這個(gè)養(yǎng)殖場(chǎng)一共養(yǎng)了雞和鴨多少只?
47.工廠每天可生產(chǎn)406個(gè)玩具熊,照這樣計(jì)算,5天一共生產(chǎn)多少個(gè)玩具熊?
48.一輛卡車每分鐘行駛850米,轎車每分鐘行駛的米數(shù)比卡車的3倍還多50米。轎車每分鐘行駛多少米?
49.一個(gè)建筑工地第一天運(yùn)來(lái)180袋水泥,第二天運(yùn)來(lái)的袋數(shù)比第一天的2倍少19袋。第二天運(yùn)來(lái)多少袋水泥?
50.每輛卡車一次可裝4噸貨物。用8輛這樣的卡車運(yùn)5次,一共可運(yùn)貨物多少噸?
51.每人每天可裝配自行車14輛,照這樣計(jì)算,8人工作7天,一共裝配自行車多少輛?
52.軍軍看一本書,已經(jīng)看了5天,每天看24頁(yè),還剩下10頁(yè)沒(méi)有看。這本書一共有多少頁(yè)?
53.三年級(jí)二班有男生25人,女生23人。每4人分得一個(gè)足球。一共需要準(zhǔn)備多少個(gè)足球?
54.小紅看一本故事書有154頁(yè)。她爸爸看的一本科技書的頁(yè)數(shù)比這本故事書的4倍還多58頁(yè)。她爸爸看的科技書有多少頁(yè)?
55.一臺(tái)拖拉機(jī)每小時(shí)可以運(yùn)貨2噸。照這樣計(jì)算,6臺(tái)這樣的拖拉機(jī)5小時(shí)可以運(yùn)貨多少噸?
56.有59名同學(xué)去游船。每5人租一只小船,共要租多少只小船?
57.飼養(yǎng)組養(yǎng)了68只小兔。如果每只籠子里養(yǎng)6只,要多少只籠子?
58.一根長(zhǎng)繩25米,每2米做一根跳繩,一共可以做多少根跳繩?
59.一本故事書86頁(yè),小華每天看6頁(yè),第幾天看完?
60.一張課桌60元,比一張椅子貴34元,一套課桌椅多少元?
61.一輛車上午8時(shí)從上海開(kāi)出,每上時(shí)行55千米,晚上6時(shí)到達(dá)南京。你知道上海到南京有多遠(yuǎn)嗎?
62.王伯伯家養(yǎng)白兔45只,養(yǎng)的黑兔比白兔少18只,王伯伯家一共養(yǎng)兔多少只?
63.李大伯家去年養(yǎng)雞800只,今年養(yǎng)雞的只數(shù)是去年的3倍,今年多養(yǎng)了多少只?
64.商店運(yùn)來(lái)梨455千克,運(yùn)來(lái)的蘋果比梨的3倍少160千克,商店運(yùn)來(lái)蘋果多少千克?
65.從甲城到乙城的鐵路長(zhǎng)560千米,一列火車以每小時(shí)118千米的速度從甲城開(kāi)往乙城,3小時(shí)后能到達(dá)嗎?
66.王師傅上午加工零件48個(gè),下午加工零件56個(gè),照這樣計(jì)算,一個(gè)星期工作5天,共加工零件多少個(gè)?
67.科技小組有男同學(xué)58名,女同學(xué)44名,文藝小組人數(shù)是科技小組的2倍。文藝小組共有多少人?
68.小麗跑步去學(xué)校,平均每分鐘跑84米。3分鐘后剛好到了全程的一半,她家到學(xué)校大約多少米?
69.學(xué)校籃球場(chǎng)長(zhǎng)26米,寬14米。沿籃球場(chǎng)的四周跑5圈,共跑了多少米?
70.王師傅和李師傅共同加工一批零件,王師傅完成了其中的4/9,李師傅完成了其中的5/9,兩人誰(shuí)加工得多?多加工這批零件的幾分之幾?
71,寶寶有十個(gè)蘋果,買進(jìn)二個(gè),決定將這些蘋果送給三個(gè)朋友,每個(gè)朋友平均有多少個(gè)蘋果?
72、紅星小學(xué)去年植樹140棵,今年植樹是去年的3倍。今年比去年多植樹多少棵?
73、同學(xué)們分成兩組到菜園摘柿子。第一組摘了14筐,第二組比第一組少摘了2筐,每筐重25千克。第二組摘了多少千克?
74、動(dòng)物園的一只大象每天吃450千克食物,一只熊貓4天吃72千克食物。一只大象每天的食量是一只熊貓的多少倍?它比熊貓每天多吃多少食物?
75、同學(xué)們?cè)詷?。一班要?8棵,二班要栽67棵。平均栽5行,每行栽多少棵?(列綜合算式解答。)
76、一艘客輪8月30日11:00從重慶開(kāi)出,9月1日17:00到達(dá)武漢。從重慶到武漢的航程是1354千米。除去中途在碼頭上停船時(shí)間6小時(shí),估算這艘客輪每小大約行多少千米?
77、學(xué)校組織同學(xué)去博物館參觀。三年級(jí)去了62人,四年級(jí)去的人數(shù)是三年級(jí)的2倍。兩個(gè)年級(jí)一共去了多少人?
78、中、高年級(jí)同學(xué)聽(tīng)科學(xué)家作報(bào)告中年級(jí)有84人參加,高年級(jí)參加的人數(shù)是中年級(jí)的3倍。聽(tīng)報(bào)告的一共有多少人?
79、王老師要批改48篇作文,已經(jīng)批改了12篇。如果每小時(shí)批改6篇,剩下的作文要多少小時(shí)批改完呢?
80、光明電影院原來(lái)每天放映3場(chǎng)電影,現(xiàn)在每天放映1場(chǎng),平均每場(chǎng)賣票160張。現(xiàn)在每天可以賣多少?gòu)埰??(列綜合算式解答。)
81、中營(yíng)村去年修了2條水渠,總長(zhǎng)604米,今年修的水渠長(zhǎng)度是去年的3倍。今年比去年多修多少米?
82、南京長(zhǎng)江大橋正橋有10個(gè)橋孔,其中9個(gè)橋孔的長(zhǎng)都是160米,還有一個(gè)橋孔的長(zhǎng)是128米。正橋(10個(gè)橋孔)長(zhǎng)多少米?
83、兩輛車運(yùn)蘋果,第一輛車運(yùn)35筐,第二輛車運(yùn)38筐。第二輛車比第一輛多運(yùn)75千克。平均每筐有蘋果多少千克?第一輛車運(yùn)了多少千克?
84、小紅家今年養(yǎng)了4箱蜜蜂,共收蜂蜜380千克,去年平均每箱收蜂蜜84千克。今年每箱平均產(chǎn)蜜量比去年高多少千克?
85、一艘客輪8月30日11:00從重慶開(kāi)出,9月1日17:00到達(dá)武漢。從重慶到武漢的航程是1354千米。除去中途在碼頭上停船時(shí)間6小時(shí),估算這艘客輪每小大約行多少千米?
86、同學(xué)們鍛煉身體。參加打球的有40人,參加跑步的比參加打球的多280人。參加跑步的是參加打球的多少倍
87、(1)除數(shù)是32,商是7,余數(shù)是25,被除數(shù)是多少?
(2)被除數(shù)是359,商是8,除數(shù)和余數(shù)各是多少?
88、一個(gè)養(yǎng)禽專業(yè)戶養(yǎng)雞980只,養(yǎng)的雞比鴨的2倍多20只。養(yǎng)鴨多少只?
89、小剛家種了5棵蘋果樹,今年一共收蘋果215千克。有4棵蘋果樹平均每棵收蘋果45千克,另一棵收蘋果多少千克?
90、在方框里分別填哪幾個(gè)數(shù)字,才能使商是一位數(shù),并且沒(méi)有余數(shù)?
91、一個(gè)編筐專業(yè)戶28天編了242個(gè)筐,比原計(jì)劃多編了18個(gè)筐,原計(jì)劃每天編多少個(gè)筐?
92、副食商店第一天賣出雞蛋150千克,第二天比第一天賣出的2倍少75千克。第二天賣出雞蛋多少千克?
93、學(xué)校開(kāi)運(yùn)動(dòng)會(huì)。16個(gè)班共有384名運(yùn)動(dòng)員,平均每個(gè)班有多少名運(yùn)動(dòng)員?
94、一個(gè)木工組要做1450張課桌。已經(jīng)做了640張,剩下的要用30天做完。平均每天要做多少?gòu)垼?/p>
95、學(xué)校買來(lái)42包練習(xí)本,每包20本。每班分84本,能夠分給幾人班?
96、勝利果園收了118筐蘋果,一輛小貨車每次運(yùn)15筐,需要運(yùn)幾次?最后一次運(yùn)多少筐?
97、小蘭在計(jì)算除法的時(shí)候,把除數(shù)65寫成56,結(jié)果得到的商是13還余52。想一想:正確的商應(yīng)該是多少?
98、同學(xué)們大掃除,打掃操場(chǎng)的有36人,是打掃教室的人數(shù)的3倍,打掃院子的有27人。參加大掃除的一共有多少人?
99、同學(xué)們收核桃,一工收776克,每25千克裝一筐,可以裝多少筐,還剩多少千克?
100、用電孵箱孵小雞一次可孵2880只,一只母雞一次能孵16只。用電孵箱一次孵小雞的只數(shù)是一只母雞一次孵的多少倍?
101、小燕子孵出以后,大燕子在26天里給一只小燕子一共喂養(yǎng)910只害蟲,平均每天喂多少只?
102、在一條長(zhǎng)24千米的公路的一邊,一共栽了4300棵楊樹,3020棵柳樹。平均每千米栽了多少棵樹?
103、同學(xué)位要栽2500棵樹,如果每個(gè)同學(xué)栽4棵,大約需要多少同學(xué)參加植樹勞動(dòng)?
104、學(xué)校運(yùn)來(lái)3920千克煤,計(jì)劃燒5個(gè)月,平均每個(gè)月大約燒多少千克?
105、欣華旅館6月份接待旅客3046人,7月份接待的旅客比6月份的2倍少968人。7月份大約接待旅客多少人?
106、一座樓房有6層,分為4個(gè)單元。每個(gè)單元第一層住2戶,第二層到第六層各住3戶,這座樓房一共可以住多少戶?
107、一枝鉛筆原來(lái)長(zhǎng)8厘米7毫米,用去了9毫米?,F(xiàn)在這枝鉛筆有多長(zhǎng)?
108、武漢長(zhǎng)江大橋長(zhǎng)1670米,南京長(zhǎng)江大橋長(zhǎng)6772米。哪座橋長(zhǎng)?長(zhǎng)出多少米?
109、運(yùn)動(dòng)場(chǎng)跑道一圈是400米。小明堅(jiān)持每天跑3圈,他每天跑多少米?
110、從甲地到乙地,如果騎自行車,每小時(shí)行15千米,4小時(shí)到達(dá)。如果乘汽車,只需2小時(shí),汽車每小時(shí)行多少千米?
111、一幢宿舍樓,每?jī)蓪訕侵g有20個(gè)臺(tái)階,每個(gè)臺(tái)階的高度是15厘米。一個(gè)同學(xué)從一樓走到三樓,他升高了多少米?
112、工人叔叔把機(jī)器裝在載重4噸的卡車上,每行放4臺(tái),放了3行。每臺(tái)機(jī)器重300千克。這些機(jī)器的重量超過(guò)這輛卡車的載重量嗎?(口答)
113、鴿子每分鐘可以飛2千米,雨燕每分鐘飛的距離比鴿子多3千米。雨燕每小時(shí)可以飛多少千米?
114、一個(gè)糧店運(yùn)來(lái)5噸大米,前2天賣出1700千克,剩下的3天賣完。前2天平均每天賣多少千克?后3天平均每天賣多少千克?
115、一年級(jí)有120個(gè)新同學(xué)。40個(gè)人分一班,分成了幾班?
116、刺繡廠的工人30天用機(jī)器刺鄉(xiāng)240塊桌布,平均每天刺鄉(xiāng)多少塊?
117、一架直升飛機(jī)每小時(shí)飛行360千米,一列火車每小時(shí)行90千米。這架直升飛機(jī)每小時(shí)行的千米數(shù)是火車的多少倍?
118、一個(gè)紡織廠織出窗簾布846米,織出的床單布是窗簾布的3倍??棾龅拇矄尾急却昂煵级喽嗌倜??
119、從450里減去一個(gè)整十?dāng)?shù),得到的差再除以這個(gè)整十?dāng)?shù),商是8。這個(gè)整十?dāng)?shù)是多少?
120、一個(gè)節(jié)火車車廂可以裝60噸貨物,要運(yùn)480噸貨物,需要幾節(jié)車廂。