第一篇:談數(shù)列與高次不等式的證明
龍?jiān)雌诳W(wǎng) http://.cn
談數(shù)列與高次不等式的證明
作者:蔡漢書
來源:《讀寫算》2012年第95期
關(guān)于高次不等式的證明,除了常用的數(shù)學(xué)歸納法之外,還有利用均值不等式,利用二項(xiàng)式定理,利用等比數(shù)列求和公式等方法.本文就以上方法以外再介紹一種新的不等式的證明方法--構(gòu)造單調(diào)數(shù)列法.例1 已知,且,求證 :
證明 設(shè)數(shù)列 的通項(xiàng)公式為.
第二篇:數(shù)列與不等式證明專題
數(shù)列與不等式證明專題
復(fù)習(xí)建議:
1.“巧用性質(zhì)、減少運(yùn)算量”在等差、等比數(shù)列的計(jì)算中非常重要,但用“基本量法”并樹立“目標(biāo)意識”,“需要什么,就求什么”,既要充分合理地運(yùn)用條件,又要時(shí)刻注意題的目標(biāo),往往能取得與“巧用性質(zhì)”解題相同的效果2.歸納——猜想——證明體現(xiàn)由具體到抽象,由特殊到一般,由有限到無限的辯證思想.學(xué)習(xí)這部分知識,對培養(yǎng)學(xué)生的邏輯思維能力,計(jì)算能力,熟悉歸納、演繹的論證方法,提高分析、綜合、抽象、概括等思維能力,都有重大意義.
3.解答數(shù)列與函數(shù)的綜合問題要善于綜合運(yùn)用函數(shù)方程思想、化歸轉(zhuǎn)化思想等數(shù)學(xué)思想以及特例分析法,一般遞推法,數(shù)列求和及求通項(xiàng)等方法來分析、解決問題.
4.?dāng)?shù)列與解析幾何的綜合問題解決的策略往往是把綜合問題分解成幾部分,先利用解析幾何的知識以及數(shù)形結(jié)合得到數(shù)列的通項(xiàng)公式,然后再利用數(shù)列知識和方法求解. 證明方法:(1)先放縮后求和;(2)先求和后放縮(3)靈活運(yùn)用 例1.?dāng)?shù)列?a
2n?n?滿足a1?1,a2?2,an?2?(1?cos2)asin2n?
n?2,n?1,2,3,?.(Ⅰ)求a3,a4,并求數(shù)列?an?的通項(xiàng)公式;(Ⅱ)設(shè)ba2n?
1n?
a,Sn?b1?b2???bn.證明:當(dāng)n?6S?2?1n2n
n.分析:本題給出數(shù)列相鄰兩項(xiàng)的遞推關(guān)系,且要對n分奇偶性。
解:(Ⅰ)因?yàn)閍cos
2?
1?1,a2?2,所以a3?(1?2)a1?sin2
?
?a1?1?2,a4?(1?cos2?)a2?sin2??2a2?4.一般地,當(dāng)n?2k?1(k?N*)時(shí),a2
k?1)?2k?1?[1?cos
(22]a?sin22k?1
2k?12
? =a2k?1?1,即a2k?1?a2k?1?1.所以數(shù)列?a2k?1?是首項(xiàng)為
1、公差為1的等差數(shù)列,因此a2k?1?k.當(dāng)n?2k(k?N*)時(shí),a2k?2k?2?(1?cos
22)a2k?
2k?sin2
2?2a2k.所以數(shù)列?a2k?是首項(xiàng)為
2、公比為2的等比數(shù)列,因此a2k?2k.?故數(shù)列?a?n?1n?的通項(xiàng)公式為an??
2,n?2k?1(k?N*),?n?22,n?2k(k?N*).(Ⅱ)由(Ⅰ)知,ba2n?1n?a?n
12?3n2,Sn??23???n,①2n22222
12S12?23n
n?222?24???2
n?1② 1①-②得,1[1?(1)2]2S1111nn?2?22?23???2n?2n?1??n1n1?2n?1?1?2n?2n?1.2所以S1nn?2
n?2?2n?1?2n?2?2
n.要證明當(dāng)n?6時(shí),S1n(n?2)
n?2?n成立,只需證明當(dāng)n?6時(shí),2n
?1成立.證法一
(1)當(dāng)n = 6時(shí),6?(6?2)26?4864?
34?1成立.(2)假設(shè)當(dāng)n?k(k?6)時(shí)不等式成立,即k(k?2)
k
?1.則當(dāng)n=k+1時(shí),(k?1)(k?3)k(k?2)(k?1)(k?2k?1?2k?3)2k(k?2)?(k?1)(k?3)
(k?2)?2k
?1.由(1)、(2)所述,當(dāng)n≥6時(shí),n(n?1)2
2?1.即當(dāng)n≥6時(shí),Sn?2?
1n
.證法二令cn(n?2)n?
22(n?6),則c(n?1)(n?3)n(n?2)3?n2
n?1?cn?2n?1?22?2
n?1?0.所以當(dāng)n?6時(shí),c6?8n?1?cn.因此當(dāng)n?6時(shí),cn?c6?64?
34?1.于是當(dāng)n?6時(shí),n(n?2)22?1.綜上所述,當(dāng)n?6時(shí),Sn
?2?1
n
.點(diǎn)評:本題奇偶分類要仔細(xì),第(2)問證明時(shí)可采用分析法。
例題2.已知?為銳角,且tan??
2?1,函數(shù)f(x)?x2tan2??x?sin(2??
?
4),數(shù)列{an}的首項(xiàng)a1?
2,an?1?f(an).(1)求函數(shù)f(x)的表達(dá)式;⑵ 求證:an?1?an;
⑶ 求證:
1?11?a?1???1?2(n?2,n?N*)11?a21?an
分析:本題是借助函數(shù)給出遞推關(guān)系,第(2)問的不等式利用了函數(shù)的性質(zhì),第(3)問是轉(zhuǎn)化成可以裂項(xiàng)的形式,這是證明數(shù)列中的不等式的另一種出路。
解:⑴tan2??
??2tan?2(?1)2
又∵?為銳角 ∴2?? ∴sin(2??)?1∴f(x)?x?x??1
441?tan2?1?(2?1)2
∴a2,a3,?an都大于0∴an?0∴an?1?an2
∴
則S?
1111121212111?(????)??(S?)S????? a22a2a3ana2an?13an?13a22an?1
⑵
an?1?an?an∵a1?
點(diǎn)評:數(shù)列中的不等式要用放縮來解決難度就較大了,而且不容易把握,對于這樣的題要多探索,多角度的思考問題。
⑶
1an?1
?
1111
???2
an?anan(1?an)an1?an111
??1?ananan?1
例題4.已知函數(shù)f(x)?x?ln?1?x?,數(shù)列?an?滿足0?a1?1,∴
111111111111
???????????????2?
an?1?f?an?;數(shù)列?bn?滿足b1?,bn?1?(n?1)bn, n?N*.求證:
1?a11?a21?ana1a2a2a3anan?1a1an?1an?1
∵a?(12)2?12?34, a?(34)2?3
234
?1 ,又∵n?2an?1?an∴an?1?a3?1
∴1?
2?
1a?2∴1?
1n1?a?1???1
?2
?1
11?a21?an
點(diǎn)評:把復(fù)雜的問題轉(zhuǎn)化成清晰的問題是數(shù)學(xué)中的重要思想,本題中的第(3)問不等式的證明更具有一般性。
例題3.已知數(shù)列?aa?
n?滿足a1?1,n?1?2an?1?n?N?
(Ⅰ)求數(shù)列?an?的通項(xiàng)公式;(Ⅱ)若數(shù)列?b?1n?滿足4b1?14b24
b3?1
?4bn?1?(an?1)bn,證明:?bn?是等差數(shù)列;
(Ⅲ)證明:
1?1a???1?2?n?N?a? 23an?13
分析:本例(1)通過把遞推關(guān)系式轉(zhuǎn)化成等比型的數(shù)列;第(2)關(guān)鍵在于找出連續(xù)三項(xiàng)間的關(guān)系;第(3)問關(guān)鍵在如何放縮 解:(1)?an?1?2an?1,?an?1?1?2(an?1)
故數(shù)列{an?1}是首項(xiàng)為2,公比為2的等比數(shù)列。?ann?1?2n,an?2?1
(2)?4
b1?14
b2?14
b3?1
?4bn?1?(an?1)bn,?4
(b1?b2???bn?n)
?2nbn
2(b1?b2???bn)?2n?nbn①2(b1?b2???bn?bn?1)?2(n?1)?(n?1)bn?1②
②—①得2bn?1
?2?(n?1)bn?1?nbn,即nbn?2?(n?1)bn?1③?(n?1)bn?1?2?nbn?2④ ④—③得2nbn?1
?nbn?nbn?1,即2bn?1?bn?bn?1所以數(shù)列{bn}是等差數(shù)列
(3)?
1a?1111
2n?1?1?2n?1?2?
設(shè)S
?
1n2an?a?1???1,2a3an?1
(Ⅰ)0?a(Ⅱ)aa2nn?1?an?1;n?1?2;
(Ⅲ)若a1?2
則當(dāng)n≥2時(shí),bn?an?n!.分析:第(1)問是和自然數(shù)有關(guān)的命題,可考慮用數(shù)學(xué)歸納法證明;第(2)問可利用函數(shù)的單調(diào)性;第(3)問進(jìn)行放縮。解:(Ⅰ)先用數(shù)學(xué)歸納法證明0?an?1,n?N*.(1)當(dāng)n=1時(shí),由已知得結(jié)論成立;(2)假設(shè)當(dāng)n=k時(shí),結(jié)論成立,即0?ak?1.則當(dāng)n=k+1時(shí),因?yàn)? 1x?1?xx?1 ?0,所以f(x)在(0,1)上是增函數(shù).又f(x)在?0,1?上連續(xù),所以f(0) ?1, 得an?1?an?an?ln?1?an??an??ln(1?an)?0,從而an?1?an.綜上可知0?an?1 ?an?1.(Ⅱ)構(gòu)造函數(shù)g(x)= x2 x2x2 -f(x)= ?ln(1?x)?x, 0 nn?>0,從而an?1?2 .(Ⅲ)因?yàn)?/p> b12b1b n?11?,n?1?2(n?1)bn,所以bn?0,n?1b?n,所以bba2nbn?1bnn? b??2?b1 1?n?n!————①由(Ⅱ)an?1?,知:an?1?an,n?1bn?2b122an2 所以 ana?a3?na?a1a2?n?1 ,因?yàn)閍a= a2aa1?, n≥2, 0?an?1?an?1.1 1a2n?12222 a2?a2 所以 a1a2?an?1?aan 1< n? 2221<2 n?12n = 2n ————②由①② 兩式可知: bn?an?n!.點(diǎn)評:本題是數(shù)列、超越函數(shù)、導(dǎo)數(shù)的學(xué)歸納法的知識交匯題,屬于難題,復(fù)習(xí)時(shí)應(yīng)引起注意。 例題5.已知函數(shù)f(x)=5?2x 16?8x,設(shè)正項(xiàng)數(shù)列?an?滿足a1=l,an?1?f?an?. (1)試比較a 5n與 4的大小,并說明理由; (2)設(shè)數(shù)列?b5n nn?滿足bn=4-an,記Sn=?bi.證明:當(dāng)n≥2時(shí),Sn<(2-1). i? 14分析:比較大小常用的辦法是作差法,而求和式的不等式常用的辦法是放縮法。 解:(1)a2ann?1 ? 5?16?8a,因?yàn)閍所以a7 31?1,2?,a3?4 .(2)因?yàn)閍n?0,an?1?0,所以16?8an?0,0?an?2.n8a55?2a48(a55 n5n?n?1?)3an?554?16?8a?4?32(2?a??,因?yàn)??an?0,所以an?1?與a?同號,nn)22?an 4n 4因?yàn)閍51?4??14?0,a5555 2?4?0,a3?4?0,?,an?4?0,即an?4 .(3)當(dāng)n?2時(shí),b531n?4?an?2?2?a?(5?a31 31n?1)???bn?1???bn?1?2bn?1,n?1422?an?122?5 所以bn ?2?bn?1?22?bn?2???2n?1b31?2n?,13?n (1?2n) 所以Sn?b1?b2???bn? 4?12???????1? ?2?? ?1?2?1 (2n?1) 點(diǎn)評:本題是函數(shù)、不等式的綜合題,是高考的難點(diǎn)熱點(diǎn)。 例題6.已知數(shù)列?a* n?中,a1?1,nan?1?2(a1?a2?...?an)?n?N? . (1)求a2,a3,a4;(2)求數(shù)列?an?的通項(xiàng)an;(3)設(shè)數(shù)列{b1n}滿足b1? 2,b12 n?1?abn?bn,求證:bn?1(n?k)k 分析:條件中有類似于前n項(xiàng)和的形式出現(xiàn),提示我們應(yīng)該考慮an=Sn-Sn-1(n≥2) 解:(1)a2?2,a3?3,a4?4(2)nan?1?2(a1?a2?...?an)① (n?1)an?2(a1?a2?...?an?1)②①—②得nan?1?(n?1)an?2an 即:nan?1 ?(n?1)a?1n?1aa3ann,ana?所以aa223n n?1a...?1...1 ?n(n?2) nna12an?112n?所以a*n ?n(n?N) (3)由(2)得:b1 ?12,b12 n?1?k bn?bn?bn?bn?1?...?b1?0,所以{bn}是單調(diào)遞增數(shù)列,故要證:bn?1(n?k)只需證bk?1 若k ?1,則b12?1顯然成立;若k?2,則b?1211? n?1kbn?bn?k bnbn?1?bn 所以 1b?1??1,因此:1?(1?1)?...?(1?1)?1??k?1?2? k?1 n?1bnkbkbkbk?1b2b1b1kk所以bk ? k k?1 ?1,所以bn?1(n?k)點(diǎn)評:與數(shù)列相關(guān)的不等式證明通常需要“放縮”,而放縮的“度”尤為關(guān)鍵,本題中 1b?(1?1)?...?(1?1)?1,這種拆分方法是數(shù)學(xué)中較高要求的變形.kbkbk?1b2b1b1 例題7.已知不等式 12?13???1n?1 [log2n],其中n為不大于2的整數(shù),[log2n]表示不超過log2n的最大整數(shù)。設(shè)數(shù)列?a1 n?的各項(xiàng)為正且滿足a1?b(b?0),anan?n? n?a(n?2,3,4?),證明: n?1 an? 2b 2?b[log,n?3,4,5? 2n] 分析:由條件an?111111n ? nan?a得: n?1 a??1 ?nan?1n a??n(n?2) nan?1 11a? ? 1n?1 an?2 n?1 ?? a?1?1以上各式兩邊分別相加得: 2a121a?1?1?1???1?1?1?1?1???1 ?1?1[log2n](n?3)na1nn?12anbnn?12 b2 = 2?b[log2n]2b? a2b n?2?b[logn] (n?3) 2本題由題設(shè)條件直接進(jìn)行放縮,然后求和,命題即得以證明。 例題8.已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn?2an?(?1)n,n?1(1)寫出數(shù)列{an}的前三項(xiàng)a1,a2,a5;(2)求數(shù)列{an}的通項(xiàng)公式; (3)證明:對任意的整數(shù)m?4,有1117 a????? 4a5am8 分析:⑴由遞推公式易求:a1=1,a2=0,a3=2; ⑵由已知得:an ?Sn?Sn?1?2an?(?1)n?2an?1?(?1)n?1(n>1) 化簡得:an?1anan?1anan?1n ?2an?1?2(?1) (?1)n??2(?1)n?1?2,(?1)n?23??2[(?1) n?1 ?2 3] 故數(shù)列{ an2(?1)n?3}是以?a1?23為首項(xiàng), 公比為?2的等比數(shù)列.故an21 (?1) n ?3?(?3)(?2)n?1∴a?23[2n?2?(?1)n]∴數(shù)列{a2 n n}的通項(xiàng)公式為:an?3 [2n?2?(?1)n].⑶觀察要證的不等式,左邊很復(fù)雜,先要設(shè)法對左邊的項(xiàng)進(jìn)行適當(dāng)?shù)姆趴s,使之能夠求和。而左邊= 1a?1a???1?3[111 22?1?23?1???2m?2?(?1) m],如果我們把上式中的分母中的?1去掉,就可利45am2用等比數(shù)列的前n項(xiàng)公式求和,由于-1與1交錯(cuò)出現(xiàn),容易想到將式中兩項(xiàng)兩項(xiàng)地合并起來一起進(jìn)行放縮,嘗試知: 11111 22?1?123?1?122?1 23,23?1?24?1?23?24,因此,可將 ?1 保留,再將后面的項(xiàng)兩兩組合后放縮,即可求和。這里需要對m進(jìn)行分類討論,(1)當(dāng)m為偶數(shù)(m?4)時(shí),1a?1???1a?1?(1?1)???(1?1)?1?3(1113?4???m?2)4a5ma4a5a6am?1am 22222 ? 13112?2?4(1?137 m?4)?2?8?8(2)當(dāng)m是奇數(shù)(m?4)時(shí),m?1為偶數(shù),1a?1???1?1?1a?1???1?1?7 4a5ama45a6amam?18 所以對任意整數(shù)m?4,有 a?a??? ?7。本題的關(guān)鍵是并項(xiàng)后進(jìn)行適當(dāng)?shù)姆趴s。45am8 例題9.定義數(shù)列如下:a2 ?1?2,an?1?an?an?1,n?N 證明:(1)對于n?N? 恒有a? n?1?an成立。(2)當(dāng)n?2且n?N,有an?1?anan?1?a2a1?1成立。(3)1? 112a?12006 ? a???1 ?1。12a2006 分析:(1)用數(shù)學(xué)歸納法易證。 (2)由a2 n?1?an?an?1得:an?1?1?an(an?1) ?an?1?an?1(an?1?1)??a2?1?a1(a1?1) 以上各式兩邊分別相乘得:an?1?1?anan?1?a2a1(a1?1),又a1?2 ?an?1?anan?1?a2a1?1 (3)要證不等式1? 11122006 ? a????1?1,可先設(shè)法求和:1?1???,1a2a2006a1a2a2006 再進(jìn)行適當(dāng)?shù)姆趴s。?a111n?1?1?an(an?1)? aa?a?1?1? a n?1?1 ? n?1nanan?1n?1?1 ? 1111a?????(?1)?(1?1)???(1?1)1a2a2006a1?1a2?1a2?1a3?1a2006?1a2007?1? 1a1?a?1? ?11?2007?1 aa 12?a2006又a?a2006 1a2?a20061 ?22006?1? 1a?1?1 2006?原不等式得證。 1a2?a20062 點(diǎn)評:本題的關(guān)鍵是根據(jù)題設(shè)條件裂項(xiàng)求和。 2012年數(shù)學(xué)一輪復(fù)習(xí)精品試題第六、七模塊 數(shù)列、不等式、推 理與證明 一、選擇題:本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的. 1.在等比數(shù)列{aa 2n}中,若a3a5a7a9a11=243,則a的值為()1 1A.9B.1 C.2D. 32.在等比數(shù)列{aaa n}中,an>an7·a11=6,a4+a14=5,則+1,且a等于()16 A.23B.32 C16D.-563.在數(shù)列{aa-n}中,a1=1,當(dāng)n≥2時(shí),an=1+aa n-1n=() A.1 nB.n C.1nD.n2 4.已知0 B.成等比數(shù)列 C.各項(xiàng)倒數(shù)成等差數(shù)列 D.各項(xiàng)倒數(shù)成等比數(shù)列 5.已知a1=1,an=n(an+1-an)(n∈N*),則數(shù)列{an}的通項(xiàng)公式是() n- 1A.a(chǎn)n=2n-1B.a(chǎn)?n?1? n??n?? C.a(chǎn)n=n2D.a(chǎn)n=n) n2-6n 6.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)的乘積等于Tn=?的前n項(xiàng)和Sn中的最大值是() A.S6 B.S 5?1? ??4? (n∈N*),bn=log2an,則數(shù)列{bn} 7.已知a,b∈R,且a>b,則下列不等式中恒成立的是() ?1??1? A.a(chǎn)>bB.??? ?2??2? ab C.lg(a-b)>0 aD.b 8.設(shè)a>0,b>0,則以下不等式中不恒成立的是()11? A.(a+b)??ab?≥ 4B.a(chǎn)3+b3≥2ab2 D.|a-b|ab C.a(chǎn)2+b2+2≥2a+2b 9.當(dāng)點(diǎn)M(x,y)在如圖所示的三角形ABC內(nèi)(含邊界)運(yùn)動時(shí),目標(biāo)函數(shù)z=kx+y取得最大值的一個(gè)最優(yōu)解為(1,2),則實(shí)數(shù)k的取值范圍是() A.(-∞,-1]∪[1,+∞)B.[-1,1] C.(-∞,-1)∪(1,+∞)D.(-1,1) ??lg|x|(x<0)10.設(shè)函數(shù)f(x)=?x,若f(x0)>0,則x0的取值范圍是() ?2-1(x≥0)? A.(-∞,-1)∪(1,+∞)B.(-∞,-1)∪(0,+∞) C.(-1,0)∪(0,1)D.(-1,0)∪(0,+∞) a2+b 211.已知a>b>0,ab=1,則的最小值是() a-bA.2C.2D.1 12.下面四個(gè)結(jié)論中,正確的是() A.式子1+k+k2+…+kn(n=1,2,…)當(dāng)n=1時(shí),恒為1 B.式子1+k+k2+…+kn1(n=1,2…)當(dāng)n=1時(shí),恒為1+k - 1111111 C.式子++…+n=1,2,…)當(dāng)n=1時(shí),恒為 1231232n+1 111111 D.設(shè)f(n)=n∈N*),則f(k+1)=f(k)+n+1n+23n+13k+23k+33k+4 二、填空題:本大題共4小題,每小題5分,共20分,把答案填在題中的橫線上. 13.已知Sn是等差數(shù)列{an}(n∈N*)的前n項(xiàng)和,且S6>S7>S5,有下列四個(gè)命題:(1)d<0;(2)S11>0;(3)S12<0;(4)數(shù)列{Sn}中的最大項(xiàng)為S11,其中正確命題的序號是________. 14.在數(shù)列{an}中,如果對任意n∈N*都有數(shù)列,k稱為公差比.現(xiàn)給出下列命題: (1)等差比數(shù)列的公差比一定不為0;(2)等差數(shù)列一定是等差比數(shù)列; (3)若an=-3n+2,則數(shù)列{an}是等差比數(shù)列;(4)若等比數(shù)列是等差比數(shù)列,則其公比等于公差比. 其中正確的命題的序號為________. =q,(4)正確. 15.不等式 ax的解集為{x|x<1或x>2},那么a的值為________. x- 1an+2-an+1 k(k為常數(shù)),則稱{an}為等差比 an+1-an x≥0?? 16.已知點(diǎn)P(x,y)滿足條件?y≤x ??2x+y+k≤0k=________.(k為常數(shù)),若z=x+3y的最大值為8,則 三、解答題:本大題共6小題,共70分,解答應(yīng)寫出文字說明、證明過程或演算步驟. 17.(10分)(2011·天津市質(zhì)檢)已知等差數(shù)列{an}的前三項(xiàng)為a-1,4,2a,記前n項(xiàng)和為Sn.(1)設(shè)Sk=2550,求a和k的值; S(2)設(shè)bn,求b3+b7+b11+…+b4n-1的值. n 18.(12分)已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,首項(xiàng)為a1,且2,an,Sn成等差數(shù)列. (1)求數(shù)列{an}的通項(xiàng)公式; b(2)若bn=log2an,cn=,求數(shù)列{cn}的前n項(xiàng)和Tn.an 2bx 19.(12分)已知函數(shù)f(x)(x∈R)滿足f(x),a≠0,f(1)=1,且使f(x)=2x成立的實(shí) ax-1數(shù)x只有一個(gè). (1)求函數(shù)f(x)的表達(dá)式; 21(2)若數(shù)列{an}滿足a1=an+1=f(an),bn=1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,3an 并求出{bn}的通項(xiàng)公式; (3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*). 2x?? 20.(12分)已知集合A=?x?x-21?,集合B={x|x2-(2m+1)x+m2+m<0} ? ? ? (1)求集合A,B; (2)若B?A,求m的取值范圍. 2a2 21.(12分)解關(guān)于x的不等式:x|x-a|≤(a>0). 922.(12分)某工廠生產(chǎn)甲、乙兩種產(chǎn)品,每生產(chǎn)一噸產(chǎn)品所消耗的電能和煤、所需工人人數(shù)以及所得產(chǎn)值如表所示: 160千度,消耗煤不得超過150噸,怎樣安排甲、乙這兩種產(chǎn)品的生產(chǎn)數(shù)量,才能使每天所得的產(chǎn)值最大,最大產(chǎn)值是多少. 數(shù)列和式不等式的證明策略 羅紅波洪湖二中高三 (九)班周二第三節(jié)(11月13日) 數(shù)列和式不等式的證明經(jīng)常在試卷壓軸題中出現(xiàn),在思維能力和方法上要求很高,難度很大,往往讓人束手無策,其實(shí),這類不等式的證明,是有一定的規(guī)律的,利用S1 n? a1?q 來證明也能事半功倍,下面用幾個(gè)例子來簡述數(shù)列和式不等式的證明 S1 n? a1?q 常用策略。 一、基礎(chǔ)演練: 1、等比數(shù)列{an},公比為q,則{an}的前n項(xiàng)和Sn為() ?na1(q?1A.?) ?an a?1(1?q)1(1?qn)a? 1?q(q?1)B.na1C.1?qD.11?q2、正項(xiàng)等比數(shù)列{an},公比為q,0?q?1,{an}的前n項(xiàng)和Sn,以下說法正確的是()A.S1n? a11?qB.S?a11?qC.Saa nn?1?qD.Sn?11?q3、正項(xiàng)數(shù)列{a},{a的前n項(xiàng)和Sa nn}n,要證明S1n?1?q,其中0?q?1,可以去證明()A. an?1?qB.an?1a?qC.an?1?qD.a n?1a?q nnanan 二、典例精講: 例 1、等比數(shù)列{a1 n},a1?1,q?2,{an}的前n項(xiàng)和Sn,求證:Sn?2 變式 1、正項(xiàng)等比數(shù)列{an},{a1n}的前n項(xiàng)和Sn,a1?1,Sn?2恒成立,求證:0?q? 2例 2、已知數(shù)列{an},an?1 2n ?1,{an}的前n項(xiàng)和S5n,求證:Sn?2(Sn?3?) aann變式 2、數(shù)列{n?1n},a?3?23?2n?1,a1?1,{a3 n?1n}的前n項(xiàng)和Sn,求證:Sn? n 2例 3、(09四川理22)數(shù)列{an}的前n項(xiàng)和Sn,對任意正整數(shù)n,都有a4?an n?5Sn?1成立,記bn?1?a(n?N?).n (1)求數(shù)列{bn}的通項(xiàng)公式; (2)記c? n?b2n?b2n?1(n?N),{c3 n}的前n項(xiàng)和Tn,求證:Tn? 2變式 3、已知a1n? ?2,求證Sn?(?1)a1?(?1)2a2????????(?1)nan?1 (?2)n? 3三、小結(jié) 四、課后作業(yè): 1、等比數(shù)列{a1 n},a1?2,q? 3,{an}的前n項(xiàng)和Sn,求證:Sn?3 2、已知數(shù)列{an},an? 14n?2,{an}的前n項(xiàng)和Sn,求證:S2 n ?3 放縮法證明數(shù)列不等式 基礎(chǔ)知識回顧: 放縮的技巧與方法: (1)常見的數(shù)列求和方法和通項(xiàng)公式特點(diǎn): ① 等差數(shù)列求和公式:錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。(關(guān)于錯(cuò)誤!未找到引用源。的一次函數(shù)或常值函數(shù)) ② 等比數(shù)列求和公式:錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。(關(guān)于錯(cuò)誤!未找到引用源。的指數(shù)類函數(shù))③ 錯(cuò)位相減:通項(xiàng)公式為“等差錯(cuò)誤!未找到引用源。等比”的形式 ④ 裂項(xiàng)相消:通項(xiàng)公式可拆成兩個(gè)相鄰項(xiàng)的差,且原數(shù)列的每一項(xiàng)裂項(xiàng)之后正負(fù)能夠相消,進(jìn)而在求和后式子中僅剩有限項(xiàng) (2)與求和相關(guān)的不等式的放縮技巧: ① 在數(shù)列中,“求和看通項(xiàng)”,所以在放縮的過程中通常從數(shù)列的通項(xiàng)公式入手 ② 在放縮時(shí)要看好所證不等式中不等號的方向,這將決定對通項(xiàng)公式是放大還是縮?。☉?yīng)與所證的不等號同方向) ③ 在放縮時(shí),對通項(xiàng)公式的變形要向可求和數(shù)列的通項(xiàng)公式靠攏,常見的是向等比數(shù)列與可裂項(xiàng)相消的數(shù)列進(jìn)行靠攏。 ④ 若放縮后求和發(fā)現(xiàn)放“過”了,即與所證矛盾,通常有兩條道路選擇:第一個(gè)方法是微調(diào):看能否讓數(shù)列中的一些項(xiàng)不動,其余項(xiàng)放縮。從而減小放縮的程度,使之符合所證不等式;第二個(gè)方法就是推翻了原有放縮,重新進(jìn)行設(shè)計(jì),選擇放縮程度更小的方式再進(jìn)行嘗試。 (3)放縮構(gòu)造裂項(xiàng)相消數(shù)列與等比數(shù)列的技巧: ① 裂項(xiàng)相消:在放縮時(shí),所構(gòu)造的通項(xiàng)公式要具備“依項(xiàng)同構(gòu)”的特點(diǎn),即作差的兩項(xiàng)可視為同一數(shù)列的相鄰兩項(xiàng)(或等距離間隔項(xiàng)) ② 等比數(shù)列:所面對的問題通常為“錯(cuò)誤!未找到引用源。常數(shù)”的形式,所構(gòu)造的等比數(shù)列的公比也要滿足錯(cuò)誤!未找到引用源。,如果題目條件無法體現(xiàn)出放縮的目標(biāo),則可從所證不等式的常數(shù)入手,常數(shù)可視為錯(cuò)誤!未找到引用源。的形式,然后猜想構(gòu)造出等比數(shù)列的首項(xiàng)與公比,進(jìn)而得出等比數(shù)列的通項(xiàng)公式,再與原通項(xiàng)公式進(jìn)行比較,看不等號的方向是否符合條件即可。例如常數(shù)錯(cuò)誤!未找到引用源。,即可猜想該等比數(shù)列的首項(xiàng)為錯(cuò)誤!未找到引用源。,公比為錯(cuò)誤!未找到引用源。,即通項(xiàng)公式為錯(cuò)誤!未找到引用源。 注:此方法會存在風(fēng)險(xiǎn),所猜出的等比數(shù)列未必能達(dá)到放縮效果,所以是否選擇利用等比數(shù)列進(jìn)行放縮,受數(shù)列通項(xiàng)公式的結(jié)構(gòu)影響 (4)與數(shù)列中的項(xiàng)相關(guān)的不等式問題: ① 此類問題往往從遞推公式入手,若需要放縮也是考慮對遞推公式進(jìn)行變形 ② 在有些關(guān)于項(xiàng)的不等式證明中,可向求和問題進(jìn)行劃歸,即將遞推公式放縮變形成為可“累加”或“累乘”的形式,即錯(cuò)誤!未找到引用源。或錯(cuò)誤!未找到引用源。(累乘時(shí)要求不等式兩側(cè)均為正數(shù)),然后通過“累加”或“累乘”達(dá)到一側(cè)為錯(cuò)誤!未找到引用源。,另一側(cè)為求和的結(jié)果,進(jìn)而完成證明 應(yīng)用舉例: 類型一:與前n項(xiàng)和相關(guān)的不等式 例1.【2017屆江蘇泰州中學(xué)高三摸底考試】已知數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)和錯(cuò)誤!未找到引用源。滿足:錯(cuò)誤!未找到引用源。(錯(cuò)誤!未找到引用源。為常數(shù),且錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。). (1)求錯(cuò)誤!未找到引用源。的通項(xiàng)公式; (2)設(shè)錯(cuò)誤!未找到引用源。,若數(shù)列錯(cuò)誤!未找到引用源。為等比數(shù)列,求錯(cuò)誤!未找到引用源。的值;(3)在滿足條件(2)的情形下,設(shè)錯(cuò)誤!未找到引用源。,數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)和為錯(cuò)誤!未找到引用源。,若不等式錯(cuò)誤!未找到引用源。對任意的錯(cuò)誤!未找到引用源。恒成立,求實(shí)數(shù)錯(cuò)誤!未找到引用源。的取值范圍. 例2.記錯(cuò)誤!未找到引用源。.對數(shù)列錯(cuò)誤!未找到引用源。和錯(cuò)誤!未找到引用源。的子集錯(cuò)誤!未找到引用源。,若錯(cuò)誤!未找到引用源。,定義錯(cuò)誤!未找到引用源。;若錯(cuò)誤!未找到引用源。,定義錯(cuò)誤!未找到引用源。.例如:錯(cuò)誤!未找到引用源。時(shí),錯(cuò)誤!未找到引用源。.現(xiàn)設(shè)錯(cuò)誤!未找到引用源。是公比為3的等比數(shù)列,且當(dāng)錯(cuò)誤!未找到引用源。時(shí),錯(cuò)誤!未找到引用源。.錯(cuò)誤!未找到引用源。 (1)求數(shù)列的通項(xiàng)公式;錯(cuò)誤!未找到引用源。錯(cuò)誤!未找到引用源。錯(cuò)誤!未找到引用源。(2)對任意正整數(shù),若,求證:;錯(cuò)誤!未找到引用源。錯(cuò)誤!未找到引用源。(3)設(shè),求證:.類型 二、與通項(xiàng)運(yùn)算相關(guān)的不等式 例3.設(shè)函數(shù)錯(cuò)誤!未找到引用源。,數(shù)列錯(cuò)誤!未找到引用源。滿足:錯(cuò)誤!未找到引用源。.(1)求證:錯(cuò)誤!未找到引用源。時(shí),錯(cuò)誤!未找到引用源。;(2)求證:錯(cuò)誤!未找到引用源。(錯(cuò)誤!未找到引用源。);(3)求證:錯(cuò)誤!未找到引用源。(錯(cuò)誤!未找到引用源。). 例4.已知錯(cuò)誤!未找到引用源。是數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)和,且對任意錯(cuò)誤!未找到引用源。,有錯(cuò)誤!未找到引用源。.其中錯(cuò)誤!未找到引用源。為實(shí)數(shù),且錯(cuò)誤!未找到引用源。.(1)當(dāng)錯(cuò)誤!未找到引用源。時(shí),①求數(shù)列錯(cuò)誤!未找到引用源。的通項(xiàng); ②是否存在這樣的正整數(shù)錯(cuò)誤!未找到引用源。,使得錯(cuò)誤!未找到引用源。成等比數(shù)列?若存在,給出錯(cuò)誤!未找到引用源。滿足的條件,否則,請說明理由.(2)當(dāng)錯(cuò)誤!未找到引用源。時(shí),設(shè)錯(cuò)誤!未找到引用源。,① 判定錯(cuò)誤!未找到引用源。是否為等比數(shù)列; ②設(shè)錯(cuò)誤!未找到引用源。,若錯(cuò)誤!未找到引用源。對錯(cuò)誤!未找到引用源。恒成立,求錯(cuò)誤!未找到引用源。的取值范圍.方法、規(guī)律歸納: 常見的放縮變形: (1)錯(cuò)誤!未找到引用源。,(2)錯(cuò)誤!未找到引用源。 注:對于錯(cuò)誤!未找到引用源。還可放縮為:錯(cuò)誤!未找到引用源。(3)分子分母同加常數(shù):錯(cuò)誤!未找到引用源。(4)錯(cuò)誤!未找到引用源。 錯(cuò)誤!未找到引用源。可推廣為:錯(cuò)誤!未找到引用源。 錯(cuò)誤!未找到引用源。實(shí)戰(zhàn)演練: 1.【江蘇省無錫市普通高中2018屆高三上學(xué)期期中】已知數(shù)列錯(cuò)誤!未找到引用源。滿足錯(cuò)誤!未找到引用源。記數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)和為錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。 (1)求證:數(shù)列錯(cuò)誤!未找到引用源。為等比數(shù)列,并求其通項(xiàng)錯(cuò)誤!未找到引用源。; (2)求錯(cuò)誤!未找到引用源。; (3)問是否存在正整數(shù)錯(cuò)誤!未找到引用源。,使得錯(cuò)誤!未找到引用源。成立?說明理由.2.【江蘇省常州市2018屆高三上學(xué)期武進(jìn)區(qū)高中數(shù)學(xué)期中試卷】在數(shù)列錯(cuò)誤!未找到引用源。中,錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,其中錯(cuò)誤!未找到引用源。. ⑴ 求證:數(shù)列錯(cuò)誤!未找到引用源。為等差數(shù)列; ⑵ 設(shè)錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)和為錯(cuò)誤!未找到引用源。,若當(dāng)錯(cuò)誤!未找到引用源。且錯(cuò)誤!未找到引用源。為偶數(shù)時(shí),錯(cuò)誤!未找到引用源。恒成立,求實(shí)數(shù)錯(cuò)誤!未找到引用源。的取值范圍; ⑶ 設(shè)數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)的和為錯(cuò)誤!未找到引用源。,試求數(shù)列錯(cuò)誤!未找到引用源。的最大值.【答案】⑴見解析⑵錯(cuò)誤!未找到引用源。⑶錯(cuò)誤!未找到引用源。 3.【江蘇省徐州市2018屆高三上學(xué)期期中考試】已知數(shù)列的前項(xiàng)和為,滿足,.?dāng)?shù)列 滿足(1)求數(shù)列(2)若和,且. 的通項(xiàng)公式;,數(shù)列的前項(xiàng)和為,對任意的,(,都有,求實(shí)數(shù)的取值范圍; (3)是否存在正整數(shù),使,請說明理由.)成等差數(shù)列,若存在,求出所有滿足條件的,若不存在,4.已知數(shù)列錯(cuò)誤!未找到引用源。、錯(cuò)誤!未找到引用源。,其中,錯(cuò)誤!未找到引用源。,數(shù)列錯(cuò)誤!未找到引用源。滿足錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,數(shù)列錯(cuò)誤!未找到引用源。滿足錯(cuò)誤!未找到引用源。. (1)求數(shù)列錯(cuò)誤!未找到引用源。、錯(cuò)誤!未找到引用源。的通項(xiàng)公式; (2)是否存在自然數(shù)錯(cuò)誤!未找到引用源。,使得對于任意錯(cuò)誤!未找到引用源。有錯(cuò)誤!未找到引用源。恒成立?若存在,求出錯(cuò)誤!未找到引用源。的最小值; (3)若數(shù)列錯(cuò)誤!未找到引用源。滿足錯(cuò)誤!未找到引用源。,求數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)和錯(cuò)誤!未找到引用源。. 5.【江蘇省啟東中學(xué)2018屆高三上學(xué)期第一次月考】設(shè)數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)和為錯(cuò)誤!未找到引用源。,且滿足錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。為常數(shù). (1)是否存在數(shù)列錯(cuò)誤!未找到引用源。,使得錯(cuò)誤!未找到引用源。?若存在,寫出一個(gè)滿足要求的數(shù)列;若不存在,說明理由.(2)當(dāng)錯(cuò)誤!未找到引用源。時(shí),求證: 錯(cuò)誤!未找到引用源。. (3)當(dāng)錯(cuò)誤!未找到引用源。時(shí),求證:當(dāng)錯(cuò)誤!未找到引用源。時(shí),錯(cuò)誤!未找到引用源。. 6.【江蘇省泰州中學(xué)2018屆高三上學(xué)期開學(xué)考試】已知兩個(gè)無窮數(shù)列 分別滿足,其中(1)若數(shù)列(2)若數(shù)列①若數(shù)列②若數(shù)列,設(shè)數(shù)列的前項(xiàng)和分別為的通項(xiàng)公式;,使得,稱數(shù)列 .都為遞增數(shù)列,求數(shù)列滿足:存在唯一的正整數(shù)“墜點(diǎn)數(shù)列”,求 為“墜點(diǎn)數(shù)列”,數(shù)列 為“墜點(diǎn)數(shù)列”.為“墜點(diǎn)數(shù)列”,是否存在正整數(shù),使得,若存在,求的最大值;若不存在,說明理由.7.【江蘇省南京師范大學(xué)附屬中學(xué)2017屆高三高考模擬一】已知數(shù)集錯(cuò)誤!未找到引用源。具有性質(zhì)錯(cuò)誤!未找到引用源。對任意的錯(cuò)誤!未找到引用源。,使得錯(cuò)誤!未找到引用源。成立.(1)分別判斷數(shù)集錯(cuò)誤!未找到引用源。與錯(cuò)誤!未找到引用源。是否具有性質(zhì)錯(cuò)誤!未找到引用源。,并說明理由; (2)求證: 錯(cuò)誤!未找到引用源。; (2)若錯(cuò)誤!未找到引用源。,求錯(cuò)誤!未找到引用源。的最小值.8.記等差數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)和為錯(cuò)誤!未找到引用源。.(1)求證:數(shù)列錯(cuò)誤!未找到引用源。是等差數(shù)列; (2)若 錯(cuò)誤!未找到引用源。,對任意錯(cuò)誤!未找到引用源。,均有錯(cuò)誤!未找到引用源。是公差為錯(cuò)誤!未找到引用源。的等差數(shù)列,求使錯(cuò)誤!未找到引用源。為整數(shù)的正整數(shù)錯(cuò)誤!未找到引用源。的取值集合; (3)記錯(cuò)誤!未找到引用源。,求證: 錯(cuò)誤!未找到引用源。.9.已知數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn},{cn}滿足(n+1)bn=an+1錯(cuò)誤!未找到引用源。,(n+2)cn=錯(cuò)誤!未找到引用源。,其中n∈N*. (1)若數(shù)列{an}是公差為2的等差數(shù)列,求數(shù)列{cn}的通項(xiàng)公式; (2)若存在實(shí)數(shù)λ,使得對一切n∈N*,有bn≤λ≤cn,求證:數(shù)列{an}是等差數(shù)列. 10.已知各項(xiàng)不為零的數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)和為錯(cuò)誤!未找到引用源。,且錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。. (1)若錯(cuò)誤!未找到引用源。成等比數(shù)列,求實(shí)數(shù)錯(cuò)誤!未找到引用源。的值;(2)若錯(cuò)誤!未找到引用源。成等差數(shù)列,①求數(shù)列錯(cuò)誤!未找到引用源。的通項(xiàng)公式; ②在錯(cuò)誤!未找到引用源。與錯(cuò)誤!未找到引用源。間插入錯(cuò)誤!未找到引用源。個(gè)正數(shù),共同組成公比為錯(cuò)誤!未找到引用源。的等比數(shù)列,若不等式錯(cuò)誤!未找到引用源。對任意的錯(cuò)誤!未找到引用源。恒成立,求實(shí)數(shù)錯(cuò)誤!未找到引用源。的最大值. 放縮法證明數(shù)列不等式 基礎(chǔ)知識回顧: 放縮的技巧與方法: (1)常見的數(shù)列求和方法和通項(xiàng)公式特點(diǎn): ① 等差數(shù)列求和公式:錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。(關(guān)于錯(cuò)誤!未找到引用源。的一次函數(shù)或常值函數(shù)) ② 等比數(shù)列求和公式:錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。(關(guān)于錯(cuò)誤!未找到引用源。的指數(shù)類函數(shù))③ 錯(cuò)位相減:通項(xiàng)公式為“等差錯(cuò)誤!未找到引用源。等比”的形式 ④ 裂項(xiàng)相消:通項(xiàng)公式可拆成兩個(gè)相鄰項(xiàng)的差,且原數(shù)列的每一項(xiàng)裂項(xiàng)之后正負(fù)能夠相消,進(jìn)而在求和后式子中僅剩有限項(xiàng) (2)與求和相關(guān)的不等式的放縮技巧: ① 在數(shù)列中,“求和看通項(xiàng)”,所以在放縮的過程中通常從數(shù)列的通項(xiàng)公式入手 ② 在放縮時(shí)要看好所證不等式中不等號的方向,這將決定對通項(xiàng)公式是放大還是縮?。☉?yīng)與所證的不等號同方向) ③ 在放縮時(shí),對通項(xiàng)公式的變形要向可求和數(shù)列的通項(xiàng)公式靠攏,常見的是向等比數(shù)列與可裂項(xiàng)相消的數(shù)列進(jìn)行靠攏。 ④ 若放縮后求和發(fā)現(xiàn)放“過”了,即與所證矛盾,通常有兩條道路選擇:第一個(gè)方法是微調(diào):看能否讓數(shù)列中的一些項(xiàng)不動,其余項(xiàng)放縮。從而減小放縮的程度,使之符合所證不等式;第二個(gè)方法就是推翻了原有放縮,重新進(jìn)行設(shè)計(jì),選擇放縮程度更小的方式再進(jìn)行嘗試。 (3)放縮構(gòu)造裂項(xiàng)相消數(shù)列與等比數(shù)列的技巧: ① 裂項(xiàng)相消:在放縮時(shí),所構(gòu)造的通項(xiàng)公式要具備“依項(xiàng)同構(gòu)”的特點(diǎn),即作差的兩項(xiàng)可視為同一數(shù)列的相鄰兩項(xiàng)(或等距離間隔項(xiàng)) ② 等比數(shù)列:所面對的問題通常為“錯(cuò)誤!未找到引用源。常數(shù)”的形式,所構(gòu)造的等比數(shù)列的公比也要滿足錯(cuò)誤!未找到引用源。,如果題目條件無法體現(xiàn)出放縮的目標(biāo),則可從所證不等式的常數(shù)入手,常數(shù)可視為錯(cuò)誤!未找到引用源。的形式,然后猜想構(gòu)造出等比數(shù)列的首項(xiàng)與公比,進(jìn)而得出等比數(shù)列的通項(xiàng)公式,再與原通項(xiàng)公式進(jìn)行比較,看不等號的方向是否符合條件即可。例如常數(shù)錯(cuò)誤!未找到引用源。,即可猜想該等比數(shù)列的首項(xiàng)為錯(cuò)誤!未找到引用源。,公比為錯(cuò)誤!未找到引用源。,即通項(xiàng)公式為錯(cuò)誤!未找到引用源。注:此方法會存在風(fēng)險(xiǎn),所猜出的等比數(shù)列未必能達(dá)到放縮效果,所以是否選擇利用等比數(shù)列進(jìn)行放縮,受數(shù)列通項(xiàng)公式的結(jié)構(gòu)影響 (4)與數(shù)列中的項(xiàng)相關(guān)的不等式問題: ① 此類問題往往從遞推公式入手,若需要放縮也是考慮對遞推公式進(jìn)行變形 ② 在有些關(guān)于項(xiàng)的不等式證明中,可向求和問題進(jìn)行劃歸,即將遞推公式放縮變形成為可“累加”或“累乘”的形式,即錯(cuò)誤!未找到引用源?;蝈e(cuò)誤!未找到引用源。(累乘時(shí)要求不等式兩側(cè)均為正數(shù)),然后通過“累加”或“累乘”達(dá)到一側(cè)為錯(cuò)誤!未找到引用源。,另一側(cè)為求和的結(jié)果,進(jìn)而完成證明 應(yīng)用舉例: 類型一:與前n項(xiàng)和相關(guān)的不等式 例1.【2017屆江蘇泰州中學(xué)高三摸底考試】已知數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)和錯(cuò)誤!未找到引用源。滿足:錯(cuò)誤!未找到引用源。(錯(cuò)誤!未找到引用源。為常數(shù),且錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。). (1)求錯(cuò)誤!未找到引用源。的通項(xiàng)公式; (2)設(shè)錯(cuò)誤!未找到引用源。,若數(shù)列錯(cuò)誤!未找到引用源。為等比數(shù)列,求錯(cuò)誤!未找到引用源。的值;(3)在滿足條件(2)的情形下,設(shè)錯(cuò)誤!未找到引用源。,數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)和為錯(cuò)誤!未找到引用源。,若不等式錯(cuò)誤!未找到引用源。對任意的錯(cuò)誤!未找到引用源。恒成立,求實(shí)數(shù)錯(cuò)誤!未找到引用源。的取值范圍. 【答案】(1)錯(cuò)誤!未找到引用源。(2)錯(cuò)誤!未找到引用源。(3)錯(cuò)誤!未找到引用源。 (2)由(1)知,錯(cuò)誤!未找到引用源。,即錯(cuò)誤!未找到引用源。,若數(shù)列錯(cuò)誤!未找到引用源。為等比數(shù)列,則有錯(cuò)誤!未找到引用源。,而錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,故錯(cuò)誤!未找到引用源。,解得錯(cuò)誤!未找到引用源。,再將錯(cuò)誤!未找到引用源。代入錯(cuò)誤!未找到引用源。,得錯(cuò)誤!未找到引用源。,例2.記錯(cuò)誤!未找到引用源。.對數(shù)列錯(cuò)誤!未找到引用源。和錯(cuò)誤!未找到引用源。的子集錯(cuò)誤!未找到引用源。,若錯(cuò)誤!未找到引用源。,定義錯(cuò)誤!未找到引用源。;若錯(cuò)誤!未找到引用源。,定義錯(cuò)誤!未找到引用源。.例如:錯(cuò)誤!未找到引用源。時(shí),錯(cuò)誤!未找到引用源。.現(xiàn)設(shè)錯(cuò)誤!未找到引用源。是公比為3的等比數(shù)列,且當(dāng)錯(cuò)誤!未找到引用源。時(shí),錯(cuò)誤!未找到引用源。.錯(cuò)誤!未找到引用源。 (1)求數(shù)列的通項(xiàng)公式;錯(cuò)誤!未找到引用源。錯(cuò)誤!未找到引用源。錯(cuò)誤!未找到引用源。(2)對任意正整數(shù),若,求證:;錯(cuò)誤!未找到引用源。錯(cuò)誤!未找到引用源。(3)設(shè),求證:.【答案】(1)錯(cuò)誤!未找到引用源。(2)詳見解析(3)詳見解析 【解析】 試題分析:(1)根據(jù)及時(shí)定義,列出等量關(guān)系,解出首項(xiàng),寫出通項(xiàng)公式;(2)根據(jù)子集關(guān)系,進(jìn)行放縮,轉(zhuǎn)化為等比數(shù)列求和;(3)利用等比數(shù)列和與項(xiàng)的大小關(guān)系,確定所定義和的大小關(guān)系:設(shè)錯(cuò)誤!未找到引用源。,則錯(cuò)誤!未找到引用源。因此由錯(cuò)誤!未找到引用源。,因此錯(cuò)誤!未找到引用源。中最大項(xiàng)必在A中,由(2)得錯(cuò)誤!未找到引用源。.試題解析:(1)由已知得錯(cuò)誤!未找到引用源。.于是當(dāng)錯(cuò)誤!未找到引用源。時(shí),錯(cuò)誤!未找到引用源。.又錯(cuò)誤!未找到引用源。,故錯(cuò)誤!未找到引用源。,即錯(cuò)誤!未找到引用源。.所以數(shù)列錯(cuò)誤!未找到引用源。的通項(xiàng)公式為錯(cuò)誤!未找到引用源。.(2)因?yàn)殄e(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,所以錯(cuò)誤!未找到引用源。.因此,錯(cuò)誤!未找到引用源。.綜合①②③得,錯(cuò)誤!未找到引用源。.類型 二、與通項(xiàng)運(yùn)算相關(guān)的不等式 例3.設(shè)函數(shù)錯(cuò)誤!未找到引用源。,數(shù)列錯(cuò)誤!未找到引用源。滿足:錯(cuò)誤!未找到引用源。.(1)求證:錯(cuò)誤!未找到引用源。時(shí),錯(cuò)誤!未找到引用源。;(2)求證:錯(cuò)誤!未找到引用源。(錯(cuò)誤!未找到引用源。);(3)求證:錯(cuò)誤!未找到引用源。(錯(cuò)誤!未找到引用源。). 【答案】(1)證明見解析;(2)證明見解析;(3)證明見解析. 故錯(cuò)誤!未找到引用源。,則有:錯(cuò)誤!未找到引用源。錯(cuò)誤!未找到引用源。例4.已知錯(cuò)誤!未找到引用源。是數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)和,且對任意錯(cuò)誤!未找到引用源。,有錯(cuò)誤!未找到引用源。.其中錯(cuò)誤!未找到引用源。為實(shí)數(shù),且錯(cuò)誤!未找到引用源。.(1)當(dāng)錯(cuò)誤!未找到引用源。時(shí),①求數(shù)列錯(cuò)誤!未找到引用源。的通項(xiàng); ②是否存在這樣的正整數(shù)錯(cuò)誤!未找到引用源。,使得錯(cuò)誤!未找到引用源。成等比數(shù)列?若存在,給出錯(cuò)誤!未找到引用源。滿足的條件,否則,請說明理由.(2)當(dāng)錯(cuò)誤!未找到引用源。時(shí),設(shè)錯(cuò)誤!未找到引用源。,① 判定錯(cuò)誤!未找到引用源。是否為等比數(shù)列; ②設(shè)錯(cuò)誤!未找到引用源。,若錯(cuò)誤!未找到引用源。對錯(cuò)誤!未找到引用源。恒成立,求錯(cuò)誤!未找到引用源。的取值范圍.【答案】(1)①錯(cuò)誤!未找到引用源。;②不存在;(2)①當(dāng)錯(cuò)誤!未找到引用源。且錯(cuò)誤!未找到引用源。時(shí),數(shù)列錯(cuò)誤!未找到引用源。是以錯(cuò)誤!未找到引用源。為首項(xiàng),錯(cuò)誤!未找到引用源。為公比的等比數(shù)列,當(dāng)錯(cuò)誤!未找到引用源。時(shí),錯(cuò)誤!未找到引用源。,不是等比數(shù)列;②錯(cuò)誤!未找到引用源。. 方法、規(guī)律歸納: 常見的放縮變形: (1)錯(cuò)誤!未找到引用源。,(2)錯(cuò)誤!未找到引用源。 注:對于錯(cuò)誤!未找到引用源。還可放縮為:錯(cuò)誤!未找到引用源。(3)分子分母同加常數(shù):錯(cuò)誤!未找到引用源。(4)錯(cuò)誤!未找到引用源。 錯(cuò)誤!未找到引用源??赏茝V為:錯(cuò)誤!未找到引用源。 錯(cuò)誤!未找到引用源。實(shí)戰(zhàn)演練: 1.【江蘇省無錫市普通高中2018屆高三上學(xué)期期中】已知數(shù)列錯(cuò)誤!未找到引用源。滿足錯(cuò)誤!未找到引用源。記數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)和為錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。 (1)求證:數(shù)列錯(cuò)誤!未找到引用源。為等比數(shù)列,并求其通項(xiàng)錯(cuò)誤!未找到引用源。; (2)求錯(cuò)誤!未找到引用源。; (3)問是否存在正整數(shù)錯(cuò)誤!未找到引用源。,使得錯(cuò)誤!未找到引用源。成立?說明理由.【答案】(1)錯(cuò)誤!未找到引用源。(2)錯(cuò)誤!未找到引用源。(3)當(dāng)錯(cuò)誤!未找到引用源。為偶數(shù)時(shí),錯(cuò)誤!未找到引用源。都成立,(3)詳見解析 (3)假設(shè)存在正整數(shù)錯(cuò)誤!未找到引用源。,使得錯(cuò)誤!未找到引用源。成立,因?yàn)殄e(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,所以只要錯(cuò)誤!未找到引用源。 即只要滿足 ①:錯(cuò)誤!未找到引用源。,和②:錯(cuò)誤!未找到引用源。,對于①只要錯(cuò)誤!未找到引用源。就可以; 對于②,當(dāng)錯(cuò)誤!未找到引用源。為奇數(shù)時(shí),滿足錯(cuò)誤!未找到引用源。,不成立,當(dāng)錯(cuò)誤!未找到引用源。為偶數(shù)時(shí),滿足錯(cuò)誤!未找到引用源。,即錯(cuò)誤!未找到引用源。令錯(cuò)誤!未找到引用源。,因?yàn)殄e(cuò)誤!未找到引用源。 即錯(cuò)誤!未找到引用源。,且當(dāng)錯(cuò)誤!未找到引用源。時(shí),錯(cuò)誤!未找到引用源。,所以當(dāng)錯(cuò)誤!未找到引用源。為偶數(shù)時(shí),②式成立,即當(dāng)錯(cuò)誤!未找到引用源。為偶數(shù)時(shí),錯(cuò)誤!未找到引用源。成立.2.【江蘇省常州市2018屆高三上學(xué)期武進(jìn)區(qū)高中數(shù)學(xué)期中試卷】在數(shù)列錯(cuò)誤!未找到引用源。中,錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,其中錯(cuò)誤!未找到引用源。. ⑴ 求證:數(shù)列錯(cuò)誤!未找到引用源。為等差數(shù)列; ⑵ 設(shè)錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)和為錯(cuò)誤!未找到引用源。,若當(dāng)錯(cuò)誤!未找到引用源。且錯(cuò)誤!未找到引用源。為偶數(shù)時(shí),錯(cuò)誤!未找到引用源。恒成立,求實(shí)數(shù)錯(cuò)誤!未找到引用源。的取值范圍; ⑶ 設(shè)數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)的和為錯(cuò)誤!未找到引用源。,試求數(shù)列錯(cuò)誤!未找到引用源。的最大值.【答案】⑴見解析⑵錯(cuò)誤!未找到引用源。⑶錯(cuò)誤!未找到引用源。 要使錯(cuò)誤!未找到引用源。對錯(cuò)誤!未找到引用源。且錯(cuò)誤!未找到引用源。為偶數(shù)恒成立,只要使錯(cuò)誤!未找到引用源。對錯(cuò)誤!未找到引用源。且錯(cuò)誤!未找到引用源。為偶數(shù)恒成立,即使錯(cuò)誤!未找到引用源。對錯(cuò)誤!未找到引用源。為正偶數(shù)恒成立,錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,故實(shí)數(shù)錯(cuò)誤!未找到引用源。的取值范圍是錯(cuò)誤!未找到引用源。; ⑶由⑴得錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,設(shè)錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。錯(cuò)誤!未找到引用源。 錯(cuò)誤!未找到引用源。當(dāng)錯(cuò)誤!未找到引用源。時(shí),錯(cuò)誤!未找到引用源。,即錯(cuò)誤!未找到引用源。,當(dāng)錯(cuò)誤!未找到引用源。時(shí),錯(cuò)誤!未找到引用源。,即錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,因此數(shù)列錯(cuò)誤!未找到引用源。的最大值為錯(cuò)誤!未找到引用源。. 【點(diǎn)睛】本題考查數(shù)列與不等式的綜合應(yīng)用,涉及等差數(shù)列的判定與證明,其中證明(1)的關(guān)鍵是分析得到錯(cuò)誤!未找到引用源。與錯(cuò)誤!未找到引用源。的關(guān)系式. 3.【江蘇省徐州市2018屆高三上學(xué)期期中考試】已知數(shù)列滿足,且 . 的前項(xiàng)和為,滿足,.?dāng)?shù)列(1)求數(shù)列(2)若和的通項(xiàng)公式;,數(shù)列的前項(xiàng)和為,對任意的,(,都有,求實(shí)數(shù)的取值范圍; (3)是否存在正整數(shù),使,請說明理由. 【答案】(1)(2))成等差數(shù)列,若存在,求出所有滿足條件的,若不存在,(3)不存在 (2)由(1)得于是所以,兩式相減得所以由(1)得因?yàn)閷?即所以恒成立,都有,,恒成立,記所以因?yàn)閺亩鴶?shù)列于是,為遞增數(shù)列,所以當(dāng). (),使 成等差數(shù)列,則,時(shí)取最小值,(3)假設(shè)存在正整數(shù)即,若為偶數(shù),則若為奇數(shù),設(shè)于是當(dāng)時(shí),為奇數(shù),而為偶數(shù),上式不成立.,則,與 矛盾;,即,此時(shí) 4.已知數(shù)列錯(cuò)誤!未找到引用源。、錯(cuò)誤!未找到引用源。,其中,錯(cuò)誤!未找到引用源。,數(shù)列錯(cuò)誤!未找到引用源。滿足錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,數(shù)列錯(cuò)誤!未找到引用源。滿足錯(cuò)誤!未找到引用源。. (1)求數(shù)列錯(cuò)誤!未找到引用源。、錯(cuò)誤!未找到引用源。的通項(xiàng)公式; (2)是否存在自然數(shù)錯(cuò)誤!未找到引用源。,使得對于任意錯(cuò)誤!未找到引用源。有錯(cuò)誤!未找到引用源。恒成立?若存在,求出錯(cuò)誤!未找到引用源。的最小值; (3)若數(shù)列錯(cuò)誤!未找到引用源。滿足錯(cuò)誤!未找到引用源。,求數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)和錯(cuò)誤!未找到引用源。. 【答案】(1)錯(cuò)誤!未找到引用源。;(2)存在,錯(cuò)誤!未找到引用源。;(3)錯(cuò)誤!未找到引用源。. 【解析】試題分析: (1)根據(jù)題設(shè)條件用累乘法能夠求出數(shù)列{an}的通項(xiàng)公式.b1=2,bn+1=2bn可知{bn}是首項(xiàng)為2,公比為2的等比數(shù)列,由此能求出{bn}的通項(xiàng)公式.(2)bn=2n.假設(shè)存在自然數(shù)m,滿足條件,先求出錯(cuò)誤!未找到引用源。,將問題轉(zhuǎn)化成錯(cuò)誤!未找到引用源??汕蟮缅e(cuò)誤!未找到引用源。的取值范圍;(3)分n是奇數(shù)、n是偶數(shù)兩種情況求出Tn,然后寫成分段函數(shù)的形式。 試題解析:(1)由錯(cuò)誤!未找到引用源。,即錯(cuò)誤!未找到引用源。. 又錯(cuò)誤!未找到引用源。,所以錯(cuò)誤!未找到引用源。錯(cuò)誤!未找到引用源。錯(cuò)誤!未找到引用源。.當(dāng)錯(cuò)誤!未找到引用源。時(shí),上式成立,因?yàn)殄e(cuò)誤!未找到引用源。,所以錯(cuò)誤!未找到引用源。是首項(xiàng)為2,公比為2的等比數(shù)列,故錯(cuò)誤!未找到引用源。.(3)當(dāng)錯(cuò)誤!未找到引用源。為奇數(shù)時(shí),錯(cuò)誤!未找到引用源。錯(cuò)誤!未找到引用源。錯(cuò)誤!未找到引用源。錯(cuò)誤!未找到引用源。; 當(dāng)錯(cuò)誤!未找到引用源。為偶數(shù)時(shí),錯(cuò)誤!未找到引用源。錯(cuò)誤!未找到引用源。錯(cuò)誤!未找到引用源。錯(cuò)誤!未找到引用源。.因此錯(cuò)誤!未找到引用源。. 點(diǎn)睛:數(shù)列求和時(shí),要根據(jù)數(shù)列項(xiàng)的特點(diǎn)選擇不同的方法,常用的求和方法有公式法、裂項(xiàng)相消法、錯(cuò)位相減法、分組求和等。 5.【江蘇省啟東中學(xué)2018屆高三上學(xué)期第一次月考】設(shè)數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)和為錯(cuò)誤!未找到引用源。,且滿足錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。為常數(shù). (1)是否存在數(shù)列錯(cuò)誤!未找到引用源。,使得錯(cuò)誤!未找到引用源。?若存在,寫出一個(gè)滿足要求的數(shù)列;若不存在,說明理由. (2)當(dāng)錯(cuò)誤!未找到引用源。時(shí),求證: 錯(cuò)誤!未找到引用源。. (3)當(dāng)錯(cuò)誤!未找到引用源。時(shí),求證:當(dāng)錯(cuò)誤!未找到引用源。時(shí),錯(cuò)誤!未找到引用源。. 【答案】(1)不存在,理由見解析(2)證明見解析(3)證明見解析 當(dāng)錯(cuò)誤!未找到引用源。時(shí),錯(cuò)誤!未找到引用源。,兩式相減得錯(cuò)誤!未找到引用源。,即錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,當(dāng)錯(cuò)誤!未找到引用源。時(shí),錯(cuò)誤!未找到引用源。,即錯(cuò)誤!未找到引用源。,綜上,錯(cuò)誤!未找到引用源。. 6.【江蘇省泰州中學(xué)2018屆高三上學(xué)期開學(xué)考試】已知兩個(gè)無窮數(shù)列的前項(xiàng)和分別為(1)若數(shù)列.分別滿足,其中,設(shè)數(shù)列都為遞增數(shù)列,求數(shù)列的通項(xiàng)公式;(2)若數(shù)列①若數(shù)列②若數(shù)列滿足:存在唯一的正整數(shù)“墜點(diǎn)數(shù)列”,求 為“墜點(diǎn)數(shù)列”,數(shù)列,使得,稱數(shù)列為“墜點(diǎn)數(shù)列”.為“墜點(diǎn)數(shù)列”,是否存在正整數(shù),使得,若存在,求的最大值;若不存在,說明理由.【答案】(1) .(2)①,② 6.7.【江蘇省南京師范大學(xué)附屬中學(xué)2017屆高三高考模擬一】已知數(shù)集錯(cuò)誤!未找到引用源。具有性質(zhì)錯(cuò)誤!未找到引用源。對任意的錯(cuò)誤!未找到引用源。,使得錯(cuò)誤!未找到引用源。成立.(1)分別判斷數(shù)集錯(cuò)誤!未找到引用源。與錯(cuò)誤!未找到引用源。是否具有性質(zhì)錯(cuò)誤!未找到引用源。,并說明理由; (2)求證: 錯(cuò)誤!未找到引用源。; (2)若錯(cuò)誤!未找到引用源。,求錯(cuò)誤!未找到引用源。的最小值.【答案】(1)不具有(2)見解析(3)錯(cuò)誤!未找到引用源。.(2)因?yàn)榧襄e(cuò)誤!未找到引用源。具有性質(zhì)錯(cuò)誤!未找到引用源。,所以對錯(cuò)誤!未找到引用源。而言,存在錯(cuò)誤!未找到引用源。,使得錯(cuò)誤!未找到引用源。,又因?yàn)殄e(cuò)誤!未找到引用源。,所以錯(cuò)誤!未找到引用源。,所以錯(cuò)誤!未找到引用源。,同理可得錯(cuò)誤!未找到引用源。,將上述不等式相加得: 錯(cuò)誤!未找到引用源。,所以錯(cuò)誤!未找到引用源。.(3)由(2)可知錯(cuò)誤!未找到引用源。,又錯(cuò)誤!未找到引用源。,所以錯(cuò)誤!未找到引用源。,所以錯(cuò)誤!未找到引用源。,構(gòu)成數(shù)集錯(cuò)誤!未找到引用源。,經(jīng)檢驗(yàn)錯(cuò)誤!未找到引用源。具有性質(zhì)錯(cuò)誤!未找到引用源。,故錯(cuò)誤!未找到引用源。的最小值為錯(cuò)誤!未找到引用源。.點(diǎn)睛:本題是一道新定義的遷移信息并利用信息的信息遷移題。求解第一問時(shí),直接運(yùn)用題設(shè)條件中所提供的條件信息進(jìn)行驗(yàn)證即可;解答第二問時(shí),先運(yùn)用題設(shè)條件中定義的信息可得錯(cuò)誤!未找到引用源。,同理可得錯(cuò)誤!未找到引用源。,再將上述不等式相加得: 錯(cuò)誤!未找到引用源。即可獲證錯(cuò)誤!未找到引用源。;證明第三問時(shí),充分借助(2)的結(jié)論可知錯(cuò)誤!未找到引用源。,又錯(cuò)誤!未找到引用源。,所以錯(cuò)誤!未找到引用源。可得錯(cuò)誤!未找到引用源。,因此構(gòu)成數(shù)集錯(cuò)誤!未找到引用源。,經(jīng)檢驗(yàn)錯(cuò)誤!未找到引用源。具有性質(zhì)錯(cuò)誤!未找到引用源。,進(jìn)而求出錯(cuò)誤!未找到引用源。的最小值為錯(cuò)誤!未找到引用源。.8.記等差數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)和為錯(cuò)誤!未找到引用源。.(1)求證:數(shù)列錯(cuò)誤!未找到引用源。是等差數(shù)列; (2)若 錯(cuò)誤!未找到引用源。,對任意錯(cuò)誤!未找到引用源。,均有錯(cuò)誤!未找到引用源。是公差為錯(cuò)誤!未找到引用源。的等差數(shù)列,求使錯(cuò)誤!未找到引用源。為整數(shù)的正整數(shù)錯(cuò)誤!未找到引用源。的取值集合; (3)記錯(cuò)誤!未找到引用源。,求證: 錯(cuò)誤!未找到引用源。.【答案】(1)見解析(2)錯(cuò)誤!未找到引用源。(3)見解析 解:(1)設(shè)等差數(shù)列錯(cuò)誤!未找到引用源。的公差為錯(cuò)誤!未找到引用源。,則錯(cuò)誤!未找到引用源。,從而錯(cuò)誤!未找到引用源。,所以當(dāng)錯(cuò)誤!未找到引用源。時(shí),錯(cuò)誤!未找到引用源。,即數(shù)列錯(cuò)誤!未找到引用源。是等差數(shù)列.(2)因?yàn)榈娜我獾腻e(cuò)誤!未找到引用源。都是公差為錯(cuò)誤!未找到引用源。,的等差數(shù)列,所以錯(cuò)誤!未找到引用源。是公差為錯(cuò)誤!未找到引用源。,的等差數(shù)列,又錯(cuò)誤!未找到引用源。,所以錯(cuò)誤!未找到引用源。,所以錯(cuò)誤!未找到引用源。,顯然,錯(cuò)誤!未找到引用源。滿足條件,當(dāng)錯(cuò)誤!未找到引用源。時(shí),因?yàn)殄e(cuò)誤!未找到引用源。,所以錯(cuò)誤!未找到引用源。,所以錯(cuò)誤!未找到引用源。不是整數(shù),綜上所述,正整數(shù)錯(cuò)誤!未找到引用源。的取值集合為錯(cuò)誤!未找到引用源。.(3)設(shè)等差數(shù)列錯(cuò)誤!未找到引用源。的公差為錯(cuò)誤!未找到引用源。,則錯(cuò)誤!未找到引用源。,所以錯(cuò)誤!未找到引用源。,即數(shù)列錯(cuò)誤!未找到引用源。是公比大于錯(cuò)誤!未找到引用源。,首項(xiàng)大于錯(cuò)誤!未找到引用源。的等比數(shù)列,記公比為錯(cuò)誤!未找到引用源。.以下證明: 錯(cuò)誤!未找到引用源。,其中錯(cuò)誤!未找到引用源。為正整數(shù),且錯(cuò)誤!未找到引用源。,因?yàn)殄e(cuò)誤!未找到引用源。,所以錯(cuò)誤!未找到引用源。,所以錯(cuò)誤!未找到引用源。,當(dāng)錯(cuò)誤!未找到引用源。時(shí),錯(cuò)誤!未找到引用源。,當(dāng)錯(cuò)誤!未找到引用源。時(shí),因?yàn)殄e(cuò)誤!未找到引用源。為減函數(shù),錯(cuò)誤!未找到引用源。,所以錯(cuò)誤!未找到引用源。,所以錯(cuò)誤!未找到引用源。,綜上,錯(cuò)誤!未找到引用源。,其中錯(cuò)誤!未找到引用源。錯(cuò)誤!未找到引用源。 錯(cuò)誤!未找到引用源。,即錯(cuò)誤!未找到引用源。.9.已知數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn},{cn}滿足(n+1)bn=an+1錯(cuò)誤!未找到引用源。,(n+2)cn=錯(cuò)誤!未找到引用源。,其中n∈N*. (1)若數(shù)列{an}是公差為2的等差數(shù)列,求數(shù)列{cn}的通項(xiàng)公式; (2)若存在實(shí)數(shù)λ,使得對一切n∈N*,有bn≤λ≤cn,求證:數(shù)列{an}是等差數(shù)列. 【答案】(1)cn=1.(2)見解析.10.已知各項(xiàng)不為零的數(shù)列錯(cuò)誤!未找到引用源。的前錯(cuò)誤!未找到引用源。項(xiàng)和為錯(cuò)誤!未找到引用源。,且錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。,錯(cuò)誤!未找到引用源。. (1)若錯(cuò)誤!未找到引用源。成等比數(shù)列,求實(shí)數(shù)錯(cuò)誤!未找到引用源。的值;(2)若錯(cuò)誤!未找到引用源。成等差數(shù)列,①求數(shù)列錯(cuò)誤!未找到引用源。的通項(xiàng)公式; ②在錯(cuò)誤!未找到引用源。與錯(cuò)誤!未找到引用源。間插入錯(cuò)誤!未找到引用源。個(gè)正數(shù),共同組成公比為錯(cuò)誤!未找到引用源。的等比數(shù)列,若不等式錯(cuò)誤!未找到引用源。對任意的錯(cuò)誤!未找到引用源。恒成立,求實(shí)數(shù)錯(cuò)誤!未找到引用源。的最大值. 【答案】(1)錯(cuò)誤!未找到引用源。(2)錯(cuò)誤!未找到引用源。(3)錯(cuò)誤!未找到引用源。 (3)錯(cuò)誤!未找到引用源。,在錯(cuò)誤!未找到引用源。與錯(cuò)誤!未找到引用源。間插入錯(cuò)誤!未找到引用源。個(gè)正數(shù),組成公比為錯(cuò)誤!未找到引用源。的等比數(shù)列,故有錯(cuò)誤!未找到引用源。,即錯(cuò)誤!未找到引用源。,第三篇:數(shù)列不等式推理與證明
第四篇:數(shù)列不等式的證明
第五篇:放縮法證明數(shù)列不等式