第一篇:高中數(shù)列經(jīng)典例集
一、經(jīng)典例題剖析
考點(diǎn)一:等差、等比數(shù)列的概念與性質(zhì)
例題1.(1)數(shù)列{an}和{bn}滿足an?1(b1?b2???bn)(n=1,2,3…),n
(1)求證{bn}為等差數(shù)列的充要條件是{an}為等差數(shù)列。
(2)數(shù)列{an}和{cn}滿足cn?an?2an?1(n?N*),探究{an}為等差數(shù)列的充分必要條例題2.已知數(shù)列?an?的首項(xiàng)
bn?an?n2a1?2a?1an?2an?1?n2?4n?2(a是常數(shù),且a??1),(n?2),數(shù)列?bn?的首項(xiàng)b1?a,(n?2)。
(1)證明:?bn?從第2項(xiàng)起是以2為公比的等比數(shù)列;
(2)設(shè)Sn為數(shù)列?bn?的前n項(xiàng)和,且?Sn?是等比數(shù)列,求實(shí)數(shù)a的值;
(3)當(dāng)a>0時(shí),求數(shù)列?an?的最小項(xiàng)。
例題4.已知數(shù)列?an?滿足a1?an?11(n?2,n?N).,an?n4?1an?1?2
(Ⅰ)求數(shù)列?an?的通項(xiàng)公式an;(Ⅱ)設(shè)bn?1
an2,求數(shù)列?bn?的前n項(xiàng)和Sn;(Ⅲ)設(shè)cn?ansin
(2n?1)?4?,數(shù)列?cn?的前n項(xiàng)和為Tn.求證:對任意的n?N,Tn?. 72
考點(diǎn)三:數(shù)列與不等式的聯(lián)系
例題5.已知??為銳角,且tan??2?1,函數(shù)f(x)?x2tan2??x?sin(2??),數(shù)列{an}的首項(xiàng)4
a1?1,an?1?f(an).2
⑴ 求函數(shù)f(x)的表達(dá)式;
⑵ 求證:an?1?an;
⑶ 求證:1?111?????2(n?2,n?N*)1?a11?a21?an
例題6已知數(shù)列?an?滿足a1?1,an?1?2an?1n?N
(Ⅰ)求數(shù)列?an?的通項(xiàng)公式; ???
bn?1bnb1?1b2?1b3?1444?4?(a?1)(Ⅱ)若數(shù)列?bn?滿足,證明:?an?是等差數(shù)列; n
(Ⅲ)證明:1112??????n?N?? a2a3an?13
第二篇:高中經(jīng)典數(shù)列習(xí)題
4.在等比數(shù)列{an}中,已知Sn=3n+b,則b的值為_______.
6.數(shù)列{an}中,a1,a2-a1,a3-a2,…,an-an-1…是首項(xiàng)為
1、公比為1的等比數(shù)列,3則an等于。
3.在等比數(shù)列{an}中,已知n∈N*,且a1+a2+…+an=2n-1,那么a12+a22+…+an2等于。
8.已知關(guān)于x的二次方程anx2?an?1x?1?0(n?N?)的兩根?,?滿足
6??2???6??3,且a1?1
(1)試用an表示an?1(2)求證:{an?是等比數(shù)列
(3)求數(shù)列的通項(xiàng)公式an(4)求數(shù)列{an}的前n項(xiàng)和Sn
11.已知數(shù)列?log2xn?是公差為1 的等差數(shù)列,數(shù)列?xn?的前100項(xiàng)的和等于100,求數(shù)列23?xn?的前200項(xiàng)的和。
12.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,其中an?0,a1為常數(shù),且?a1、Sn、an?1成等差數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn?1?Sn,問:是否存在a1,使數(shù)列{bn}為等比數(shù)列?若存在,求出a1的值; 若不存在,請說明理由.
5.已知函數(shù)f(x)?cosx,x?(?
2,3?),若方程f(x)?a有三個(gè)不同的根,且從小到大依次
331,an?2?an?1?an(n?N*).222成等比數(shù)列,則a=。7.?dāng)?shù)列{an}滿足:a1?1,a2?
(1)記dn?an?1?an,求證:{dn}是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)令bn?3n?2,求數(shù)列{an?bn}的前n項(xiàng)和Sn。
第三篇:高中《數(shù)列》專題復(fù)習(xí)題
《數(shù)列》專題復(fù)習(xí)題
1.等差數(shù)列{an}中,a1=1,a3+a5=14,其前n項(xiàng)和Sn=100,則n=()
(A)9(B)10(C)11(D)1
22.等差數(shù)列{an}的前n項(xiàng)和為Sn,若S2?2,S4?10,則S6等于()
(A)12(B)18(C)24(D)42
3.已知數(shù)列的通項(xiàng)an??5n?2,則其前n項(xiàng)和Sn?.
4.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,若an?
56161,則S5等于()n(n?1)1 30A.1B.C.D.
5.設(shè){an}為公比q>1的等比數(shù)列,若a2004和a2005是方程4x2?8x?3?0的兩根,則 a2006?a2007?__________.6.設(shè)等差數(shù)列?an?的公差d不為0,a1?9d.若ak是a1與a2k的等比中項(xiàng),則k?()
A.2B.4C.6D.8
7.在數(shù)列?an?中,a1?2,an?1?4an?3n?1,n?N*.(Ⅰ)證明數(shù)列?an?n?是等比數(shù)列;
(Ⅱ)求數(shù)列?an?的前n項(xiàng)和Sn;
8.已知實(shí)數(shù)列{an}是等比數(shù)列,其中a7?1,且a4,a5?1,a6成等差數(shù)列.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{an}的前n項(xiàng)和記為Sn,證明: Sn<128(n?1,2,3,…).9.設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和.已知S3?7,且a1?3,3a2,a3?4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的等差數(shù)列.
(2)令bn?lna3n?1,n?1,求數(shù)列{bn}的前n項(xiàng)和T. 2,?,10.設(shè){an}是等差數(shù)列,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1?b1?1,a3?b5?21,a5?b3?1
3(Ⅰ)求{an},{bn}的通項(xiàng)公式;(Ⅱ)求數(shù)列??an??的前n項(xiàng)和S?bn.
n?
11.?dāng)?shù)列?an?的前n項(xiàng)和為Sn,a1?1,an?1?2Sn(n?N*).(Ⅰ)求數(shù)列?an?的通項(xiàng)an;(Ⅱ)求數(shù)列?nan?的前n項(xiàng)和Tn.答案:
B,C,?n(5n?1)2,B,-18,B
7.(Ⅰ)證明:由題設(shè)an?1?4an?3n?1,得
an?1?(n?1)?4(an?n),n?N*.
又a1?1?1,所以數(shù)列?an?n?是首項(xiàng)為1,且公比為4的等比數(shù)列.(Ⅱ)解:由(Ⅰ)可知a?1n?n?4n,于是數(shù)列?an?的通項(xiàng)公式為
an?
1?n.所以數(shù)列?a項(xiàng)和S4n?1n?
4n?的前nn?3?n(n?1)
.(Ⅲ)證明:對任意的n?N*,S4n?1?1(n?1)(n?2)
?4n?1n(n?1)?n?1?4Sn?3?2?4??3?2?? ??1
(3n2?n?4)≤0.
所以不等式Sn?1≤4Sn,對任意n?N*皆成立. 8.解:(Ⅰ)設(shè)等比數(shù)列?an?的公比為q(q?R),由a647?a1q?1,得a1?q?6,從而a4?a1q3?q?3,a5?a1q?q?2,a56?a1q?q?1. 因?yàn)閍4,a5?1,a6成等差數(shù)列,所以a4?a6?2(a5?1),即q?3?q?1?2(q?2?1),q?1(q?2?1)?2(q?2?1).
?1
所以q?1.故aa?16?qn?1?64?1?n2n?1qn?q???2??
.
??1?n64?1??
???(Ⅱ)San1(1?q)1?q????2?????1?n?n??128?1?1????2
??128.
??2????a?a9.
解:(1)由已知得12?a3?7,:???(a1?3)?(a3?4)
解得a2?2. ?2
?3a2.設(shè)數(shù)列{a}的公比為q,由a,可得a2
n2?21?q,a3?2q.
又S3?7,可知2?2?2q?7,即2q2?5q?2?0,解得q1q1?2,q2?2
.
由題意得q?1,?q?2.?a1?1.故數(shù)列{an}的通項(xiàng)為an?2n?1.(2)由于bn?lna3n?1,n?1,2,?,由(1)得a3n?1?23n?bnn?ln23?3nln2又bn?1?bn?3ln2n?{bn}是等差數(shù)列.?Tn?b1?b2???bn
?
n(b1?bn)
?
n(3ln2?3ln2)?3n(n?1)2ln2.故T3n(n?1)
n?
ln2.
4??1?2d?q?21,10.解:(Ⅰ)設(shè)?an?的公差為d,則依題意有q?0且? ?bn?的公比為q,2
??1?4d?q?13,解得d?2,q?2.所以a1n?1?(n?1)d?2n?1,bn?qn??2n?1.(Ⅱ)
anb?2n?1
n?1. nS352n?1?
21?22???n?32n?2?2n?12
n?1,① 2S2?3?52n?32???2n?1
n?2n?3?2
n?2,②
②-①得S?2?2222n2??1
n?222???2n?2?2
n?1,?2?2???1?2?1?12?1
???n?122n?2???2n?1
1?
?2?2?n?1?2n?12n?31?12n?1?6?2n?1. 2
11.解:(Ⅰ)?aSn?1
n?1?2Sn,?Sn?1?Sn?2Sn,?S?3. n
又?S1?a1?1,?數(shù)列?Sn?是首項(xiàng)為1,公比為3的等比數(shù)列,Sn?1n?3(n?N*).
當(dāng)n≥2時(shí),an?2Sn?1?2?3n?2(n≥2),?a?1,n?1,n?????
3n?2,n≥2.(Ⅱ)Tn?a1?2a2?3a3???nan,當(dāng)n?1時(shí),T1?1;
當(dāng)n≥2時(shí),Tn?1?4?30?6?31???2n?3n?2,…………①
3T1n?3?4?31?6?32???2n?3n?,………………………②
①?②得:?2Tn??2?4?2(31?32???3n?2)?2n?3n?1
?23(1?3n?2?2)
?2n?3n?11?3
??1?(1?2n)?3n?1.
?T12??n?
??n?1?
2??
3n?1(n≥2). 又?T1?a1?1也滿足上式,?T1????n?1?
n?
2??
3n?1(n?N*2).
數(shù)列單元復(fù)習(xí)題
(一)答案
一、選擇題(本大題共10小題,每小題5分,共50分)
1.C2.A3.D4.B5.C6.C7.A8.B9.B10.B
二、填空題(本大題共6小題,每小題5分,共30分)
11.-9
112.-113.-11014.515.616.9
三、解答題(本大題共5小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟)17.(本小題滿分12分)在等差數(shù)列{an}中,a1=-60,a17=-12.(1)求通項(xiàng)an;(2)求此數(shù)列前30項(xiàng)的絕對值的和.考查等差數(shù)列的通項(xiàng)及求和.【解】(1)a17=a1+16d,即-12=-60+16d,∴d=3 ∴an=-60+3(n-1)=3n-63.(2)由an≤0,則3n-63≤0?n≤21,∴|a1|+|a2|+…+|a30|=-(a1+a2+…+a21)+(a22+a23+…+a30)
=(3+6+9+…+60)+(3+6+…+27(3+60)(3+27)
2×20+2 ×9=765.18.(本小題滿分14分)在等差數(shù)列{an}中,若a1=25且S9=S17,求數(shù)列前多少項(xiàng)和最大.考查等差數(shù)列的前n項(xiàng)和公式的應(yīng)用.【解】 ∵S+9×(9-1)17×(17-1)
9=S17,a1=25,∴9×252 d=17×25+2d
解得d=-2,∴S25n+n(n-1)
2(-2)=-(n-13)2
n=+169.由二次函數(shù)性質(zhì),故前13項(xiàng)和最大.注:本題還有多種解法.這里僅再列一種.由d=-2,數(shù)列an為遞減數(shù)列.an=25+(n-1)(-2)≥0,即n≤13.5 ∴數(shù)列前13項(xiàng)和最大.19.(本小題滿分14分)數(shù)列通項(xiàng)公式為an=n2-5n+4,問
(1)數(shù)列中有多少項(xiàng)是負(fù)數(shù)?(2)n為何值時(shí),an有最小值?并求出最小值.考查數(shù)列通項(xiàng)及二次函數(shù)性質(zhì).【解】(1)由an為負(fù)數(shù),得n2-5n+4<0,解得1 5n=n2-5n+42)2-4,∴對稱軸為n=2 =2.5 又∵n∈N*,故當(dāng)n=2或n=3時(shí),an有最小值,最小值為22-5×2+4=-2.20.(本小題滿分15分)甲、乙兩物體分別從相距70 m的兩處同時(shí)相向運(yùn)動,甲第一分鐘走2 m,以后每分鐘比前1分鐘多走1 m,乙每分鐘走5 m.(1)甲、乙開始運(yùn)動后,幾分鐘相遇;(2)如果甲、乙到達(dá)對方起點(diǎn)后立即折返,甲繼續(xù)每分鐘比前1分鐘多走1 m,乙繼續(xù)每分鐘走5 m,那么開始運(yùn)動幾分鐘后第二次相遇? 考查等差數(shù)列求和及分析解決問題的能力.【解】(1)設(shè)n分鐘后第1次相遇,依題意得2n+n(n-1) 2+5n=70 整理得:n2+13n-140=0,解得:n=7,n=-20(舍去)∴第1次相遇在開始運(yùn)動后7分鐘.(2)設(shè)n分鐘后第2次相遇,依題意有:2n+n(n-1)+5n=3×70 整理得:n2 +13n-6×70=0,解得:n=15或n=-28(舍去)第2次相遇在開始運(yùn)動后15分鐘.21.(本小題滿分15分)已知數(shù)列{a的前n項(xiàng)和為S1 n}n,且滿足an+2Sn·Sn-1=0(n≥2),a1=2.證:{1 S}是等差數(shù)列;(2)求an表達(dá)式; n (3)若bn=2(1-n)an(n≥2),求證:b22+b32+…+bn2<1.考查數(shù)列求和及分析解決問題的能力.【解】(1)∵-an=2SnSn-1,∴-Sn+Sn-1=2SnSn-1(n≥2)S1111 n≠0,∴Sn-Sn-1 =2,又S1 =a1 =2 ∴{1 Sn }是以2為首項(xiàng),公差為2的等差數(shù)列.(2)由(11S =2+(n-1)2=2n,∴S1 n=n2n 當(dāng)n≥2時(shí),a1 n=Sn-Sn-1=-2n(n-1) ?1 ?(n=n=1時(shí),a1 21)1=S1=2,∴an= ? -1 2n(n-1) (n≥2)(3)由(2)知b=1 n=2(1-n)ann ∴b2+b2 11111123+…+bn22 +3+…+n 1×2 +2×3+…+(n-1)n =(1111111 2)+2-3)+…+(n-1 -n)=1-n <1.(1)求 高中數(shù)列精練 (二)例1在數(shù)列{an}中,a1=2,an+1=an+ln(1?),則an= A.2+lnnB.2+(n-1)lnnC.2+nlnnD.1+n+lnn 例2在數(shù)列{an}中,a1=1,an+1=(1n ? n?)a (1)設(shè)bn?1nan,求數(shù)列{an}的通項(xiàng)公式; n1nn?12 (2)求數(shù)列{an}的前n項(xiàng)和。 例3已知數(shù)列{an},滿足a1=1,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),則{an}的通項(xiàng)an=_____ 例4設(shè)數(shù)列{an}的前n項(xiàng)的和sn,已知a1?1,sn?1?4an?2 (1)設(shè)bn?an?1?2an,證明數(shù)列{bn}是等比數(shù)列; (2)求數(shù)列{an}的通項(xiàng)公式。 例5設(shè)數(shù)列{an}的前n項(xiàng)的和 s n ?a n ?? 2 n ? 1 ? , n? 1 , 2 ,3...求首項(xiàng)a1與通項(xiàng)an。 例6已知數(shù)列{an}滿足a1=1,a2=3,an?2?3an?1?2an(n?N?)。 (1)證明:數(shù)列?an?2?an?是等比數(shù)列; (2)求數(shù)列{an}的通項(xiàng)公式; 431323 ?1?例7已知數(shù)列{an}的前項(xiàng)和Sn=-an-???2?n?1n+2(n為正整數(shù)),令bn=2an,求證數(shù)列 {bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式 例8 設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=a,an?1=Sn+3n(n?N?),(Ⅰ)設(shè)bn=sn-3n,求數(shù)列{bn}的通項(xiàng)公式; (Ⅱ)若an?1≥an(n?N?),求a的取值范圍。 例9.已知數(shù)列{an}中,a1=1,點(diǎn)?n,2an?1?an?在直線y?x上,其中n?1,2,3? 2 (Ⅰ)令bn?an?1?an?3,求證數(shù)列{bn}是等比數(shù)列; (Ⅱ)求數(shù)列{an}的通項(xiàng)。 例10已知數(shù)列{an}的各項(xiàng)都是正數(shù),且滿足:a0?1,an?1? 求數(shù)列的{an}通項(xiàng)公式an 1an(4?an),n?N.2 例11已知a1?2,點(diǎn)?an,an?1?在函數(shù)f?x??x?2x的圖像上,其中n?1,2,3?證明數(shù)2 列l(wèi)g?1?an?是等比數(shù)列 例12已知數(shù)列?an?滿足:a1? 求數(shù)列?an?的通項(xiàng)公式; ??3nan?13,且an?(n?2,n?N*)22an?1?n?1 《數(shù)列》專題復(fù)習(xí)題 1.等差數(shù)列{an}中,a1=1,a3+a5=14,其前n項(xiàng)和Sn=100,則n=() (A)9(B)10(C)11(D)12 2.等差數(shù)列{an}的前n項(xiàng)和為Sn,若S2?2,S4?10,則S6等于() (A)12(B)18(C)24(D)42 3.已知數(shù)列的通項(xiàng)an??5n?2,則其前n項(xiàng)和Sn?. 4.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,若an? A.1B.1,則S5等于()n(n?1)56 C.16 D.1 30 5.設(shè){an}為公比q>1的等比數(shù)列,若a2004和a2005是方程4x2?8x?3?0的兩根,則a2006?a2007?__________.6.設(shè)等差數(shù)列?an?的公差d不為0,a1?9d.若ak是a1與a2k的等比中項(xiàng),則k?()A.2B.4C.6D.8 *7.在數(shù)列?an?中,a1?2,an?1?4an?3n?1,n?N. (Ⅰ)證明數(shù)列?an?n?是等比數(shù)列; (Ⅱ)求數(shù)列?an?的前n項(xiàng)和Sn; (Ⅲ)證明不等式Sn?1≤4Sn,對任意n?N皆成立. 8.已知實(shí)數(shù)列{an}是等比數(shù)列,其中a7?1,且a4,a5?1,a6成等差數(shù)列.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式; (Ⅱ)數(shù)列{an}的前n項(xiàng)和記為Sn,證明: Sn<128(n?1,2,3,…).* 3a2,a3?4構(gòu)成等差數(shù)列. 9.設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和.已知S3?7,且a1?3,(1)求數(shù)列{an}的等差數(shù)列.,2,?,(2)令bn?lna3n?1,n?1求數(shù)列{bn}的前n項(xiàng)和T. 10.設(shè){an}是等差數(shù)列,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1?b1?1,a3?b5?21,a5?b3?13 (Ⅰ)求{an},{bn}的通項(xiàng)公式;(Ⅱ)求數(shù)列??an??的前n項(xiàng)和Sn. b?n? *11.?dāng)?shù)列?an?的前n項(xiàng)和為Sn,a1?1,an?1?2Sn(n?N). (Ⅰ)求數(shù)列?an?的通項(xiàng)an;(Ⅱ)求數(shù)列?nan?的前n項(xiàng)和Tn.第四篇:高中數(shù)列精選(二)
第五篇:高中《數(shù)列》專題復(fù)習(xí)題