欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      配方法(一)教學(xué)設(shè)計(jì)1

      時(shí)間:2019-05-12 18:43:59下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫寫幫文庫(kù)小編為你整理了多篇相關(guān)的《配方法(一)教學(xué)設(shè)計(jì)1》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫(kù)還可以找到更多《配方法(一)教學(xué)設(shè)計(jì)1》。

      第一篇:配方法(一)教學(xué)設(shè)計(jì)1

      第二章

      一元二次方程

      2.配方法

      (一)三、教學(xué)過程分析

      本節(jié)課設(shè)計(jì)了五個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):復(fù)習(xí)回顧;第二環(huán)節(jié):情境引入;第三環(huán)節(jié):講授新課;第四環(huán)節(jié):練習(xí)提高;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):布置作業(yè)。

      第一環(huán)節(jié):復(fù)習(xí)回顧

      活動(dòng)內(nèi)容:

      1、如果一個(gè)數(shù)的平方等于4,則這個(gè)數(shù)是,若一個(gè)數(shù)的平方等于7,則這個(gè)數(shù)是。一個(gè)正數(shù)有幾個(gè)平方根,它們具有怎樣的關(guān)系?

      2、用字母表示完全平方公式。

      3、用估算法求方程x2?4x?2?0的解?你喜歡這種方法嗎?為什么?你能設(shè)法求出其精確解嗎?

      活動(dòng)目的:以問題串的形式引導(dǎo)學(xué)生逐步深入地思考,通過前兩個(gè)問題,引導(dǎo)學(xué)生復(fù)習(xí)開平方和完全平方公式,通過后一個(gè)問題的回答讓學(xué)生進(jìn)一步體會(huì)用估計(jì)法解一元二次方程較麻煩,激發(fā)學(xué)生的求知欲,為學(xué)生后面配方法的學(xué)習(xí)作好鋪墊。

      實(shí)際效果:第1和第2問選兩三個(gè)學(xué)生口答,由于問題較簡(jiǎn)單,學(xué)生很快回答出來。第3問由學(xué)生獨(dú)立練習(xí),通過練習(xí),學(xué)生既復(fù)習(xí)了估算法,同時(shí)又進(jìn)一步體會(huì)到了估算法較麻煩,達(dá)到了激發(fā)學(xué)生探索新解法的目的。

      第二環(huán)節(jié):情境引入

      活動(dòng)內(nèi)容:(1)工人師傅想在一塊足夠大的長(zhǎng)方形鐵皮上裁出一個(gè)面積為100CM2正方形,請(qǐng)你幫他想一想,這個(gè)正方形的邊長(zhǎng)應(yīng)為 ;若它的面積為75CM2,則其邊長(zhǎng)應(yīng)為。(選1個(gè)同學(xué)口答)

      (2)如果一個(gè)正方形的邊長(zhǎng)增加3cm后,它的面積變?yōu)?4cm2,則原來的正方形的邊長(zhǎng)為。若變化后的面積為48cm2呢?(小組合作交流)(3)你會(huì)解下列一元二次方程嗎?(獨(dú)立練習(xí))

      x2?5;(x?2)?5; x?12x?36?0。

      22(4)上節(jié)課,我們研究梯子底端滑動(dòng)的距離x(m)滿足方程x2?12x?15?0,你能仿照上面幾個(gè)方程的解題過程,求出x的精確解嗎?你認(rèn)為用這種方法解這個(gè)方程的困難在哪里?(合作交流)

      活動(dòng)目的:利用實(shí)際問題,讓學(xué)生初步體會(huì)開方法在解一元二次方程中的應(yīng)用,為后面學(xué)習(xí)配方法作好鋪墊;培養(yǎng)學(xué)生善于觀察分析、樂于探索研究的學(xué)習(xí)品質(zhì)及與他人合作交流的意識(shí)。

      實(shí)際效果:在復(fù)習(xí)了開方的基礎(chǔ)上,學(xué)生很快口答出了第1問,為解決第二問做好了準(zhǔn)備。第2問讓學(xué)生合作解決,學(xué)生在交流如何求原來正方形的邊長(zhǎng)時(shí),產(chǎn)生了不同的方法,有的學(xué)生直接開方先求出了新正方形的邊,再減增加的邊長(zhǎng),求出原來的正方形的邊長(zhǎng);有的同學(xué)用了方程,設(shè)原正方形的邊長(zhǎng)為xcm,根據(jù)題意列出了一元二次方程(x?3)2?64;(x?3)2?48然后兩邊開方,根據(jù)實(shí)際情況求出了原來正方形的邊長(zhǎng),這樣,再一次經(jīng)歷了用一元二次方程解決實(shí)際問題的過程,并初步了解了開方法在一元二次方程中的簡(jiǎn)單應(yīng)用。在第2問的基礎(chǔ)上,學(xué)生很快解決了第3問。但學(xué)生在解決第4問時(shí)遇到了困難,他們發(fā)現(xiàn)等號(hào)的左端不是完全平方式,不能直接化成因此大部分同學(xué)認(rèn)為這個(gè)方程不能用開方法解,(x?m)?n(n?0)的形式,2那么如何解決這樣的方程問題呢?這就是我們本節(jié)課要來研究的問題(自然引出課題),為后面探索配方法埋好了伏筆。

      第三環(huán)節(jié):講授新課

      活動(dòng)內(nèi)容1:做一做:(填空配成完全平方式,體會(huì)如何配方)

      填上適當(dāng)?shù)臄?shù),使下列等式成立。(選4個(gè)學(xué)生口答)

      x?12x?_____?(x?6)x?8x?____?(x?___)222 x2?6x?____?(x?3)

      2x2?4x?____?(x?___)2

      2問題:上面等式的左邊常數(shù)項(xiàng)和一次項(xiàng)系數(shù)有什么關(guān)系?對(duì)于形如 2 x?ax2的式子如何配成完全平方式?(小組合作交流)

      活動(dòng)目的:配方法的關(guān)鍵是正確配方,而要正確配方就必須熟悉完全平方式的特征,在此通過幾個(gè)填空題,使學(xué)生能夠用語言敘述并充分理解左邊填的是“一次項(xiàng)系數(shù)一半的平方”,右邊填的是“一次項(xiàng)系數(shù)的一半”,進(jìn)一步復(fù)習(xí)鞏固完全平方式中常數(shù)項(xiàng)與一次項(xiàng)系數(shù)的關(guān)系,為后面學(xué)習(xí)掌握配方法解一元二次方程做好充分的準(zhǔn)備。

      實(shí)際效果:由于在復(fù)習(xí)回顧時(shí)已經(jīng)復(fù)習(xí)過完全平方式,所以大部分學(xué)生很快解決四個(gè)小填空題。通過小組的合作交流,學(xué)生發(fā)現(xiàn)要把形如x2?ax的式子如何配成完全平方式,只要加上一次項(xiàng)系數(shù)一半的平方即加上()2即可。而

      2a且講解中小組之間互相補(bǔ)充、互相競(jìng)爭(zhēng),氣氛熱烈,使如何配成完全平方式的方法更加透徹。事實(shí)上,通過對(duì)配方的感知的過程,學(xué)生都能用自己的語言歸納總結(jié)出配成完全平方式的方法,這就為下一環(huán)節(jié)“用配方法解一元二次方程”打好基礎(chǔ)。由此也反映出學(xué)生善于觀察分析的良好品質(zhì),而這種品質(zhì)是在學(xué)生自覺行為中得到培養(yǎng)的,體現(xiàn)了學(xué)生良好的情感、態(tài)度、價(jià)值觀?;顒?dòng)內(nèi)容2:解決例題

      (1)解方程:x2+8x-9=0.(師生共同解決)

      解:可以把常數(shù)項(xiàng)移到方程的右邊,得 x2+8x=9 兩邊都加上(一次項(xiàng)系數(shù)8的一半的平方),得 x2+8x+42=9+42.(x+4)=25 開平方,得 x+4=±5, 即 x+4=5,或x+4=-5.所以 x1=1, x2=-9.(2)解決梯子底部滑動(dòng)問題:x2?12x?15?0(仿照例1,學(xué)生獨(dú)立解決)解:移項(xiàng)得 x2+12x=15,兩邊同時(shí)加上62得,x2+12x+62=15+36,即(x+6)2=51 兩邊開平方,得x+6=±51 2所以:x1?51?6,x2??51?6,但因?yàn)閤表示梯子底部滑動(dòng)的距離所以x2??51?6 不合題意舍去。

      答:梯子底部滑動(dòng)了(51?6)米?;顒?dòng)內(nèi)容3:及時(shí)小結(jié)、整理思路

      用這種方法解一元二次方程的思路是什么?其關(guān)鍵又是什么?(小組合作交流)

      活動(dòng)目的:通過對(duì)例1和例2的講解,規(guī)范配方法解一元二次方程的過程,讓學(xué)生充分理解掌握用配方法解一元二次方程的基本思路及關(guān)鍵是將方程轉(zhuǎn)化成(x?m)2?n(n?0)形式,同時(shí)通過例2提醒學(xué)生注意:有的方程雖然有兩個(gè)不同的解,但在處理實(shí)際問題時(shí)要根據(jù)實(shí)際意義檢驗(yàn)結(jié)果的合理性,對(duì)結(jié)果進(jìn)行取舍。由于此問題在情境引入時(shí)出現(xiàn)過,因此也達(dá)到前后呼應(yīng)的目的。最后由問題“用這種方法解一元二次方程的思路是什么?”引出配方法的定義。

      實(shí)際效果:學(xué)生經(jīng)過前一環(huán)節(jié)對(duì)配方法的特點(diǎn)有了初步的認(rèn)識(shí),通過兩個(gè)例題的處理,進(jìn)一步完善對(duì)配方法基本思路的把握,是對(duì)配方法的學(xué)習(xí)由探求邁向?qū)嶋H應(yīng)用的第一步。最后利用兩個(gè)問題,通過小組的合作交流得出配方法的基本思路和解決問題的關(guān)鍵,結(jié)論的得出來源于學(xué)生在實(shí)例分析中的親身感受,體現(xiàn)學(xué)生學(xué)習(xí)的主動(dòng)性?;顒?dòng)內(nèi)容

      4、應(yīng)用提高

      例3:如圖,在一塊長(zhǎng)和寬分別是16米和12米的長(zhǎng)方形耕地上挖兩條寬度相等的水渠,使剩余的耕地面積等于原來長(zhǎng)方形面積的一半,試求水渠的寬度。(先獨(dú)立思考,再小組合作交流)

      活動(dòng)目的:在前兩個(gè)例題的基礎(chǔ)上,通過例3進(jìn)一步提高學(xué)生分析問題解決問題的能力,幫助學(xué)生熟練掌握配方法在實(shí)際問題中的應(yīng)用,也為后續(xù)學(xué)習(xí)做好鋪墊。

      實(shí)際效果:大部分學(xué)生通過獨(dú)立思考,結(jié)合圖形很快列出了方程,在交流過程中小組成員之間產(chǎn)生了分歧,有的同學(xué)認(rèn)為,如果設(shè)水渠的寬為x米,則 方程應(yīng)該是(16?x)(12?x)?12?12?16;有的同學(xué)認(rèn)為如果設(shè)水渠的寬為x12?12?16米,則方程應(yīng)該是16?12?12x?16x?x2?,并且給出了合理的解釋;有的同學(xué)則認(rèn)為,如果剩余的耕地面積等于原來的一半則意味著水渠的面積也等于原來長(zhǎng)方形面積的一半,所以方程可以列為:12x?16x?x2?12?12?16。面對(duì)這些問題,組織學(xué)生解他們所列出的幾個(gè)方程,然后再讓小組成員合作交流討論,通過討論,學(xué)生發(fā)現(xiàn)這三種方法都正確,并且指出第一種方法可以利用平移水渠,把分割成的四部分拼在一起,構(gòu)成了一個(gè)較大的矩形(如下圖),然后再利用矩形的面積公式列出方程,此種方法在解決此類問題時(shí)最簡(jiǎn)單。這樣通過學(xué)生之間的爭(zhēng)論、辯論提高了課堂效率,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,達(dá)到了資源共享。

      第四環(huán)節(jié):練習(xí)與提高

      活動(dòng)內(nèi)容:解下列方程

      (1)x?10x?25?7;(2)x?6x?1;(3)x(x?14)?0(4)x222?8x?9

      活動(dòng)目的:對(duì)本節(jié)知識(shí)進(jìn)行鞏固練習(xí)。

      實(shí)際效果:此處留給學(xué)生充分的時(shí)間與空間進(jìn)行獨(dú)立練習(xí),通過練習(xí),學(xué)生基本都能用配方法解解二次項(xiàng)系數(shù)為

      1、一次項(xiàng)系數(shù)為偶數(shù)的一元二次方程,取得了較好的教學(xué)效果,加深了學(xué)生對(duì)“用配方法解簡(jiǎn)單一元二次方程”的理解。

      第五環(huán)節(jié):課堂小結(jié)

      活動(dòng)內(nèi)容:師生互相交流、總結(jié)配方法解一元二次方程的基本思路和關(guān)鍵,以及在應(yīng)用配方法時(shí)應(yīng)注意的問題。

      活動(dòng)目的:鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí),談自己的收獲與感想(學(xué)生暢所欲言,教師給予鼓勵(lì))。

      實(shí)際效果:學(xué)生暢所欲言談自己的切身感受與實(shí)際收獲,掌握了配方法的基本思路和過程。第六環(huán)節(jié):布置作業(yè)

      課本50頁習(xí)題2.3 1題、2題

      四、教學(xué)反思

      1、創(chuàng)造性地使用教材

      教材只是為教師提供最基本的教學(xué)素材,教師完全可以根據(jù)學(xué)生的實(shí)際情況進(jìn)行適當(dāng)調(diào)整。學(xué)生在初

      一、初二已經(jīng)學(xué)過完全平方公式和如何對(duì)一個(gè)正數(shù)進(jìn)行開方運(yùn)算,而且普遍掌握較好,所以本節(jié)課從這兩個(gè)方面入手,利用幾個(gè)簡(jiǎn)單的實(shí)際問題逐步引入配方法。教學(xué)中將難點(diǎn)放在探索如何配方上,重點(diǎn)放在配方法的應(yīng)用上。本節(jié)課老師安排了三個(gè)例題,通過前兩個(gè)例題規(guī)范用配方法解一元二次方程的過程,幫助學(xué)生充分掌握用配方法解一元二次方程的技巧,同時(shí)本節(jié)課創(chuàng)造性地使用教材,把配方法(3)中的一個(gè)是設(shè)計(jì)方案問題改編成一個(gè)實(shí)際應(yīng)用問題,讓學(xué)生體會(huì)到了方程在實(shí)際問題中的應(yīng)用,感受到了數(shù)學(xué)的實(shí)際價(jià)值。培養(yǎng)了學(xué)生分析問題,解決問題的能力。

      2、相信學(xué)生并為學(xué)生提供充分展示自己的機(jī)會(huì)

      課堂上要把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)能力放在教學(xué)首位,通過運(yùn)用各種啟發(fā)、激勵(lì)的語言,以及組織小組合作學(xué)習(xí),幫助學(xué)生形成積極主動(dòng)的求知態(tài)度。本節(jié)課多次組織學(xué)生合作交流,通過小組合作,為學(xué)生提供展示自己聰明才智的機(jī)會(huì),并且在此過程中教師發(fā)現(xiàn)了學(xué)生在分析問題和解決問題時(shí)出現(xiàn)的獨(dú)到見解,以及思維的誤區(qū),這樣使得老師可以更好地指導(dǎo)今后的教學(xué)。

      3、注意改進(jìn)的方面

      在小組討論之前,應(yīng)該留給學(xué)生充分的獨(dú)立思考的時(shí)間,不要讓一些思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問。教師應(yīng)對(duì)小組討論給予適當(dāng)?shù)闹笇?dǎo),包括知識(shí)的啟發(fā)引導(dǎo)、學(xué)生交流合作中注意的問題及對(duì)困難學(xué)生的幫助等,使小組合作學(xué)習(xí)更具實(shí)效性。

      第二篇:配方法(一)教學(xué)設(shè)計(jì)

      第二章

      一元二次方程

      2.配方法

      (一)一、教學(xué)目標(biāo):

      知識(shí)技能:會(huì)用開方法解形如(x?m)2?n(n?0)的方程,理解配方法,會(huì)用配方法解二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)為偶數(shù)的一元二次方程;

      數(shù)學(xué)思考:經(jīng)歷列方程解決實(shí)際問題的過程,體會(huì)一元二次方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效模型,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和能力;

      問題解決:體會(huì)轉(zhuǎn)化的數(shù)學(xué)思想方法;

      情感態(tài)度:能根據(jù)具體問題中的實(shí)際意義檢驗(yàn)結(jié)果的合理性。

      二、教學(xué)重難點(diǎn)

      重點(diǎn):運(yùn)用配方法解簡(jiǎn)單的數(shù)字系數(shù)的一元二次方程 難點(diǎn):配方法過程中,解一元二次的要點(diǎn)的理解

      三、教學(xué)方法 教師引導(dǎo)學(xué)生探索

      四、教具準(zhǔn)備 小黑板

      五、教學(xué)過程

      1、創(chuàng)設(shè)情境

      (1)工人師傅想在一塊足夠大的長(zhǎng)方形鐵皮上裁出一個(gè)面積為100CM2正方形,請(qǐng)你幫他想一想,這個(gè)正方形的邊長(zhǎng)應(yīng)為 ;若它的面積為75CM2,則其邊長(zhǎng)應(yīng)為。(選1個(gè)同學(xué)口答)

      (2)如果一個(gè)正方形的邊長(zhǎng)增加3cm后,它的面積變?yōu)?4cm2,則原來的正方形的邊長(zhǎng)為。若變化后的面積為48cm2呢?(小組合作交流)(3)你會(huì)解下列一元二次方程嗎?(獨(dú)立練習(xí))

      x2?5;(x?2)2?5; x2?12x?36?0。

      (4)上節(jié)課,我們研究梯子底端滑動(dòng)的距離x(m)滿足方程x2?12x?15?0,你能仿照上面幾個(gè)方程的解題過程,求出x的精確解嗎?你認(rèn)為用這種方法解 這個(gè)方程的困難在哪里?(合作交流)

      利用實(shí)際問題,讓學(xué)生初步體會(huì)開方法在解一元二次方程中的應(yīng)用,為后面學(xué)習(xí)配方法作好鋪墊;培養(yǎng)學(xué)生善于觀察分析、樂于探索研究的學(xué)習(xí)品質(zhì)及與他人合作交流的意識(shí)。

      2、探索新知

      (1)、做一做:(填空配成完全平方式,體會(huì)如何配方)

      填上適當(dāng)?shù)臄?shù),使下列等式成立。(選4個(gè)學(xué)生口答)

      x2?12x?_____?(x?6)2 x2?6x?____?(x?3)2 x2?8x?____?(x?___)2 x2?4x?____?(x?___)2

      問題:上面等式的左邊常數(shù)項(xiàng)和一次項(xiàng)系數(shù)有什么關(guān)系?對(duì)于形如x2?ax的式子如何配成完全平方式?(小組合作交流)

      (2)、解決例題

      ?解方程:x2+8x-9=0.(師生共同解決)

      解:可以把常數(shù)項(xiàng)移到方程的右邊,得 x2+8x=9 兩邊都加上(一次項(xiàng)系數(shù)8的一半的平方),得 x2+8x+42=9+42.(x+4)2=25 開平方,得 x+4=±5, 即 x+4=5,或x+4=-5.所以 x1=1, x2=-9.?解決梯子底部滑動(dòng)問題:x2?12x?15?0(仿照例1,學(xué)生獨(dú)立解決)解:移項(xiàng)得 x2+12x=15,兩邊同時(shí)加上62得,x2+12x+62=15+36,即(x+6)2=51 兩邊開平方,得x+6=±51

      所以:x1?51?6,x2??51?6,但因?yàn)閤表示梯子底部滑動(dòng)的距離所以x2??51?6 不合題意舍去。答:梯子底部滑動(dòng)了(51?6)米。(3)、整理思路

      用這種方法解一元二次方程的思路是什么?其關(guān)鍵又是什么?(小組合作交流)

      通過對(duì)例1和例2的講解,規(guī)范配方法解一元二次方程的過程,讓學(xué)生充分理解掌握用配方法解一元二次方程的基本思路及關(guān)鍵是將方程轉(zhuǎn)化成(x?m)2?n(n?0)形式,同時(shí)通過例2提醒學(xué)生注意:有的方程雖然有兩個(gè)不同的解,但在處理實(shí)際問題時(shí)要根據(jù)實(shí)際意義檢驗(yàn)結(jié)果的合理性,對(duì)結(jié)果進(jìn)行取舍。由于此問題在情境引入時(shí)出現(xiàn)過,因此也達(dá)到前后呼應(yīng)的目的。最后由問題“用這種方法解一元二次方程的思路是什么?”引出配方法的定義。

      (4)、應(yīng)用提高

      例3:如圖,在一塊長(zhǎng)和寬分別是16米和12米的長(zhǎng)方形耕地上挖兩條寬度相等的水渠,使剩余的耕地面積等于原來長(zhǎng)方形面積的一半,試求水渠的寬度。(先獨(dú)立思考,再小組合作交流)

      在前兩個(gè)例題的基礎(chǔ)上,通過例3進(jìn)一步提高學(xué)生分析問題解決問題的能力,幫助學(xué)生熟練掌握配方法在實(shí)際問題中的應(yīng)用,也為后續(xù)學(xué)習(xí)做好鋪墊。例題分析:如果設(shè)水渠的寬為x米,則方程應(yīng)該是(16?x)(12?x)?如果設(shè)水渠的寬為x米,則方程應(yīng)該是16?12?12x?16x?x2?1?12?16;21?12?16,2并且給出了合理的解釋,如果剩余的耕地面積等于原來的一半則意味著水渠的面積也等于原來長(zhǎng)方形面積的一半,所以方程可以列為:12x?16x?x2?1?12?16。面對(duì)這些問題,組織學(xué)生解他們所列出的幾個(gè)方2程,然后再讓小組成員合作交流討論,通過討論,學(xué)生發(fā)現(xiàn)這三種方法都正確,并且指出第一種方法可以利用平移水渠,把分割成的四部分拼在一起,構(gòu)成了一個(gè)較大的矩形(如下圖),然后再利用矩形的面積公式列出方程,此種方法在解決此類問題時(shí)最簡(jiǎn)單。這樣通過學(xué)生之間的爭(zhēng)論、辯論提高了課堂效率,激發(fā)了學(xué)生學(xué)習(xí)數(shù) 學(xué)的熱情,達(dá)到了資源共享。

      3、隨堂練習(xí)

      解下列方程

      (1)x2?10x?25?7;(2)x2?6x?1;(3)x2?14x?8(4)x2?2x?2?8x?4

      4、課堂小結(jié)

      師生互相交流、總結(jié)配方法解一元二次方程的基本思路和關(guān)鍵,以及在應(yīng)用配方法時(shí)應(yīng)注意的問題。鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí),談自己的收獲與感想(學(xué)生暢所欲言,教師給予鼓勵(lì))。

      5、布置作業(yè)

      課本55頁習(xí)題2.3 第 1題、第2題、第3題

      第三篇:配方法(一)教學(xué)設(shè)計(jì)

      第二章

      一元二次方程

      2.配方法

      (一)石麗威

      一、學(xué)生知識(shí)狀況分析

      學(xué)生的知識(shí)技能基礎(chǔ):學(xué)生在初二上學(xué)期已經(jīng)學(xué)習(xí)過開平方,知道一個(gè)正數(shù)有兩個(gè)平方根,會(huì)利用開方求一個(gè)正數(shù)的兩個(gè)平方根,并且也學(xué)習(xí)了完全平方公式。在本章前面幾節(jié)課中,又學(xué)習(xí)了一元二次方程的概念,并經(jīng)歷了用估算法求一元二次方程的根的過程,初步理解了一元二次方程解的意義;

      學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在相關(guān)知識(shí)的學(xué)習(xí)過程中,學(xué)生已經(jīng)經(jīng)歷了用計(jì)算器估算一元二次方程解的過程,解決了一些簡(jiǎn)單的現(xiàn)實(shí)問題,感受到解一元二次方程的必要性和作用,基于學(xué)生的學(xué)習(xí)心理規(guī)律,在學(xué)習(xí)了估算法求解一元二次方程的基礎(chǔ)上,學(xué)生自然會(huì)產(chǎn)生用簡(jiǎn)單方法求其解的欲望;同時(shí)在以前的數(shù)學(xué)學(xué)習(xí)中學(xué)生已經(jīng)經(jīng)歷了很多合作學(xué)習(xí)的過程,具有了一定的合作學(xué)習(xí)的經(jīng)驗(yàn),具備了一定的合作與交流的能力。

      二、教學(xué)任務(wù)分析

      教科書基于學(xué)生用估算的方法求解一元二次方程的基礎(chǔ)之上,提出了本課的具體學(xué)習(xí)任務(wù):用配方法解二次項(xiàng)系數(shù)為1且一次項(xiàng)系數(shù)為偶數(shù)的一元二次方程。但這僅僅是這堂課具體的教學(xué)目標(biāo),或者說是一個(gè)近期目標(biāo)。而數(shù)學(xué)教學(xué)的遠(yuǎn)期目標(biāo),應(yīng)該與具體的課堂教學(xué)任務(wù)產(chǎn)生實(shí)質(zhì)性聯(lián)系。本課《配方法》內(nèi)容從屬于“方程與不等式”這一數(shù)學(xué)學(xué)習(xí)領(lǐng)域,因而務(wù)必服務(wù)于方程教學(xué)的遠(yuǎn)期目標(biāo):“讓學(xué)生經(jīng)歷由具體問題抽象出方程的過程,體會(huì)方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效模型,并在解一元二次方程的過程中體會(huì)轉(zhuǎn)化的數(shù)學(xué)思想”,同時(shí)也應(yīng)力圖在學(xué)習(xí)中逐步達(dá)成學(xué)生的有關(guān)情感態(tài)度目標(biāo)。為此,本節(jié)課的教學(xué)目標(biāo)是:

      1、會(huì)用開方法解形如(x?m)2?n(n?0)的方程,理解配方法,會(huì)用配方法解二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)為偶數(shù)的一元二次方程;

      2、經(jīng)歷列方程解決實(shí)際問題的過程,體會(huì)一元二次方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效模型,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和能力;

      3、體會(huì)轉(zhuǎn)化的數(shù)學(xué)思想方法;

      4、能根據(jù)具體問題中的實(shí)際意義檢驗(yàn)結(jié)果的合理性。

      三、教學(xué)過程分析

      本節(jié)課設(shè)計(jì)了五個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):復(fù)習(xí)回顧;第二環(huán)節(jié):情境引入;第三環(huán)節(jié):講授新課;第四環(huán)節(jié):練習(xí)提高;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):布置作業(yè)。

      第一環(huán)節(jié):復(fù)習(xí)回顧

      活動(dòng)內(nèi)容:

      1、如果一個(gè)數(shù)的平方等于4,則這個(gè)數(shù)是,若一個(gè)數(shù)的平方等于7,則這個(gè)數(shù)是。一個(gè)正數(shù)有幾個(gè)平方根,它們具有怎樣的關(guān)系?

      2、用字母表示完全平方公式。

      3、用估算法求方程x2?4x?2?0的解?你喜歡這種方法嗎?為什么?你能設(shè)法求出其精確解嗎?

      活動(dòng)目的:以問題串的形式引導(dǎo)學(xué)生逐步深入地思考,通過前兩個(gè)問題,引導(dǎo)學(xué)生復(fù)習(xí)開平方和完全平方公式,通過后一個(gè)問題的回答讓學(xué)生進(jìn)一步體會(huì)用估計(jì)法解一元二次方程較麻煩,激發(fā)學(xué)生的求知欲,為學(xué)生后面配方法的學(xué)習(xí)作好鋪墊。

      實(shí)際效果:第1和第2問選兩三個(gè)學(xué)生口答,由于問題較簡(jiǎn)單,學(xué)生很快回答出來。第3問由學(xué)生獨(dú)立練習(xí),通過練習(xí),學(xué)生既復(fù)習(xí)了估算法,同時(shí)又進(jìn)一步體會(huì)到了估算法較麻煩,達(dá)到了激發(fā)學(xué)生探索新解法的目的。

      第二環(huán)節(jié):情境引入

      活動(dòng)內(nèi)容:(1)工人師傅想在一塊足夠大的長(zhǎng)方形鐵皮上裁出一個(gè)面積為100CM2正方形,請(qǐng)你幫他想一想,這個(gè)正方形的邊長(zhǎng)應(yīng)為 ;若它的面積為75CM2,則其邊長(zhǎng)應(yīng)為。(選1個(gè)同學(xué)口答)(2)如果一個(gè)正方形的邊長(zhǎng)增加3cm后,它的面積變?yōu)?4cm2,則原來的正方形的邊長(zhǎng)為。若變化后的面積為48cm2呢?(小組合作交流)(3)你會(huì)解下列一元二次方程嗎?(獨(dú)立練習(xí))

      x2?5;(x?2)2?5; x2?12x?36?0。

      (4)上節(jié)課,我們研究梯子底端滑動(dòng)的距離x(m)滿足方程x2?12x?15?0,你能仿照上面幾個(gè)方程的解題過程,求出x的精確解嗎?你認(rèn)為用這種方法解這個(gè)方程的困難在哪里?(合作交流)

      活動(dòng)目的:利用實(shí)際問題,讓學(xué)生初步體會(huì)開方法在解一元二次方程中的應(yīng)用,為后面學(xué)習(xí)配方法作好鋪墊;培養(yǎng)學(xué)生善于觀察分析、樂于探索研究的學(xué)習(xí)品質(zhì)及與他人合作交流的意識(shí)。

      實(shí)際效果:在復(fù)習(xí)了開方的基礎(chǔ)上,學(xué)生很快口答出了第1問,為解決第二問做好了準(zhǔn)備。第2問讓學(xué)生合作解決,學(xué)生在交流如何求原來正方形的邊長(zhǎng)時(shí),產(chǎn)生了不同的方法,有的學(xué)生直接開方先求出了新正方形的邊,再減增加的邊長(zhǎng),求出原來的正方形的邊長(zhǎng);有的同學(xué)用了方程,設(shè)原正方形的邊長(zhǎng)為xcm,根據(jù)題意列出了一元二次方程(x?3)2?64;(x?3)2?48然后兩邊開方,根據(jù)實(shí)際情況求出了原來正方形的邊長(zhǎng),這樣,再一次經(jīng)歷了用一元二次方程解決實(shí)際問題的過程,并初步了解了開方法在一元二次方程中的簡(jiǎn)單應(yīng)用。在第2問的基礎(chǔ)上,學(xué)生很快解決了第3問。但學(xué)生在解決第4問時(shí)遇到了困難,他們發(fā)現(xiàn)等號(hào)的左端不是完全平方式,不能直接化成(x?m)2?n(n?0)的形式,因此大部分同學(xué)認(rèn)為這個(gè)方程不能用開方法解,那么如何解決這樣的方程問題呢?這就是我們本節(jié)課要來研究的問題(自然引出課題),為后面探索配方法埋好了伏筆。

      第三環(huán)節(jié):講授新課

      活動(dòng)內(nèi)容1:做一做:(填空配成完全平方式,體會(huì)如何配方)

      填上適當(dāng)?shù)臄?shù),使下列等式成立。(選4個(gè)學(xué)生口答)

      x2?12x?_____?(x?6)2 x2?6x?____?(x?3)2

      x2?8x?____?(x?___)2 x2?4x?____?(x?___)2

      問題:上面等式的左邊常數(shù)項(xiàng)和一次項(xiàng)系數(shù)有什么關(guān)系?對(duì)于形如x2?ax的式子如何配成完全平方式?(小組合作交流)

      活動(dòng)目的:配方法的關(guān)鍵是正確配方,而要正確配方就必須熟悉完全平方式的特征,在此通過幾個(gè)填空題,使學(xué)生能夠用語言敘述并充分理解左邊填的是“一次項(xiàng)系數(shù)一半的平方”,右邊填的是“一次項(xiàng)系數(shù)的一半”,進(jìn)一步復(fù)習(xí)鞏固完全平方式中常數(shù)項(xiàng)與一次項(xiàng)系數(shù)的關(guān)系,為后面學(xué)習(xí)掌握配方法解一元二次方程做好充分的準(zhǔn)備。

      實(shí)際效果:由于在復(fù)習(xí)回顧時(shí)已經(jīng)復(fù)習(xí)過完全平方式,所以大部分學(xué)生很快解決四個(gè)小填空題。通過小組的合作交流,學(xué)生發(fā)現(xiàn)要把形如x2?ax的式子

      a如何配成完全平方式,只要加上一次項(xiàng)系數(shù)一半的平方即加上()2即可。而

      2且講解中小組之間互相補(bǔ)充、互相競(jìng)爭(zhēng),氣氛熱烈,使如何配成完全平方式的方法更加透徹。事實(shí)上,通過對(duì)配方的感知的過程,學(xué)生都能用自己的語言歸納總結(jié)出配成完全平方式的方法,這就為下一環(huán)節(jié)“用配方法解一元二次方程”打好基礎(chǔ)。由此也反映出學(xué)生善于觀察分析的良好品質(zhì),而這種品質(zhì)是在學(xué)生自覺行為中得到培養(yǎng)的,體現(xiàn)了學(xué)生良好的情感、態(tài)度、價(jià)值觀?;顒?dòng)內(nèi)容2:解決例題

      (1)解方程:x2+8x-9=0.(師生共同解決)

      解:可以把常數(shù)項(xiàng)移到方程的右邊,得 x2+8x=9 兩邊都加上(一次項(xiàng)系數(shù)8的一半的平方),得 x2+8x+42=9+42.(x+4)2=25 開平方,得 x+4=±5, 即 x+4=5,或x+4=-5.所以 x1=1, x2=-9.(2)解決梯子底部滑動(dòng)問題:x2?12x?15?0(仿照例1,學(xué)生獨(dú)立解決)解:移項(xiàng)得 x2+12x=15,兩邊同時(shí)加上62得,x2+12x+62=15+36,即(x+6)2=51 兩邊開平方,得x+6=±51

      所以:x1?51?6,x2??51?6,但因?yàn)閤表示梯子底部滑動(dòng)的距離所以x2??51?6 不合題意舍去。

      答:梯子底部滑動(dòng)了(51?6)米?;顒?dòng)內(nèi)容3:及時(shí)小結(jié)、整理思路

      用這種方法解一元二次方程的思路是什么?其關(guān)鍵又是什么?(小組合作交流)

      活動(dòng)目的:通過對(duì)例1和例2的講解,規(guī)范配方法解一元二次方程的過程,讓學(xué)生充分理解掌握用配方法解一元二次方程的基本思路及關(guān)鍵是將方程轉(zhuǎn)化成(x?m)2?n(n?0)形式,同時(shí)通過例2提醒學(xué)生注意:有的方程雖然有兩個(gè)不同的解,但在處理實(shí)際問題時(shí)要根據(jù)實(shí)際意義檢驗(yàn)結(jié)果的合理性,對(duì)結(jié)果進(jìn)行取舍。由于此問題在情境引入時(shí)出現(xiàn)過,因此也達(dá)到前后呼應(yīng)的目的。最后由問題“用這種方法解一元二次方程的思路是什么?”引出配方法的定義。

      實(shí)際效果:學(xué)生經(jīng)過前一環(huán)節(jié)對(duì)配方法的特點(diǎn)有了初步的認(rèn)識(shí),通過兩個(gè)例題的處理,進(jìn)一步完善對(duì)配方法基本思路的把握,是對(duì)配方法的學(xué)習(xí)由探求邁向?qū)嶋H應(yīng)用的第一步。最后利用兩個(gè)問題,通過小組的合作交流得出配方法的基本思路和解決問題的關(guān)鍵,結(jié)論的得出來源于學(xué)生在實(shí)例分析中的親身感受,體現(xiàn)學(xué)生學(xué)習(xí)的主動(dòng)性?;顒?dòng)內(nèi)容

      4、應(yīng)用提高

      例3:如圖,在一塊長(zhǎng)和寬分別是16米和12米的長(zhǎng)方形耕地上挖兩條寬度相等的水渠,使剩余的耕地面積等于原來長(zhǎng)方形面積的一半,試求水渠的寬度。(先獨(dú)立思考,再小組合作交流)

      活動(dòng)目的:在前兩個(gè)例題的基礎(chǔ)上,通過例3進(jìn)一步提高學(xué)生分析問題解決問題的能力,幫助學(xué)生熟練掌握配方法在實(shí)際問題中的應(yīng)用,也為后續(xù)學(xué)習(xí)做好鋪墊。實(shí)際效果:大部分學(xué)生通過獨(dú)立思考,結(jié)合圖形很快列出了方程,在交流過程中小組成員之間產(chǎn)生了分歧,有的同學(xué)認(rèn)為,如果設(shè)水渠的寬為x米,則

      1?12?16;有的同學(xué)認(rèn)為如果設(shè)水渠的寬為x21米,則方程應(yīng)該是16?12?12x?16x?x2??12?16,并且給出了合理的解

      2方程應(yīng)該是(16?x)(12?x)?釋;有的同學(xué)則認(rèn)為,如果剩余的耕地面積等于原來的一半則意味著水渠的面積也等于原來長(zhǎng)方形面積的一半,所以方程可以列為:12x?16x?x2?1?12?16。面對(duì)這些問題,組織學(xué)生解他們2所列出的幾個(gè)方程,然后再讓小組成員合作交流討論,通過討論,學(xué)生發(fā)現(xiàn)這三種方法都正確,并且指出第一種方法可以利用平移水渠,把分割成的四部分拼在一起,構(gòu)成了一個(gè)較大的矩形(如下圖),然后再利用矩形的面積公式列出方程,此種方法在解決此類問題時(shí)最簡(jiǎn)單。這樣通過學(xué)生之間的爭(zhēng)論、辯論提高了課堂效率,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,達(dá)到了資源共享。

      第四環(huán)節(jié):練習(xí)與提高

      活動(dòng)內(nèi)容:解下列方程

      (1)x2?10x?25?7;(2)x2?6x?1;(3)x(x?14)?0(4)x2?8x?9

      活動(dòng)目的:對(duì)本節(jié)知識(shí)進(jìn)行鞏固練習(xí)。

      實(shí)際效果:此處留給學(xué)生充分的時(shí)間與空間進(jìn)行獨(dú)立練習(xí),通過練習(xí),學(xué)生基本都能用配方法解解二次項(xiàng)系數(shù)為

      1、一次項(xiàng)系數(shù)為偶數(shù)的一元二次方程,取得了較好的教學(xué)效果,加深了學(xué)生對(duì)“用配方法解簡(jiǎn)單一元二次方程”的理解。

      第五環(huán)節(jié):課堂小結(jié)

      活動(dòng)內(nèi)容:師生互相交流、總結(jié)配方法解一元二次方程的基本思路和關(guān)鍵,以及在應(yīng)用配方法時(shí)應(yīng)注意的問題。

      活動(dòng)目的:鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí),談自己的收獲與感想(學(xué)生暢所欲言,教師給予鼓勵(lì))。實(shí)際效果:學(xué)生暢所欲言談自己的切身感受與實(shí)際收獲,掌握了配方法的基本思路和過程。

      第六環(huán)節(jié):布置作業(yè)

      課本50頁習(xí)題2.3 1題、2題

      四、教學(xué)反思

      1、創(chuàng)造性地使用教材

      教材只是為教師提供最基本的教學(xué)素材,教師完全可以根據(jù)學(xué)生的實(shí)際情況進(jìn)行適當(dāng)調(diào)整。學(xué)生在初

      一、初二已經(jīng)學(xué)過完全平方公式和如何對(duì)一個(gè)正數(shù)進(jìn)行開方運(yùn)算,而且普遍掌握較好,所以本節(jié)課從這兩個(gè)方面入手,利用幾個(gè)簡(jiǎn)單的實(shí)際問題逐步引入配方法。教學(xué)中將難點(diǎn)放在探索如何配方上,重點(diǎn)放在配方法的應(yīng)用上。本節(jié)課老師安排了三個(gè)例題,通過前兩個(gè)例題規(guī)范用配方法解一元二次方程的過程,幫助學(xué)生充分掌握用配方法解一元二次方程的技巧,同時(shí)本節(jié)課創(chuàng)造性地使用教材,把配方法(3)中的一個(gè)是設(shè)計(jì)方案問題改編成一個(gè)實(shí)際應(yīng)用問題,讓學(xué)生體會(huì)到了方程在實(shí)際問題中的應(yīng)用,感受到了數(shù)學(xué)的實(shí)際價(jià)值。培養(yǎng)了學(xué)生分析問題,解決問題的能力。

      2、相信學(xué)生并為學(xué)生提供充分展示自己的機(jī)會(huì)

      課堂上要把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)能力放在教學(xué)首位,通過運(yùn)用各種啟發(fā)、激勵(lì)的語言,以及組織小組合作學(xué)習(xí),幫助學(xué)生形成積極主動(dòng)的求知態(tài)度。本節(jié)課多次組織學(xué)生合作交流,通過小組合作,為學(xué)生提供展示自己聰明才智的機(jī)會(huì),并且在此過程中教師發(fā)現(xiàn)了學(xué)生在分析問題和解決問題時(shí)出現(xiàn)的獨(dú)到見解,以及思維的誤區(qū),這樣使得老師可以更好地指導(dǎo)今后的教學(xué)。

      3、注意改進(jìn)的方面

      在小組討論之前,應(yīng)該留給學(xué)生充分的獨(dú)立思考的時(shí)間,不要讓一些思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問。教師應(yīng)對(duì)小組討論給予適當(dāng)?shù)闹笇?dǎo),包括知識(shí)的啟發(fā)引導(dǎo)、學(xué)生交流合作中注意 的問題及對(duì)困難學(xué)生的幫助等,使小組合作學(xué)習(xí)更具實(shí)效性。

      第四篇:配方法(一)教學(xué)設(shè)計(jì)

      《 一元二次方程----配方法》教學(xué)設(shè)計(jì)(最終稿)

      一、研修背景:

      學(xué)校:赫章縣哲莊鄉(xiāng)初級(jí)中學(xué) 執(zhí)教教師及備課組:本校數(shù)學(xué)教研組

      研究學(xué)科與課題:數(shù)學(xué)學(xué)科《一元二次方程----配方法》 研究主要問題:怎樣的設(shè)計(jì)才能使這堂課達(dá)到最佳效果

      二、研究過程:(一)學(xué)情研究

      1、學(xué)生的知識(shí)技能基礎(chǔ)研究:

      學(xué)生在初二上學(xué)期已經(jīng)學(xué)習(xí)過開平方,知道一個(gè)正數(shù)有兩個(gè)平方根,會(huì)利用開方求一個(gè)正數(shù)的兩個(gè)平方根,并且也學(xué)習(xí)了完全平方公式。在本章前面幾節(jié)課中,又學(xué)習(xí)了一元二次方程的概念,并經(jīng)歷了用估算法求一元二次方程的根的過程,初步理解了一元二次方程解的意義;

      2、學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ)研究:

      在相關(guān)知識(shí)的學(xué)習(xí)過程中,學(xué)生已經(jīng)經(jīng)歷了用計(jì)算器估算一元二次方程解的過程,解決了一些簡(jiǎn)單的現(xiàn)實(shí)問題,感受到解一元二次方程的必要性和作用,基于學(xué)生的學(xué)習(xí)心理規(guī)律,在學(xué)習(xí)了估算法求解一元二次方程的基礎(chǔ)上,學(xué)生自然會(huì)產(chǎn)生用簡(jiǎn)單方法求其解的欲望;同時(shí)在以前的數(shù)學(xué)學(xué)習(xí)中學(xué)生已經(jīng)經(jīng)歷了很多合作學(xué)習(xí)的過程,具有了一定的合作學(xué)習(xí)的經(jīng)驗(yàn),具備了一定的合作與交流的能力。

      (二)教學(xué)任務(wù)研究

      1、教材研究:教科書基于學(xué)生用估算的方法求解一元二次方程的基礎(chǔ)之上,提出了本課的具體學(xué)習(xí)任務(wù):用配方法解二次項(xiàng)系數(shù)為1且一次項(xiàng)系數(shù)為偶數(shù)的一元二次方程。但這僅僅是這堂課具體的教學(xué)目標(biāo),或者說是一個(gè)近期目標(biāo)。而數(shù)學(xué)教學(xué)的遠(yuǎn)期目標(biāo),應(yīng)該與具體的課堂教學(xué)任務(wù)產(chǎn)生實(shí)質(zhì)性聯(lián)系。本課《配方法》內(nèi)容從屬于“方程與不等式”這一數(shù)學(xué)學(xué)習(xí)領(lǐng)域,因 1 而務(wù)必服務(wù)于方程教學(xué)的遠(yuǎn)期目標(biāo):“讓學(xué)生經(jīng)歷由具體問題抽象出方程的過程,體會(huì)方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效模型,并在解一元二次方程的過程中體會(huì)轉(zhuǎn)化的數(shù)學(xué)思想”,同時(shí)也應(yīng)力圖在學(xué)習(xí)中逐步達(dá)成學(xué)生的有關(guān)情感態(tài)度目標(biāo)。

      2、教學(xué)目標(biāo)研究:本節(jié)課應(yīng)達(dá)到以下教學(xué)目標(biāo):

      (1)會(huì)用開方法解形如(x?m)2?n(n?0)的方程,理解配方法,會(huì)用配方法解二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)為偶數(shù)的一元二次方程;

      (2)經(jīng)歷列方程解決實(shí)際問題的過程,體會(huì)一元二次方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效模型,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和能力;

      (3)體會(huì)轉(zhuǎn)化的數(shù)學(xué)思想方法;

      (4)能根據(jù)具體問題中的實(shí)際意義檢驗(yàn)結(jié)果的合理性。

      (三)教學(xué)過程研究

      本節(jié)課可設(shè)計(jì)為以下五個(gè)教學(xué)環(huán)節(jié): 第一環(huán)節(jié):復(fù)習(xí)回顧 教學(xué)活動(dòng)內(nèi)容設(shè)計(jì):

      1、如果一個(gè)數(shù)的平方等于4,則這個(gè)數(shù)是,若一個(gè)數(shù)的平方等于7,則這個(gè)數(shù)是。一個(gè)正數(shù)有幾個(gè)平方根,它們具有怎樣的關(guān)系?

      2、用字母表示完全平方公式。

      3、用估算法求方程x2?4x?2?0的解?你喜歡這種方法嗎?為什么?你能設(shè)法求出其精確解嗎?

      教學(xué)活動(dòng)內(nèi)容設(shè)計(jì)意圖:以問題串的形式引導(dǎo)學(xué)生逐步深入地思考,通過前兩個(gè)問題,引導(dǎo)學(xué)生復(fù)習(xí)開平方和完全平方公式,通過后一個(gè)問題的回答讓學(xué)生進(jìn)一步體會(huì)用估計(jì)法解一元二次方程較麻煩,激發(fā)學(xué)生的求知欲,為學(xué)生后面配方法的學(xué)習(xí)作好鋪墊。

      實(shí)際教學(xué)中的效果:第1和第2問選兩三個(gè)學(xué)生口答,由于問題較簡(jiǎn)單,學(xué)生很快回答出來。第3問由學(xué)生獨(dú)立練習(xí),通過練習(xí),學(xué)生既復(fù)習(xí)了估算法,同時(shí)又進(jìn)一步體會(huì)到了估算法較麻煩,達(dá)到了激發(fā)學(xué)生探索新解法的目的。第二環(huán)節(jié):情境引入 教學(xué)活動(dòng)內(nèi)容設(shè)計(jì):

      1、工人師傅想在一塊足夠大的長(zhǎng)方形鐵皮上裁出一個(gè)面積為100CM2正方形,請(qǐng)你幫他想一想,這個(gè)正方形的邊長(zhǎng)應(yīng)為 ;若它的面積為75CM2,則其邊長(zhǎng)應(yīng)為。(選1個(gè)同學(xué)口答)

      2、如果一個(gè)正方形的邊長(zhǎng)增加3cm后,它的面積變?yōu)?4cm2,則原來的正方形的邊長(zhǎng)為。若變化后的面積為48cm2呢?(小組合作交流)

      3、你會(huì)解下列一元二次方程嗎?(獨(dú)立練習(xí))

      x2?5;(x?2)2?5; x2?12x?36?0。

      4、上節(jié)課,我們研究梯子底端滑動(dòng)的距離x(m)滿足方程x2?12x?15?0,你能仿照上面幾個(gè)方程的解題過程,求出x的精確解嗎?你認(rèn)為用這種方法解這個(gè)方程的困難在哪里?(合作交流)

      活動(dòng)內(nèi)容設(shè)計(jì)的意圖:利用實(shí)際問題,讓學(xué)生初步體會(huì)開方法在解一元二次方程中的應(yīng)用,為后面學(xué)習(xí)配方法作好鋪墊;培養(yǎng)學(xué)生善于觀察分析、樂于探索研究的學(xué)習(xí)品質(zhì)及與他人合作交流的意識(shí)。

      實(shí)際教學(xué)效果:在復(fù)習(xí)了開方的基礎(chǔ)上,學(xué)生很快口答出了第1問,為解決第二問做好了準(zhǔn)備。第2問讓學(xué)生合作解決,學(xué)生在交流如何求原來正方形的邊長(zhǎng)時(shí),產(chǎn)生了不同的方法,有的學(xué)生直接開方先求出了新正方形的邊,再減增加的邊長(zhǎng),求出原來的正方形的邊長(zhǎng);有的同學(xué)用了方程,設(shè)原正方形的邊長(zhǎng)為xcm,根據(jù)題意列出了一元二次方程(x?3)2?64;(x?3)2?48然后兩邊開方,根據(jù)實(shí)際情況求出了原來正方形的邊長(zhǎng),這樣,再一次經(jīng)歷了用一元二次方程解決實(shí)際問題的過程,并初步了解了開方法在一元二次方程中的簡(jiǎn)單應(yīng)用。在第2問的基礎(chǔ)上,學(xué)生很快解決了第3問。但學(xué)生在解決第4問時(shí)遇到了困難,他們發(fā)現(xiàn)等號(hào)的左端不是完全平方式,不能直接化成因此大部分同學(xué)認(rèn)為這個(gè)方程不能用開方法解,(x?m)2?n(n?0)的形式,那么如何解決這樣的方程問題呢?這就是我們本節(jié)課要來研究的問題(自然 3 引出課題),為后面探索配方法埋好了伏筆。第三環(huán)節(jié):講授新課

      教學(xué)活動(dòng)內(nèi)容設(shè)計(jì)

      1:做一做:(填空配成完全平方式,體會(huì)如何配方)

      填上適當(dāng)?shù)臄?shù),使下列等式成立。(選4個(gè)學(xué)生口答)

      x2?12x?_____?(x?6)2 x2?6x?____?(x?3)2 x2?8x?____?(x?___)2 x2?4x?____?(x?___)2

      問題:上面等式的左邊常數(shù)項(xiàng)和一次項(xiàng)系數(shù)有什么關(guān)系?對(duì)于形如x2?ax的式子如何配成完全平方式?(小組合作交流)

      教學(xué)活動(dòng)內(nèi)容設(shè)計(jì)的意圖:配方法的關(guān)鍵是正確配方,而要正確配方就必須熟悉完全平方式的特征,在此通過幾個(gè)填空題,使學(xué)生能夠用語言敘述并充分理解左邊填的是“一次項(xiàng)系數(shù)一半的平方”,右邊填的是“一次項(xiàng)系數(shù)的一半”,進(jìn)一步復(fù)習(xí)鞏固完全平方式中常數(shù)項(xiàng)與一次項(xiàng)系數(shù)的關(guān)系,為后面學(xué)習(xí)掌握配方法解一元二次方程做好充分的準(zhǔn)備。

      實(shí)際教學(xué)效果:由于在復(fù)習(xí)回顧時(shí)已經(jīng)復(fù)習(xí)過完全平方式,所以大部分學(xué)生很快解決四個(gè)小填空題。通過小組的合作交流,學(xué)生發(fā)現(xiàn)要把形如x2?ax的a式子如何配成完全平方式,只要加上一次項(xiàng)系數(shù)一半的平方即加上()2即可。

      2而且講解中小組之間互相補(bǔ)充、互相競(jìng)爭(zhēng),氣氛熱烈,使如何配成完全平方式的方法更加透徹。事實(shí)上,通過對(duì)配方的感知的過程,學(xué)生都能用自己的語言歸納總結(jié)出配成完全平方式的方法,這就為下一環(huán)節(jié)“用配方法解一元二次方程”打好基礎(chǔ)。由此也反映出學(xué)生善于觀察分析的良好品質(zhì),而這種品質(zhì)是在學(xué)生自覺行為中得到培養(yǎng)的,體現(xiàn)了學(xué)生良好的情感、態(tài)度、價(jià)值觀。教學(xué)活動(dòng)內(nèi)容設(shè)計(jì)2:解決例題

      (1)解方程:x2+8x-9=0.(師生共同解決)

      解:可以把常數(shù)項(xiàng)移到方程的右邊,得 x2+8x=9 兩邊都加上(一次項(xiàng)系數(shù)8的一半的平方),得 x2+8x+42=9+42.(x+4)2=25 開平方,得 x+4=±5, 即 x+4=5,或x+4=-5.所以 x1=1, x2=-9.(2)解決梯子底部滑動(dòng)問題:x2?12x?15?0(仿照例1,學(xué)生獨(dú)立解決)解:移項(xiàng)得 x2+12x=15,兩邊同時(shí)加上62得,x2+12x+62=15+36,即(x+6)2=51 兩邊開平方,得x+6=±51

      所以:x1?51?6,x2??51?6,但因?yàn)閤表示梯子底部滑動(dòng)的距離所以x2??51?6 不合題意舍去。答:梯子底部滑動(dòng)了(51?6)米。教學(xué)活動(dòng)內(nèi)容設(shè)計(jì)3:及時(shí)小結(jié)、整理思路

      用這種方法解一元二次方程的思路是什么?其關(guān)鍵又是什么?(小組合作交流)

      教學(xué)活動(dòng)內(nèi)容設(shè)計(jì)2、3意圖:通過對(duì)例1和例2的講解,規(guī)范配方法解一元二次方程的過程,讓學(xué)生充分理解掌握用配方法解一元二次方程的基本思路及關(guān)鍵是將方程轉(zhuǎn)化成(x?m)2?n(n?0)形式,同時(shí)通過例2提醒學(xué)生注意:有的方程雖然有兩個(gè)不同的解,但在處理實(shí)際問題時(shí)要根據(jù)實(shí)際意義檢驗(yàn)結(jié)果的合理性,對(duì)結(jié)果進(jìn)行取舍。由于此問題在情境引入時(shí)出現(xiàn)過,因此也達(dá)到前后呼應(yīng)的目的。最后由問題“用這種方法解一元二次方程的思路是什么?”引出配方法的定義。

      實(shí)際教學(xué)效果:學(xué)生經(jīng)過前一環(huán)節(jié)對(duì)配方法的特點(diǎn)有了初步的認(rèn)識(shí),通過兩個(gè)例題的處理,進(jìn)一步完善對(duì)配方法基本思路的把握,是對(duì)配方法的學(xué)習(xí)由 5 探求邁向?qū)嶋H應(yīng)用的第一步。最后利用兩個(gè)問題,通過小組的合作交流得出配方法的基本思路和解決問題的關(guān)鍵,結(jié)論的得出來源于學(xué)生在實(shí)例分析中的親身感受,體現(xiàn)學(xué)生學(xué)習(xí)的主動(dòng)性?;顒?dòng)內(nèi)容

      4、應(yīng)用提高

      例3:如圖,在一塊長(zhǎng)和寬分別是16米和12米的長(zhǎng)方形耕地上挖兩條寬度相等的水渠,使剩余的耕地面積等于原來長(zhǎng)方形面積的一半,試求水渠的寬度。(先獨(dú)立思考,再小組合作交流)

      教學(xué)活動(dòng)內(nèi)容設(shè)計(jì)的意圖:在前兩個(gè)例題的基礎(chǔ)上,通過例3進(jìn)一步提高學(xué)生分析問題解決問題的能力,幫助學(xué)生熟練掌握配方法在實(shí)際問題中的應(yīng)用,也為后續(xù)學(xué)習(xí)做好鋪墊。

      實(shí)際教學(xué)效果:大部分學(xué)生通過獨(dú)立思考,結(jié)合圖形很快列出了方程,在交流過程中小組成員之間產(chǎn)生了分歧,有的同學(xué)認(rèn)為,如果設(shè)水渠的寬為x米,1?12?16;有的同學(xué)認(rèn)為如果設(shè)水渠的寬為x21米,則方程應(yīng)該是16?12?12x?16x?x2??12?16,并且給出了合理的解

      2則方程應(yīng)該是(16?x)(12?x)?釋;有的同學(xué)則認(rèn)為,如果剩余的耕地面積等于原來的一半則意味著水渠的面積也等于原來長(zhǎng)方形面積的一半,所以方程可以列為:12x?16x?x2?1?12?16。面對(duì)這些問題,組織學(xué)生解他們2所列出的幾個(gè)方程,然后再讓小組成員合作交流討論,通過討論,學(xué)生發(fā)現(xiàn)這三種方法都正確,并且指出第一種方法可以利用平移水渠,把分割成的四部分拼在一起,構(gòu)成了一個(gè)較大的矩形(如下圖),然后再利用矩形的面積公式列出方程,此種方法在解決此類問題時(shí)最簡(jiǎn)單。這樣通過學(xué)生之間的爭(zhēng)論、辯論提高了課堂效率,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,達(dá)到了資源共享。第四環(huán)節(jié):練習(xí)與提高 教學(xué)活動(dòng)內(nèi)容設(shè)計(jì):解下列方程

      (1)x2?10x?25?7;(2)x2?6x?1;(3)x(x?14)?0(4)x2?8x?9 活動(dòng)內(nèi)容設(shè)計(jì)的意圖:對(duì)本節(jié)知識(shí)進(jìn)行鞏固練習(xí)。

      實(shí)際教學(xué)效果:此處留給學(xué)生充分的時(shí)間與空間進(jìn)行獨(dú)立練習(xí),通過練習(xí),學(xué)生基本都能用配方法解解二次項(xiàng)系數(shù)為

      1、一次項(xiàng)系數(shù)為偶數(shù)的一元二次方程,取得了較好的教學(xué)效果,加深了學(xué)生對(duì)“用配方法解簡(jiǎn)單一元二次方程”的理解。第五環(huán)節(jié):課堂小結(jié)

      教學(xué)活動(dòng)內(nèi)容設(shè)計(jì):師生互相交流、總結(jié)配方法解一元二次方程的基本思路和關(guān)鍵,以及在應(yīng)用配方法時(shí)應(yīng)注意的問題?;顒?dòng)內(nèi)容設(shè)計(jì)的意圖:

      鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí),談自己的收獲與感想(學(xué)生暢所欲言,教師給予鼓勵(lì))。

      實(shí)際教學(xué)效果:

      學(xué)生暢所欲言談自己的切身感受與實(shí)際收獲,掌握了配方法的基本思路和過程。

      第六環(huán)節(jié):布置作業(yè)

      課本50頁習(xí)題2.3 1題、2題

      《 一元二次方程----配方法》教學(xué)設(shè)計(jì)研修心得

      通過本節(jié)課的集體說課、集體備課、上課、集體評(píng)課,我是感觸頗深,下面我就針對(duì)本節(jié)課的設(shè)計(jì)和和教學(xué)過程說說我之所獲:

      一、創(chuàng)造性地使用教材

      教材只是為教師提供最基本的教學(xué)素材,教師完全可以根據(jù)學(xué)生的實(shí)際情況進(jìn)行適當(dāng)調(diào)整。就本節(jié)課的內(nèi)容而言,學(xué)生在七年級(jí)、八年級(jí)已經(jīng)學(xué)過完全平方公式和如何對(duì)一個(gè)正數(shù)進(jìn)行開方運(yùn)算,所以本節(jié)課從這兩個(gè)方面入手,利用幾個(gè)簡(jiǎn)單的實(shí)際問題逐步引入配方法。教學(xué)中將難點(diǎn)放在探索如何配方上,重點(diǎn)放在配方法的應(yīng)用上。本節(jié)課安排了三個(gè)例題,通過前兩個(gè)例 7 題規(guī)范用配方法解一元二次方程的過程,幫助學(xué)生充分掌握用配方法解一元二次方程的技巧,同時(shí)本節(jié)課創(chuàng)造性地使用教材,把配方法(3)中的一個(gè)是設(shè)計(jì)方案問題改編成一個(gè)實(shí)際應(yīng)用問題,讓學(xué)生體會(huì)到了方程在實(shí)際問題中的應(yīng)用,感受到了數(shù)學(xué)的實(shí)際價(jià)值。培養(yǎng)了學(xué)生分析問題,解決問題的能力。這不能不說是創(chuàng)造性使用教材的結(jié)果。

      二、相信學(xué)生并為學(xué)生提供充分展示自己的機(jī)會(huì)

      課堂上要把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)能力放在教學(xué)首位,通過運(yùn)用各種啟發(fā)、激勵(lì)的語言,以及組織小組合作學(xué)習(xí),幫助學(xué)生形成積極主動(dòng)的求知態(tài)度。就本節(jié)課而言,備課組強(qiáng)調(diào):教學(xué)時(shí)應(yīng)盡可能創(chuàng)設(shè)情境,組織學(xué)生合作交流,通過小組合作,為學(xué)生提供展示自己聰明才智的機(jī)會(huì),并且在此過程中教師發(fā)現(xiàn)了學(xué)生在分析問題和解決問題時(shí)出現(xiàn)的獨(dú)到見解,以及思維的誤區(qū),這樣以便于授課教師更好地指導(dǎo)今后的教學(xué)。所以本節(jié)課,多次組織學(xué)生合作交流,且取得的效果也是顯而易見的。

      三、教學(xué)中應(yīng)注意的問題:使小組合作學(xué)習(xí)更具實(shí)效性

      就本節(jié)課而言,我認(rèn)為仍有需要注意改進(jìn)的方面,例如,在小組討論之前,應(yīng)該留給學(xué)生充分的獨(dú)立思考的時(shí)間,不要讓一些思維活躍的學(xué)生的回答代替了其他學(xué)生的思考,掩蓋了其他學(xué)生的疑問。教師應(yīng)對(duì)小組討論給予適當(dāng)?shù)闹笇?dǎo),包括知識(shí)的啟發(fā)引導(dǎo)、學(xué)生交流合作中注意的問題及對(duì)困難學(xué)生的幫助等,使小組合作學(xué)習(xí)更具實(shí)效性……

      總之,通過本節(jié)課課例研究,讓我真正明白了集體的智慧是大得驚人的。就本節(jié)課而言,備課組的老師們根據(jù)課程標(biāo)準(zhǔn)的要求和教材特點(diǎn),結(jié)合學(xué)生的實(shí)際情況,各抒己見研究最科學(xué)的教法和程序,為優(yōu)質(zhì)高效的課堂教學(xué)做好充分準(zhǔn)備。因此,我希望學(xué)校教研組,應(yīng)多組織這樣教研活動(dòng),以充分發(fā)揮集體智慧,從而使所有老師都集思廣益,博采眾長(zhǎng),真正實(shí)現(xiàn)腦資源共享、真正熟練地駕馭好教材和課堂。

      第五篇:配方法教學(xué)設(shè)計(jì)

      2.2、配方法(二)

      教學(xué)目標(biāo):

      1.利用方程解決實(shí)際問題.

      2.訓(xùn)練用配方法解題的技能.

      教學(xué)重點(diǎn):

      利用方程解決實(shí)際問題

      教學(xué)難點(diǎn):

      對(duì)于開放性問題的解決,即如何設(shè)計(jì)方案

      教學(xué)方法:

      分組討論法

      教學(xué)內(nèi)容及過程:

      一、復(fù)習(xí):

      1、配方:

      (1)x―3x+ =(x―)

      (2)x―5x+ =(x―)

      2、用配方法解一元二次方程的步驟是什么?

      以上兩題可讓學(xué)生口答。

      3、用配方法解下列一元二次方程?

      (1)3x―1=2x(2)x―5x+4=0

      找學(xué)生板演。

      二、引入課題:

      我們已經(jīng)學(xué)習(xí)了用配方法解一元二次方程,在生產(chǎn)生活中常遇到一些問題,需要用一元二次方程來解答,請(qǐng)同學(xué)們將課本翻到60頁,閱讀課本,并思考:

      三、出示思考題:

      1、222

      2http://www.ffkj.net

      如圖所示:

      (1)設(shè)花園四周小路的寬度均為x m,可列怎樣的一元二次方程?

      (16-2x)(12-2x)=

      ×16×12

      (2)一元二次方程的解是什么?

      x1=2 x2=12

      (3)這兩個(gè)解都合要求嗎?為什么?

      x1=2合要求,x2=12不合要求,因荒地的寬為 12m,小路的寬不可能為 12m,它必須小于荒地寬的一半。

      2、設(shè)花園四角的扇形半徑均為x m,可列怎樣的一元二次方程?

      xπ=2×12×16

      (2)一元二次方程的解是什么?

      (3)合符條件的解是多少?

      x1=5.5

      3、你還有其他設(shè)計(jì)方案嗎?請(qǐng)?jiān)O(shè)計(jì)出來與同伴交流。

      (1)花園為菱形(2)花園為圓形?

      (3)花園為三角形(4)花園為梯形

      四、小結(jié):

      http://www.ffkj.net

      1、本節(jié)內(nèi)容的設(shè)計(jì)方案不只一種,只要合符條件即可。

      2、設(shè)計(jì)方案時(shí),關(guān)鍵是列一元二次方程。

      3、一元二次方程的解一般有兩個(gè),要根據(jù)實(shí)際情況舍去不合題意的解。

      本節(jié)課我們通過列方程解決實(shí)際問題,進(jìn)一步了解了一元二次方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效數(shù)學(xué)模型,并且知道在解決實(shí)際問題時(shí),要根據(jù)具體問題的實(shí)際意義檢驗(yàn)結(jié)果的合理性。

      另外,還應(yīng)注意用配方法解題的技能

      http://www.ffkj.net

      下載配方法(一)教學(xué)設(shè)計(jì)1word格式文檔
      下載配方法(一)教學(xué)設(shè)計(jì)1.doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        配方法(一)教學(xué)設(shè)計(jì)(優(yōu)秀范文5篇)

        第二節(jié)、配方法(一) 一、學(xué)生知識(shí)狀況分析: 學(xué)生在八年級(jí)上學(xué)期已經(jīng)學(xué)習(xí)過開平方,知道一個(gè)正數(shù)有兩個(gè)平方根,會(huì)利用開方求一個(gè)正數(shù)的兩個(gè)平方根,并且也學(xué)習(xí)了完全平方公式。在本章......

        配方法(三)教學(xué)設(shè)計(jì)

        第二章一元二次方程 2.配方法(三) 一、教學(xué)目標(biāo) 知識(shí)技能:通過一元二次方程的建模過程,體會(huì)方程的解必須符合實(shí)際意義,增強(qiáng)用數(shù)學(xué)的意識(shí),鞏固用配方法解一元二次方程; 數(shù)學(xué)思考:通過設(shè)......

        配方法教學(xué)設(shè)計(jì)(共五則)

        課題:配方法解一元二次方程 教學(xué)目標(biāo):1,掌握用配方法解二次項(xiàng)系數(shù)為1的一元二次方程 2,讓學(xué)生掌握配方法的推倒過程 3,在配方法中體會(huì)“轉(zhuǎn)化”的思想 教學(xué)重、難點(diǎn): 重點(diǎn):運(yùn)用配方......

        2.2用配方法求解一元二次方程(一)教學(xué)設(shè)計(jì)

        第二章一元二次方程2.用配方法求解一元二次方程(一) 一、學(xué)生知識(shí)狀況分析 學(xué)生的知識(shí)技能基礎(chǔ):學(xué)生在初二上學(xué)期已經(jīng)學(xué)習(xí)過開平方,知道一個(gè)正數(shù)有兩個(gè)平方根,會(huì)利用開方求一個(gè)正數(shù)......

        2.2 用配方法求解一元二次方程(一)教學(xué)設(shè)計(jì)

        《用配方法求解一元二次方程(一)》教學(xué)設(shè)計(jì) 柳樹鄉(xiāng)初級(jí)中學(xué) 吳永偉 學(xué)生知識(shí)狀況分析 學(xué)生在初二上學(xué)期已經(jīng)學(xué)習(xí)過開平方,知道一個(gè)正數(shù)有兩個(gè)平方根,會(huì)利用開方求一個(gè)正數(shù)的兩個(gè)......

        一元二次方程解法——配方法 教學(xué)設(shè)計(jì)

        《解一元二次方程——配方法》 教學(xué)設(shè)計(jì) 漳州康橋?qū)W校陳金玉 一、教材分析 1、對(duì)于一元二次方程,配方法是解法中的通法,它的推導(dǎo)建立在直接開平方法的基礎(chǔ)上,他又是公式法的基......

        用配方法解方程的教學(xué)設(shè)計(jì)

        的教學(xué)設(shè)計(jì) 新寨中學(xué):張平英 教學(xué)內(nèi)容 湘教版九年級(jí)數(shù)學(xué)上冊(cè)第32—33頁. 學(xué)習(xí)目標(biāo) 1、通過實(shí)例理解配方法。 2、會(huì)用配方法解二次項(xiàng)系數(shù)為1的一元二次方程,并知道其解的基本......

        用配方法求解一元二次方程教學(xué)設(shè)計(jì)

        第二章一元二次方程 用配方法求解一元二次方程(一) 一、教學(xué)目標(biāo) 知識(shí)技能:學(xué)生已經(jīng)學(xué)習(xí)過開平方,知道一個(gè)正數(shù)有兩個(gè)平方根, 會(huì)用開方法解形如(x?m)2?n(n?0)的方程,理解配方法,會(huì)用......