第一篇:等比數(shù)列前n項(xiàng)和練習(xí)一
等比數(shù)列的前n項(xiàng)和練習(xí)一
1.數(shù)列111
2,4,8,…的前10項(xiàng)和等于()A.1B.5111023D.11024 512C.1024512
2.已知Sn是等比數(shù)列{an}的前n項(xiàng)和,a5=-2,a8=16,則S6等于()A.21B.-2117D.-1788C.88
3.在等比數(shù)列{an}中,公比q=-2,S5=44,則a1的值為()A.4B.-4C.2D.-2
4.在等比數(shù)列{a=8,q=11
n}中a12,an=2,則Sn等于()
A.31B.31
2C.8D.15
5.設(shè)S}的前n項(xiàng)和,8a0,則Sn為等比數(shù)列{an2+a5=S2
=()
A.11B.5C.-8D.-116.已知數(shù)列{an}為等比數(shù)列,Sn是它的前n項(xiàng)和,若a2·a3=2a1,且a4與2a7 的等差中項(xiàng)為5
4S5=()A.35B.33C.31D.29
7.在等比數(shù)列{a=1
n}中,q2S5=2,則a1等于________
8.等比數(shù)列{an}中,a2=9,a5=243,數(shù)列{an}的前4項(xiàng)之和為 9.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn.若a1=1,S6=4S3,則a4=__________ 10.在等比數(shù)列{an}中,a3=-12,前3項(xiàng)和S3=-9,求公比q.11.等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S1,S3,S2成等差數(shù)列.
(1)求{an}的公比q;(2)若a1-a3=3,求Sn.12.已知等比數(shù)列?an?中,a2=2,a5=128(1)求通項(xiàng)an
(2)若bn=log2an,數(shù)列?bn?的前n項(xiàng)和為sn,且sn=360,求n的值。
第二篇:等比數(shù)列前n項(xiàng)和練習(xí)二
等比數(shù)列前n項(xiàng)和練習(xí)二
1.在等比數(shù)列{an}中,S4=2,S8=6,a17+a18+a19+a20等于()A.32
B.16
C.35D.162
2.已知等比數(shù)列{a1n}的公比q=3,且a1+a3+a5+…+a99=60,則
a1+a2+a3+a4+…+a100等于()A.100
B.80
C.60
D.40
3.等比數(shù)列{an}的前n項(xiàng)和為Sn,若S10=10,S20=30,則S30等于()A.70
B.90
C.100
D.120
4.計(jì)算機(jī)的成本不斷降低,若每隔5年計(jì)算機(jī)價(jià)格降低13,現(xiàn)在的價(jià)格是 8100元,則15年后,價(jià)格降低為()A.2200元
B.900元
C.2400元
D.3600元
5.已知等比數(shù)列{an}中,an=2·3n-1,則由此數(shù)列的偶數(shù)項(xiàng)所組成的新數(shù)列 的前n項(xiàng)和為()n
A.3n
B.3(3n
-1)
C.9?13(9n
?1)
D.4
6.在正項(xiàng)等比數(shù)列?an?中,若s2=7,s6=91,則s4的值為()A 28B32C 35D 49 7.在等比數(shù)列?an?中,sn表示前n項(xiàng)和,若a3=2s2+1,a4=2s3+1則公比q 等于()
A 3B -3C-1D 1 8.在等比數(shù)列{an}中,若Sn=93,an=48,公比q=2,則9.等比數(shù)列首項(xiàng)為2,公比為3,從前
項(xiàng)的和開(kāi)始大于100.10.等比數(shù)列的公比為2,前4項(xiàng)之和等于10,則前8項(xiàng)之和等于________
11.已知等比數(shù)列?an?,公比為-2,它的第n項(xiàng)為48,第2n-3項(xiàng)為192,求此數(shù)列的通項(xiàng)公式。
12.已知{an}是首項(xiàng)為19,公差為-2的等差數(shù)列,Sn為{an}的前n項(xiàng)和.(1)求通項(xiàng)an及Sn;
(2)設(shè){bn-an}是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)和Tn.
第三篇:等比數(shù)列前n項(xiàng)和作業(yè)
第五章第3講
一、選擇題
1.公比為2的等比數(shù)列{an}的各項(xiàng)都是正數(shù),且a2a12=16,則a5=()A.1B.2C.4D.8
2.[2013·安徽名校聯(lián)考]已知等比數(shù)列{a的前n項(xiàng)和為S39
n}n,a32S3=2,則公比q=()
A.1或-1B.-1C.1D.-1或1222
3.[2013·泉州五校質(zhì)檢]在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a1=3,前三項(xiàng)的和S3=21,則a3+a4+a5的值為()
A.33B.72C.84
D.189
4.[2013·合肥質(zhì)檢]已知數(shù)列{an}滿足a1=1,an=2n
(n∈N*
+1·an),則a10=()A.64B.32C.16D.8
5.[2013·衡陽(yáng)三聯(lián)]設(shè){an}是由正數(shù)組成的等比數(shù)列,Sn為其前n項(xiàng)和.已知a2·a4=1,S3=7,則S5=()
A.33B.31171544C.2D.2
6.[2013·湖南重點(diǎn)中學(xué)調(diào)研]若等比數(shù)列{an}的公比q=2,且前12項(xiàng)的積為212,則a3a6a9a12的值為()
A.24B.26C.28D.212
二、填空題
7.已知等比數(shù)列{a}中,a5
n1+a3=10,a4+a6=4,則等比數(shù)列{an}的公比q=________.8.[2013·金版原創(chuàng)]設(shè)等比數(shù)列{an}的前n項(xiàng)之和為Sn,已知a1=2011,且 an+2an+1+an+2=0(n∈N*),則S2012=________.9.[2013·南京模擬]記等比數(shù)列{an}的前n項(xiàng)積為T(mén)n(n∈N*),已知
am-1am+1-2am=0,且T2m-1=128,則m=________.三、解答題
10.[2013·錦州模擬]設(shè)Sn為數(shù)列{an}的前n項(xiàng)和.已知S3=7,a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求a2的值;
(2)若{an}是等比數(shù)列,且an+1 11.[2013·湖州模擬]已知等差數(shù)列{an}滿足:a5=9,a2+a6=14.(1)求{an}的通項(xiàng)公式; (2)若bn=an+qan(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn.12.[2013·浙江模擬]已知公差不為0的等差數(shù)列{a(a∈R),且11 n}的首項(xiàng)a1為aa1 a2,a4 (1)求數(shù)列{an}的通項(xiàng)公式; (2)對(duì)n∈N*,試比較11111 a2+a22+a23+…+a2na1 自強(qiáng)學(xué)校高一數(shù)學(xué) 等比數(shù)列及其前n項(xiàng)和 1.等比數(shù)列的定義 如果一個(gè)數(shù)列從 A.2B.2C.2D.24.設(shè){an}是首項(xiàng)大于零的等比數(shù)列,則“a1<a2”是“數(shù)列{an}是遞增數(shù)列”的() A.充分而不必要條件C.充分必要條件 B.必要而不充分條件 D.既不充分也不必要條件 5.各項(xiàng)均為正數(shù)的等比數(shù)列{an}的前n項(xiàng)和為Sn,若S10=2,S20=8則S30=________.等比數(shù)列中基本量的運(yùn)算 【例1】 等比數(shù)列{an}滿足:a1+a6=11,a3·a49q∈(0,1). (1)求數(shù)列{an}的通項(xiàng)公式;(2)若該數(shù)列前n項(xiàng)和Sn=21,求n的值. 總結(jié):在使用等比數(shù)列的前n項(xiàng)和公式時(shí),應(yīng)根據(jù)公比q的情況進(jìn)行分類(lèi)討論,切不可忽視q的取值而盲目用求和公式. 練習(xí)1.記等差數(shù)列{an}的前n項(xiàng)和為Sn,設(shè)S3=12,且2a1,a2,a3+1成等比數(shù)列,求Sn.等比數(shù)列的判定及證明 【例2】 已知數(shù)列{an}的前n項(xiàng)和Sn=2an+1,求證:{an}是等比數(shù)列,并求出通項(xiàng)公式. 總結(jié):證明一個(gè)數(shù)列是等比數(shù)列的主要方法有兩種:一是利用等比數(shù)列的定義,即證明an+1*2* =q(q≠0,n∈N),二是利用等比中項(xiàng)法,即證明an+1=anan+2≠0(n∈N). an 練習(xí)2.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=1,Sn+1=4an+2.(1)設(shè)bn=an+1-2an,證明數(shù)列{bn}是等比數(shù)列;(2)求數(shù)列{an}的通項(xiàng)公式. 等比數(shù)列的綜合應(yīng)用 【例3】(2010·上海卷)已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n-5an-85,n∈N*.(1)證明:{an-1}是等比數(shù)列; (2)求數(shù)列{Sn}的通項(xiàng)公式,并求出使得Sn+1>Sn成立的最小整數(shù)n.總結(jié):數(shù)列是特殊的函數(shù),以數(shù)列為背景的不等式證明問(wèn)題及以函數(shù)為背景的數(shù)列的綜合問(wèn)題體現(xiàn)了在知識(shí)交匯點(diǎn)上命題的特點(diǎn),該類(lèi)綜合題的知識(shí)綜合性強(qiáng),能很好地考查邏輯推理能力和運(yùn)算求解能力,從而一直成為高考命題者的首選. 練習(xí)3.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an+1=3Sn,n=1,2,3,?,求: (1)a2,a3,a4的值及數(shù)列{an}的通項(xiàng)公式;(2)a2+a4+a6+?+a2n的值.作業(yè): 一、選擇題 1.已知{an}是等比數(shù)列,a2=2,a5=4q=() 111A.-2B.2C.2D.22.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,a1a2a3=5,a7a8a9=10,則a4a5a6=() A.42B.7C.6D.52 13.已知等比數(shù)列{an}的前n項(xiàng)和Sn=t·5n-2-5t的值為() A.4B.5C.5D.54.已知等比數(shù)列{an}中,若a1 005·a1 007=4,則該數(shù)列的前2 011項(xiàng)的積為() A.42 011B.±42 011C.22 011D.±22 011 225.若a1=1,對(duì)于任何n∈N*,都有an>0,且nan+1=(2n-1)an+1an+2an.設(shè)M(x)表示 整數(shù)x的個(gè)位數(shù)字,則M(a2 011)=() A.2B.3C.4D.5 二、填空題 6.?dāng)?shù)列{an}滿足a1=1,an+1=2an+1,若數(shù)列{an+c}恰為等比數(shù)列,則c的值為_(kāi)_______. 7. 等比數(shù)列{an}的公比q>0,已知a2=1,an+2+an+1=6an,則{an}的前4項(xiàng)和S4=____.8.等比數(shù)列{an}的前n項(xiàng)和為Sn,若S3=2,S6=6,則a10+a11+a12=________.9.設(shè){an}是公比為q的等比數(shù)列,|q|>1,令bn=an+1(n=1,2,?),若數(shù)列{bn}有連續(xù)四項(xiàng)在集合{-53,-23,19,37,82}中,則6q=________.三、解答題 10.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S4=1,S8=17,求{an}的通項(xiàng)公式. 11.已知數(shù)列{an}滿足a1=1,a2=3,an+2=3an+1-2an(n∈N*). (1)證明:數(shù)列{an+1-an}是等比數(shù)列;(2)求數(shù)列{an}的通項(xiàng)公式. 12.在數(shù)列{an}中a1=1,an=2(an-1-1)+n(n≥2,n∈N*). (1)求a2,a3的值; (2)證明:數(shù)列{an+n}是等比數(shù)列,并求{an}的通項(xiàng)公式;(3)求數(shù)列{an}的前n項(xiàng)和Sn. 2014屆高三理科數(shù)學(xué)學(xué)案教師寄語(yǔ):學(xué)數(shù)學(xué)的訣竅 勤思 善思 多思 等比數(shù)列及前n項(xiàng)和2013.11命制人:劉曉琳 一、復(fù)習(xí)要求 掌握等比數(shù)列的通項(xiàng)公式和等比數(shù)列的前n項(xiàng)和公式 二、知識(shí)梳理 1.等比數(shù)列定義: 2.通項(xiàng)公式 2、等比數(shù)列?an?的公比為q,首項(xiàng)為a1,前n項(xiàng)和Sn Sn? 3.等比中項(xiàng):若a、b、c成等比數(shù)列,則b是a、c的等比中項(xiàng),且b??ac 4.等比數(shù)列{an}的性質(zhì): 3.等比數(shù)列?an?前n項(xiàng)和Sn的相關(guān)性質(zhì) 5.證明數(shù)列為等比數(shù)列的方法: 三、基礎(chǔ)訓(xùn)練 1 等比數(shù)列?an?中,(1)已知a1?3,q??2 則a6=__________________ (2)已知a3?20,a6?160則a9=______,an?______________(3)已知a1??4,q? 2則s10=__________________(4)已知a1?1,ak?243,q?3則sk=___________________ 2在243和3中間插入3個(gè)數(shù),若這5個(gè)數(shù)成等比數(shù)列,則三個(gè)數(shù)為_(kāi)___________ 3已知等比數(shù)列的公比是 25,第四項(xiàng)是 2,則前三項(xiàng)和為_(kāi)_______________ 4等比數(shù)列?a?76 3n?中,已知s32,s6?2 則an?_______,s9?___________ 5等比數(shù)列?an?中,前四項(xiàng)之和為240,第2項(xiàng),第4項(xiàng)之和為180,則首項(xiàng)為_(kāi)___________ 6.已知?an?是等比數(shù)列,an>0,又知a2 a4+2a3 a5+a4 a6=25,那么a3?a5?()A.5B.10C.15D.20 四、例題精選 考向一 等比數(shù)列的判定 【例1】?(1)若?an?是等比數(shù)列,下列數(shù)列中是等比數(shù)列的所有代號(hào)為 ① ?a2n? ② ?a2n?③ ??1?? ④?lgan? ?an? (2)已知數(shù)列{an}是公比q≠1的等比數(shù)列,則在 “(1){anan+1},(2){an+1-an},(3){an3},(4){nan}” 這四個(gè)數(shù)列中,成等比數(shù)列的個(gè)數(shù)是()(A)1(B)2(C)3(D)4【訓(xùn)練1】(1)下列命題中正確的是()(A)若a,b,c是等差數(shù)列,則log2a,log2b,log2c是等比數(shù)列(B)若a,b,c是等比數(shù)列,則log2a,log2b,log2c是等差數(shù)列(C)若a,b,c是等差數(shù)列,則2a,2b,2c是等比數(shù)列(D)若a,b,c是等比數(shù)列,則2a,2b,2c是等差數(shù)列 (2)設(shè)?an?、?bn?是項(xiàng)數(shù)相同的兩個(gè)等比數(shù)列,c為非零常數(shù),現(xiàn)有如下幾個(gè)數(shù)列,其中必為等比數(shù)列的有。 ① {an?bn}②{c?an?bn}③{ an b④{an?c}⑤{an·bn} n (3)在等比數(shù)列?an?中,a1?2,前n項(xiàng)和為Sn,若數(shù)列?an?1?也是等比數(shù)列,則Sn等于A. 2n? 1?2B.3nC.2nD.3n?1 考向二等比數(shù)列的通項(xiàng)公式和求和公式 【例2】?已知等比數(shù)列{an}中,已知a3?a6?36,a4?a7?18,an? 3.在遞減等比數(shù)列{an}中,a4+a5=12,a2·a7=27,則a10=________.則n=_________ 2 2.在243和3之間插入3個(gè)數(shù),使這5個(gè)數(shù)成等比數(shù)列,則這3個(gè)數(shù)是6.在數(shù)列{an}中,a1?a2???an?2n?1,則a12?a22???an2?__________。 【訓(xùn)練2】 1、等比數(shù)列?an?中,已知a1?a2?324,a3?a4?36,求a5?a6.2、在各項(xiàng)都為正數(shù)的等比數(shù)列{an}中,首項(xiàng)a1=3,前三項(xiàng)和為21,則a3+a4+a5(A)33(B)72(C)84(D)189 47103n?10 (n?N),則f(n)等于()【例3】? 1、設(shè)f(n)?2?2?2?2??? 22.等比數(shù)列{an}中,a3=7,前3項(xiàng)之和S3=21,則公比q的值為答案1或-4.在等比數(shù)列{an}中,已知a1a3a11=8,則a2a8答案 46.已知等比數(shù)列{an}中,a1+a2=30,a3+a4=120,則a5+a6=.答案480 6.設(shè)等比數(shù)列{an}中,每項(xiàng)均為正數(shù),且a3·a8=81,則log3a1+log3a2+…+log3a10等于 A.5B.10C.20D.40 24.在等比數(shù)列{an}中,S4=1,S8=3,則a17+ a18+ a19+ a20的值等于 A.12B.14C.16D.18 10、已知等比數(shù)列{an},公比q= 2n?12 2(8?1)C.(8n?3?1)D.(8n?4?1)7772、在等比數(shù)列{an}中,a1?1,an??152,前n項(xiàng)和為sn=-341,則公比q=__,項(xiàng)數(shù)n=________ A. B. 3、在等比數(shù)列{an}中,已知sn?48,s2n?60求s3n4、已知等比數(shù)列{an}的前n項(xiàng)和為Sn=x·3n-1-,則x的值為.答案 【訓(xùn)練3】 1、設(shè)等比數(shù)列{an}的前n項(xiàng)和為sn,s4?1,s8?17,則an=______________ 2、各項(xiàng)均為正數(shù)的等比數(shù)列{an}的前n項(xiàng)和為sn,若sn?2,s3n?14,則s4n?_______。 考向四等比數(shù)列的性質(zhì) 【例4】?18.有等比數(shù)列中,①已知a3?3,a7?48,則a5?__________.②若a5?2,a10?10,則a15?__________.③若a4?5,a8?6,則a2a10?__________.16 22n (8?1)7 且a1+a3+?+a49=30,則a1+a2+a3+?+a50=()2 A.35B.40C.45D.50 14.設(shè){an}是由正數(shù)組成的等比數(shù)列,公比q=2,且a1a2a3……a30=230,那么a3a6a9…a30等于 A.210B.220C.216D.215 【訓(xùn)練4】 考向五等比數(shù)列與等差數(shù)列的綜合a3?a 41a2,a3,a1 a?a52【例5】?25.各項(xiàng)都是正數(shù)的等比數(shù)列{an}的公比q≠1,且成等差數(shù)列,則4的值是 ?15?11?5?1?1 A.2B.2C.2D.2或29、等差數(shù)列{an}中,a1,a2,a4恰好成等比數(shù)列,則 a 1的值是()a 4A.1B.2C.3D.4 【訓(xùn)練5】1.數(shù)列{an}是公差不為零的等差數(shù)列,并且a5,a8,a13是等比數(shù)列{bn}的相鄰三項(xiàng).若b2=5,則bn等于 14.已知四個(gè)數(shù),前三個(gè)數(shù)成等比數(shù)列,和為19,后三個(gè)數(shù)成等差數(shù)列,和為12,求此四個(gè)數(shù).例1等比數(shù)列{an}的前n項(xiàng)和為sn,已知a1?an?66,a2an?1?128,sn?126,求n和公比q的值。 11、各項(xiàng)均為正的等比數(shù)列{an}中,q? 553 3n?1n?1n?1n? 1A.5·(3)B.5·(5)C.3·(5)D.3·(3) 27.公差不為0的等差數(shù)列{an}中,a2,a3,a6依次成等比數(shù)列,則公比等于 A.2B.3C.2D.3 40.等比數(shù)列{an}的首項(xiàng)a1=1,公比q≠1,如果a1,a2,a3依次是某等差數(shù)列的第1,2,5項(xiàng),則q等于 11,那么當(dāng)a6?時(shí),該數(shù)列首項(xiàng)a1的值為()216 A.2B.3C.-3D.3或-3 A.1B.-1C.2D.- 24.三個(gè)數(shù)成等比數(shù)列,它們的積等于27,它們的平方和等于91,求這三個(gè)數(shù)。 12、三個(gè)數(shù)成等比數(shù)列,其積為216,其和為26,則此三個(gè)數(shù)為 五、鞏固練習(xí) 3.等比數(shù)列?an?中, a2?9,a5?243,則?an?的前4項(xiàng)和為()A. 81B.120C.168D.19 22.已知等比數(shù)列{an}中,已知a2?a8?36,a3?a7?15則q=______________ (3)設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S3+S6=2S9,求數(shù)列的公比q; 19、等比數(shù)列?an?的前n項(xiàng)和為Sn,已知S1,2S2,3S3成等差數(shù)列,則?an?的公比為. 3.已知方程x?mx? 2a1?a3?a9 a?a4?a10的值為.12.已知等差數(shù)列{an}的公差d≠0,且a1,a3,a9成等比數(shù)列,則2 14.在等差數(shù)列{an}中S6=0(d≠0),如果am,am+1,a2m成等比數(shù)列,則m的值等于______.7.若?an?是等差數(shù)列,公差d?0,a2,a3,a6成等比數(shù)列,則公比為()A.1B.2C.3D.43、成等比數(shù)列的三個(gè)數(shù)的和等于65,如果第一個(gè)數(shù)減去1,第三個(gè)數(shù)減去19,那就成等差數(shù)列,求這三個(gè)數(shù)。 4、已知三個(gè)數(shù)a,b,c成等比數(shù)列,其公比為3,如果a,b?8,c成等差數(shù)列,求這三個(gè)數(shù)。 【例6】?有四個(gè)數(shù),其中前三個(gè)數(shù)成等差數(shù)列,后三個(gè)數(shù)成等比數(shù)列,并且第一個(gè)數(shù)與第四個(gè)數(shù)的和是16,第二個(gè)數(shù)與第三個(gè)數(shù)的和是12,求這四個(gè)數(shù). 【訓(xùn)練6】、2、在2與9之間插入兩個(gè)數(shù),使前三個(gè)數(shù)成等差數(shù)列,后三個(gè)數(shù)成等比數(shù)列,求這兩個(gè)數(shù)。3 ? ??x ?nx?2??0的四個(gè)根組成一個(gè)首項(xiàng)為的等比數(shù)列,則|m-n|=2 。答案: 3.2 2.若數(shù)列{an}的前n項(xiàng)和Sn=3n-a,數(shù)列{an}為等比數(shù)列,則實(shí)數(shù)a的值是.答案1 14.(四川理7)已知等比數(shù)列?an?中a2?1,則其前3項(xiàng)的和S3的取值范圍是(D)(A)???,?1?(B)???,0???1,???(C)?3,???(D)???,?1???3,??? 10.(浙江卷6)已知?an?是等比數(shù)列,a2?2,a5?,則a1a2?a2a3???anan?1=C 4 (A)16(1?4?n)(B)16(1?2?n)(C) 3232?n?n (1?4)(D)(1?2)33 SS6 =3,則9 =S6S3 8.(2009遼寧卷理)設(shè)等比數(shù)列{ an}的前n 項(xiàng)和為Sn,若 (A)2(B) (C)(D)3 例4 [2011·北京卷] 在等比數(shù)列{an}中,若a1a4=-4,則公比q=________;|a1|+|a2|+? +|an|=________.a1?a3?a5?a77.已知等比數(shù)列{an}的公比q=? 1a?a4?a6?a8.,則23 Sn為數(shù)列{an}的前n項(xiàng)和.3,a2,a34?設(shè){an}是公比大于1的等比數(shù)列,已知S3?7,且a1?3 構(gòu)成等差數(shù)列. (1)求數(shù)列{an}的等差數(shù)列.,2,?,(2)令bn?lna3n?1,n?1求數(shù)列{bn}的前n項(xiàng)和T.第四篇:等比數(shù)列及其前n項(xiàng)和(學(xué)生)
第五篇:等比數(shù)列及前n項(xiàng)和學(xué)案