第一篇:2014年陜西大學(xué)數(shù)學(xué)考試大綱說明
2014年陜西大學(xué)數(shù)學(xué)考試大綱說明
要求考生全面掌握高等數(shù)學(xué)所涉及的基本概念、基本理論和基本運算技能,具有本科學(xué)習(xí)所必需的抽象思維能力、邏輯推理能力、基本運算能力以及綜合運用所學(xué)知識分析問題和解決問題的能力。
一、函數(shù)與極限
1、函數(shù)的概念及表示法。函數(shù)的有界性、單調(diào)性、周期性和奇偶性。反函數(shù)、隱函數(shù)和復(fù)合函數(shù)?;境醯群瘮?shù)的性質(zhì)及其圖形。初等函數(shù)簡單應(yīng)用問題的函數(shù)關(guān)系的建立。
2、數(shù)列極限的定義及性質(zhì)。
函數(shù)極限的性質(zhì)及其圖形,函數(shù)的左極限和右極限,窮小量和無窮大的比較。極限的四則運算。極限的四則運算。極限存在的夾逼準(zhǔn)則和單調(diào)有界準(zhǔn)則,兩個重要極限。
3、連續(xù)的概念。函數(shù)間斷點及其類型,函數(shù)和、差、積、商的連續(xù)性,反函數(shù)及復(fù)合函數(shù)的連續(xù)性。初等函數(shù)的連續(xù)性,閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最大值、最小值定理、介值定理)??荚囈螅?/p>
理解函數(shù)的概念,掌握函數(shù)表示法。
了解函數(shù)的有界性、單調(diào)性、奇偶性和單調(diào)性。理解復(fù)合函數(shù)的概念,理解反函數(shù)及隱函數(shù)的概念。掌握基本初等函數(shù)的性質(zhì)及其圖形 會建立簡單應(yīng)用問題的函數(shù)關(guān)系。
理解數(shù)列極限和函數(shù)極限的概念,理解函數(shù)的左右極限的概念以及極限存在與左右極限之間的關(guān)系。掌握極限的性質(zhì)及四則運算法則。
掌握極限存在的兩個準(zhǔn)則,并會利用求極限。掌握利用兩個重要極限求極限的方法。
理解無窮小、無窮大的概念,會無窮小的比較。理解函數(shù)連續(xù)性的概念,會判斷函數(shù)間斷點的類型。
會應(yīng)用初等函數(shù)的連續(xù)性和閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最大值、最小值定理和介值定理)。二、二元函數(shù)微分學(xué)及其應(yīng)用
1、導(dǎo)數(shù)的概念 導(dǎo)數(shù)的幾何意義和物理意義。平面曲線的切線和法線。函數(shù)可導(dǎo)性和連續(xù)性之間的關(guān)系。函數(shù)和、差、積、商的求導(dǎo)法則。復(fù)合函數(shù)及反函數(shù)的求導(dǎo)法則。隱函數(shù)的導(dǎo)數(shù)及對數(shù)求導(dǎo)法。由參數(shù)方程所確定的求導(dǎo)法則?;境醯群瘮?shù)的導(dǎo)數(shù)公式。初等函數(shù)的可導(dǎo)性。高階導(dǎo)數(shù)的概念。
2、微分的概念 微分的幾何意義。函數(shù)可導(dǎo)與可微的關(guān)系。微分四則運算法則。微分形式不變性。
3、羅爾定理。拉格朗日中值定理、柯西中值定理、泰勒公式、洛必達法則。函數(shù)單調(diào)性和極限。函數(shù)的最大值和最小值。函數(shù)圖形的凹凸性。拐點及漸近線。函數(shù)圖形的描繪?;∥⒎?。三、一元函數(shù)積分學(xué)及其運用
1、原函數(shù)和不定積分概念。不定積分的基本性質(zhì)。基本積分公式,不定積分的換元積分法和分部基本法。
2、定積分的概念。定積分的幾何意義和物理意義。定積分的性質(zhì),定積分的中值定理。變上限定積分及其導(dǎo)數(shù)。牛頓—萊布尼茨公式。定積分的換元積分法和分布積分法。定積分的簡單運用。
四、向量代數(shù)與空間解析幾何
1、向量的概念,向量的線性運算。兩向量的數(shù)量積和向量積。兩向量的夾角兩向量垂直和平行的條件。
2、空間直角坐標(biāo)系。向量的坐標(biāo)表達法,單位向量。方向數(shù)和方向余
3、平面方程、直線方程。點到平面和點到直線的距離。平面和平面,直線和直線,平面與直線的相互關(guān)系。
4、空間曲線和曲面。
五、多元函數(shù)微分學(xué)
1、函數(shù)的概念。二元函數(shù)的極限與連續(xù)的概念,有界閉區(qū)域上連續(xù)函數(shù)的性質(zhì)
2、偏導(dǎo)數(shù)的概念。高階偏導(dǎo)數(shù)的概念。全微分的概念,全微分存在的必要條件和充分條件。多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法則。方向?qū)?shù)和梯度的概念。
3、空間曲線和切線和法平面。曲面的切平面和法線。多元函數(shù)的極限和條件極限。拉格朗日乘數(shù)法。多元函數(shù)的最大值和最小值。
六、多元函數(shù)積分學(xué)
1、二重積分的概念及性質(zhì)。二重積分在直角坐標(biāo)和極坐標(biāo)系中的計算。二重積分的簡單證明。
2、對弧長的曲線積分和對坐標(biāo)的曲線積分的概念。性質(zhì)和計算。兩類曲線積分的關(guān)系。格林公式。
七、無窮級數(shù)
1、常數(shù)項級數(shù)及其收斂和發(fā)散的概念。常數(shù)項級數(shù)的基本性質(zhì)及收斂的必要條件。幾何級數(shù)與p級數(shù)的斂散性。正項級數(shù)的比較審斂法。交錯級數(shù)的萊布尼茨定理。常數(shù)項級數(shù)的絕對收斂和條件收斂的概念。
2、函數(shù)項級數(shù)及其收斂、和函數(shù)的概念。冪函數(shù)的收斂半徑、收斂區(qū)間和收斂域。冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)。簡單冪級數(shù)的和函數(shù)求法。函數(shù)泰勒級數(shù)的概念。函數(shù)可展開為泰勒級數(shù)的充分必要條件。函數(shù)展開為冪級數(shù)的唯一性。
八、常微風(fēng)方程
1、常微風(fēng)方程的概念。微分方程的階、解、通解及特解的概念。初始條件,初值問題及其特解。線性微分方程。
2、變量可分離的微分方程。一階線性微分方程。可降階的高階微分方程。
3、線性微風(fēng)方程解的性質(zhì)和通解的結(jié)構(gòu)定理。二階常系數(shù)線性齊次微分方程的解法。簡單的二階常系數(shù)的線性非齊次微分方程的解法。
4、微分方程的簡單應(yīng)用問題。
第二篇:2011年廣東高考文科數(shù)學(xué)考試大綱說明
2011年普通高等學(xué)校招生全國統(tǒng)一考試 數(shù)學(xué)(文科)考試大綱的說明(廣東卷)
(一)必考內(nèi)容與要求
1.集合
(1)集合的含義與表示
①了解集合的含義、元素與集合的“屬于”關(guān)系。
②能用自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題。(2)集合間的基本關(guān)系
①理解集合之間包含與相等的含義,能識別給定集合的子集。②在具體情境中,了解全集與空集的含義。(3)集合的基本運算
①理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集。②理解在給定集合中一個子集的補集的含義,會求給定子集的補集。③能使用韋恩圖(Venn)表達集合的關(guān)系及運算。
2.函數(shù)概念與基本初等函數(shù)I(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù))(1)函數(shù)
①了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念。
②在實際情境中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D象法、列表法、解析法)表示函數(shù)。③了解簡單的分段函數(shù),并能簡單應(yīng)用。
④理解函數(shù)的單調(diào)性、最大值、最小值及其幾何意義;結(jié)合具體函數(shù),了解函數(shù)奇偶性的含義。⑤會運用函數(shù)圖像理解和研究函數(shù)的性質(zhì)。(2)指數(shù)函數(shù)
①了解指數(shù)函數(shù)模型的實際背景。
②理解有理指數(shù)冪的含義,了解實數(shù)指數(shù)冪的意義,掌握冪的運算。
③理解指數(shù)函數(shù)的概念,理解指數(shù)函數(shù)的單調(diào)性,掌握函數(shù)圖像通過的特殊點。(3)對數(shù)函數(shù)
①理解對數(shù)的概念及其運算性質(zhì),知道用換底公式能將一般對數(shù)轉(zhuǎn)化成自然對數(shù)或常用對數(shù);了解對數(shù)在簡化運算中的作用。
②理解對數(shù)函數(shù)的概念;理解對數(shù)函數(shù)的單調(diào)性,掌握函數(shù)圖像通過的特殊點。③了解指數(shù)函數(shù)y?a與對數(shù)函數(shù)y?logax互為反函數(shù)(a>0,a≠1)。(4)冪函數(shù)
①了解冪函數(shù)的概念。
23x1②結(jié)合函數(shù)y?x,y?x,y?x,y?,y?x2的圖象,了解它們的變化情況。
x(5)函數(shù)與方程
1-12
②了解最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程。7.概率(1)事件與概率
①了解隨機事件發(fā)生的不確定性和頻率的穩(wěn)定性,了解概率的意義,了解頻率與概率的區(qū)別。②了解兩個互斥事件的概率加法公式。(2)古典概型
①理解古典概型及其概率計算公式。
②會用列舉法計算一些隨機事件所含的基本事件數(shù)及事件發(fā)生的概率。(3)隨機數(shù)與幾何概型
①了解隨機數(shù)的意義,能運用模擬方法估計概率。②了解幾何概型的意義。8.基本初等函數(shù)II(三角函數(shù))(1)任意角的概念、弧度制 ①了解任意角的概念。
②了解弧度制的概念,能進行弧度與角度的互化。(2)三角函數(shù)
①理解任意角三角函數(shù)(正弦、余弦、正切)的定義。②能利用單位圓中的三角函數(shù)線推導(dǎo)出y?sinx,y?cosx,y?tanx的圖像,了解三角函數(shù)的周期性。
理解正切函數(shù)在區(qū)間(?π?α,π?α的正弦、余弦、正切的誘導(dǎo)公式,能畫出2③理解正弦函數(shù)、余弦函數(shù)在區(qū)間[0,2π]的性質(zhì)(如單調(diào)性、最大值和最小值以及與x軸交點等),④理解同角三角函數(shù)的基本關(guān)系式: ππ,)的單調(diào)性。22⑤了解函數(shù)y=Asin(ωx+?)的物理意義;能畫出y=Asin(ωx+?)的圖像,了解參數(shù)A、ω、?對函數(shù)圖象變化的影響。
⑥了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,會用三角函數(shù)解決一些簡單實際問題。9.平面向量
(1)平面向量的實際背景及基本概念 ①了解向量的實際背景。
②理解平面向量的概念,理解兩個向量相等的含義。③理解向量的幾何表示。(2)向量的線性運算
①掌握向量加法、減法的運算,并理解其幾何意義。②掌握向量數(shù)乘的運算及其意義,理解兩個向量共線的含義。③了解向量線性運算的性質(zhì)及其幾何意義。(3)平面向量的基本定理及坐標(biāo)表示 ①了解平面向量的基本定理及其意義。sinxsin2x?cos2x?1,?tanx
cosx
②掌握平面向量的正交分解及其坐標(biāo)表示。③會用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運算。④理解用坐標(biāo)表示的平面向量共線的條件。(4)平面向量的數(shù)量積
①理解平面向量數(shù)量積的含義及其物理意義。②了解平面向量的數(shù)量積與向量投影的關(guān)系。
③掌握數(shù)量積的坐標(biāo)表達式,會進行平面向量數(shù)量積的運算。
④能運用數(shù)量積表示兩個向量的夾角,會用數(shù)量積判斷兩個平面向量的垂直關(guān)系。(5)向量的應(yīng)用
①會用向量方法解決某些簡單的平面幾何問題。
②會用向量方法解決簡單的力學(xué)問題與其他一些實際問題。10.三角恒等變換
(1)和與差的三角函數(shù)公式
①會用向量的數(shù)量積推導(dǎo)出兩角差的余弦公式。
②能利用兩角差的余弦公式導(dǎo)出兩角差的正弦、正切公式。
③能利用兩角差的余弦公式導(dǎo)出兩角和的正弦、余弦、正切公式,導(dǎo)出二倍角的正弦、余弦、正切公式,了解它們的內(nèi)在聯(lián)系。
(2)簡單的三角恒等變換
能運用上述公式進行簡單的恒等變換(包括導(dǎo)出積化和差、和差化積、半角公式,但對這三組公式不要求記憶)
11.解三角形
(1)正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。(2)應(yīng)用
能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的實際問題。12.?dāng)?shù)列
(1)數(shù)列的概念和簡單表示法
①了解數(shù)列的概念和幾種簡單的表示方法(列表、圖像、通項公式)。②了解數(shù)列是自變量為正整數(shù)的一類函數(shù)。(2)等差數(shù)列、等比數(shù)列
①理解等差數(shù)列、等比數(shù)列的概念。
②掌握等差數(shù)列、等比數(shù)列的通項公式與前n項和公式。
③能在具體的問題情境中識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題。④了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系。13.不等式(1)不等關(guān)系
了解現(xiàn)實世界和日常生活中的不等關(guān)系,了解不等式(組)的實際背景。
(2)一元二次不等式
①會從實際情境中抽象出一元二次不等式模型。
②通過函數(shù)圖像了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系。③會解一元二次不等式,對給定的一元二次不等式,會設(shè)計求解的程序。(3)二元一次不等式組與簡單線性規(guī)劃問題 ①會從實際情境中抽象出二元一次不等式組。
②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組。③會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決。(4)基本不等式:a?b2?ab(a,b?0)①了解基本不等式的證明過程。
②會用基本不等式解決簡單的最大(小)值問題。14.常用邏輯用語(1)命題及其關(guān)系 ①理解命題的概念。
②了解“若p,則q”形式的命題及其逆命題、否命題與逆否命題,會分析四種命題的相互關(guān)系。③理解必要條件、充分條件與充要條件的意義。(2)簡單的邏輯聯(lián)結(jié)詞
了解邏輯聯(lián)結(jié)詞“或”、“且”、“非”的含義。(3)全稱量詞與存在量詞
①理解全稱量詞與存在量詞的意義。②能正確地對含有一個量詞的命題進行否定。15.圓錐曲線與方程 圓錐曲線與方程
①了解圓錐曲線的實際背景,了解圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用。②掌握橢圓的定義、幾何圖形、標(biāo)準(zhǔn)方程及簡單幾何性質(zhì)。
③了解雙曲線、拋物線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡單幾何性質(zhì)。④理解數(shù)形結(jié)合的思想。⑤了解圓錐曲線的簡單應(yīng)用。16.導(dǎo)數(shù)及其應(yīng)用
(1)導(dǎo)數(shù)概念及其幾何意義 ①了解導(dǎo)數(shù)概念的實際背景。②理解導(dǎo)數(shù)的幾何意義。(2)導(dǎo)數(shù)的運算
①能根據(jù)導(dǎo)數(shù)定義,求函數(shù)y?c,y?x,y?x2,y?1②能利用下面給出的基本初等函數(shù)公式和導(dǎo)數(shù)的四則運算法則求簡單函數(shù)的導(dǎo)數(shù)。x的導(dǎo)數(shù)。
·常見基本初等函數(shù)的導(dǎo)數(shù)公式和常用導(dǎo)數(shù)運算公式:(C)′=0(C為常數(shù));(xn)′=nxn-1,n∈N+
(sinx)???cosx;(cosx)???sinx ;
·常用的導(dǎo)數(shù)運算法則:(ex)??ex;(ax)??axlna(a?0且a?1);
11(lnx)??;(logax)??logae(a?0且a?1)
xx?·法則1 ?u(x)?v(x)??u?(x)?v?(x)·法則2 ?u(x)v(?x)??u?(x)v(x)?u(x)v?(x)·法則3 ?(3)導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用 數(shù)一般不超過三次)。
②了解函數(shù)在某點取得極值的必要條件和充分條件;會用導(dǎo)數(shù)求函數(shù)的極大值、極小值(對多項式函數(shù)一般不超過三次);會求閉區(qū)間上函數(shù)的最大值、最小值(對多項式函數(shù)一般不超過三次)。
(4)生活中的優(yōu)化問題 會利用導(dǎo)數(shù)解決某些實際問題。17.統(tǒng)計案例
了解下列一些常見的統(tǒng)計方法,并能應(yīng)用這些方法解決一些實際問題。(1)獨立檢驗
了解獨立性檢驗(只要求2×2列聯(lián)表)的基本思想、方法及其簡單應(yīng)用。(2)回歸分析
了解回歸的基本思想、方法及其簡單應(yīng)用。18.推理與證明
(1)合情推理與演繹推理。
①了解合情推理的含義,能利用歸納和類比等進行簡單的推理,了解合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用。②了解演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理。③了解合情推理和演繹推理之間的聯(lián)系和差異。(2)直接證明與間接證明。
①了解直接證明的兩種基本方法——分析法和綜合法;了解分析法和綜合法的思考過程、特點。②了解間接證明的一種基本方法——反證法;了解反證法的思考過程、特點。19.?dāng)?shù)系的擴充與復(fù)數(shù)的引入(1)復(fù)數(shù)的概念 ①理解復(fù)數(shù)的基本概念。②理解復(fù)數(shù)相等的充要條件。
③了解復(fù)數(shù)的代數(shù)表示法及其幾何意義。(2)復(fù)數(shù)的四則運算
①會進行復(fù)數(shù)代數(shù)形式的四則運算。
②了解復(fù)數(shù)代數(shù)形式的加、減運算的幾何意義。20.框圖 ??u(x)?u?(x)v(x)?u(x)v?(x)?(v(x)?0)?2v(x)v(x)??①了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間(對多項式函
(1)流程圖 ①了解程序框圖
②了解工序流程圖(即統(tǒng)籌圖)
③能繪制簡單實際問題的流程圖,了解流程圖在解決實際問題中的作用。(2)結(jié)構(gòu)圖 ①了解結(jié)構(gòu)圖。
②會運用結(jié)構(gòu)圖梳理已學(xué)過的知識、梳理收集到的資料信息。
(二)選考內(nèi)容與要求
考生在下面的“幾何證明選講”和“坐標(biāo)系與參數(shù)方程”兩部分內(nèi)容中選考一個。1.幾何證明選講
(1)了解平行線截割定理,會證直角三角形射影定理。(2)會證圓周角定理、圓的切線的判定定理及性質(zhì)定理。
(3)會證相交弦定理、圓內(nèi)接四邊形的性質(zhì)定理與判定定理、切割線定理。
(4)了解平行投影的含義,通過圓柱與平面的位置關(guān)系了解平行投影;會證平面與圓柱面的截線是橢圓(特殊情形是圓)
2.坐標(biāo)系與參數(shù)方程(1)坐標(biāo)系
①理解坐標(biāo)系的作用。
②了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況。
③能在極坐標(biāo)系中用極坐標(biāo)表示點的位置,理解在極坐標(biāo)系和平面直角坐標(biāo)系中表示點的位置的區(qū)別,能進行坐標(biāo)和直角坐標(biāo)的互化。
④能在極坐標(biāo)系中給出簡單圖形(如過極點的直線、過極點或圓心在極點的圓)的方程,通過比較這些圖形在極坐標(biāo)系和平面直角坐標(biāo)系中的方程,理解用方程表示平面圖形時選擇適當(dāng)坐標(biāo)系的意義。
⑤了解柱坐標(biāo)系、球坐標(biāo)系中表示空間中點的位置的方法,并與空間直角坐標(biāo)系中表示點的位置的方法相比較,了解它們的區(qū)別。
(2)參數(shù)方程
①了解參數(shù)方程,了解參數(shù)的意義。
②能選擇適當(dāng)?shù)膮?shù)寫出直線、圓和圓錐曲線的參數(shù)方程。
③了解擺線在實際中的應(yīng)用,了解擺線在表示行星運動軌道中的作用。
第三篇:2018高考數(shù)學(xué)考試大綱
Ⅰ.考核目標(biāo)與要求
一、知識要求
知識是指《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗)》(以下簡稱《課程標(biāo)準(zhǔn)》)中所規(guī)定的必修課程、選修課程系列2和系列4中的數(shù)學(xué)概念、性質(zhì)、法則、公式、公理、定理以及由其內(nèi)容反映的數(shù)學(xué)思想方法,還包括按照一定程序與步驟進行運算、處理數(shù)據(jù)、繪制圖表等基本技能.各部分知識的整體要求及其定位參照《課程標(biāo)準(zhǔn)》相應(yīng)模塊的有關(guān)說明.對知識的要求依次是了解、理解、掌握三個層次.1.了解:要求對所列知識的含義有初步的、感性的認識,知道這一知識內(nèi)容是什么,按照一定的程序和步驟照樣模仿,并能(或會)在有關(guān)的問題中識別和認識它.這一層次所涉及的主要行為動詞有:了解,知道、識別,模仿,會求、會解等.2.理解:要求對所列知識內(nèi)容有較深刻的理性認識,知道知識間的邏輯關(guān)系,能夠?qū)λ兄R做正確的描述說明并用數(shù)學(xué)語言表達,能夠利用所學(xué)的知識內(nèi)容對有關(guān)問題進行比較、判別、討論,具備利用所學(xué)知識解決簡單問題的能力.這一層次所涉及的主要行為動詞有:描述,說明,表達,推測、想象,比較、判別,初步應(yīng)用等.3.掌握:要求能夠?qū)λ械闹R內(nèi)容進行推導(dǎo)證明,能夠利用所學(xué)知識對問題進行分析、研究、討論,并且加以解決.這一層次所涉及的主要行為動詞有:掌握、導(dǎo)出、分析,推導(dǎo)、證明,研究、討論、運用、解決問題等.二、能力要求
能力是指空間想象能力、抽象概括能力、推理論證能力、運算求解能力、數(shù)據(jù)處理能力以及應(yīng)用意識和創(chuàng)新意識.1.空間想象能力:能根據(jù)條件作出正確的圖形,根據(jù)圖形想象出直觀形象;能正確地分析出圖形中的基本元素及其相互關(guān)系;能對圖形進行分解、組合;會運用圖形與圖表等手段形象地揭示問題的本質(zhì).空間想象能力是對空間形式的觀察、分析、抽象的能力,主要表現(xiàn)為識圖、畫圖和對圖形的想象能力.識圖是指觀察研究所給圖形中幾何元素之間的相互關(guān)系;畫圖是指將文字語言和符號語言轉(zhuǎn)化為圖形語言以及對圖形添加輔助圖形或?qū)D形進行各種變換;對圖形的想象主要包括有圖想圖和無圖想圖兩種,是空間想象能力高層次的標(biāo)志.2.抽象概括能力:抽象是指舍棄事物非本質(zhì)的屬性,揭示其本質(zhì)的屬性;概括是指把僅僅屬于某一類對象的共同屬性區(qū)分出來的思維過程.抽象和概括是相互聯(lián)系的,沒有抽象就不可能有概括,而概括必須在抽象的基礎(chǔ)上得出某種觀點或某個結(jié)論.抽象概括能力是對具體的、生動的實例,經(jīng)過分析提煉,發(fā)現(xiàn)研究對象的本質(zhì);從給定的大量信息材料中概括出一些結(jié)論,并能將其應(yīng)用于解決問題或做出新的判斷.3.推理論證能力:推理是思維的基本形式之一,它由前提和結(jié)論兩部分組成;論證是由已有的正確的前提到被論證的結(jié)論的一連串的推理過程.推理既包括演繹推理,也包括合情推理;論證方法既包括按形式劃分的演繹法和歸納法,也包括按思考方法劃分的直接證法和間接證法.一般運用合情推理進行猜想,再運用演繹推理進行證明.中學(xué)數(shù)學(xué)的推理論證能力是根據(jù)已知的事實和已獲得的正確數(shù)學(xué)命題,論證某一數(shù)學(xué)命題真實性的初步的推理能力.4.運算求解能力:會根據(jù)法則、公式進行正確運算、變形和數(shù)據(jù)處理,能根據(jù)問題的條件尋找與設(shè)計合理、簡捷的運算途徑,能根據(jù)要求對數(shù)據(jù)進行估計和近似計算.運算求解能力是思維能力和運算技能的結(jié)合.運算包括對數(shù)字的計算、估值和近似計算,對式子的組合變形與分解變形,對幾何圖形各幾何量的計算求解等.運算能力包括分析運算條件、探究運算方向、選擇運算公式、確定運算程序等一系列過程中的思維能力,也包括在實施運算過程中遇到障礙而調(diào)整運算的能力.5.數(shù)據(jù)處理能力:會收集、整理、分析數(shù)據(jù),能從大量數(shù)據(jù)中抽取對研究問題有用的信息,并做出判斷.數(shù)據(jù)處理能力主要是指針對研究對象的特殊性,選擇合理的收集數(shù)據(jù)的方法,根據(jù)問題的具體情況,選擇合適的統(tǒng)計方法整理數(shù)據(jù),并構(gòu)建模型對數(shù)據(jù)進行分析、推斷,獲得結(jié)論.6.應(yīng)用意識:能綜合應(yīng)用所學(xué)數(shù)學(xué)知識、思想和方法解決問題,包括解決相關(guān)學(xué)科、生產(chǎn)、生活中簡單的數(shù)學(xué)問題;能理解對問題陳述的材料,并對所提供的信息資料進行歸納、整理和分類,將實際問題抽象為數(shù)學(xué)問題;能應(yīng)用相關(guān)的數(shù)學(xué)方法解決問題進而加以驗證,并能用數(shù)學(xué)語言正確地表達和說明.應(yīng)用的主要過程是依據(jù)現(xiàn)實的生活背景,提煉相關(guān)的數(shù)量關(guān)系,將現(xiàn)實問題轉(zhuǎn)化為數(shù)學(xué)問題,構(gòu)造數(shù)學(xué)模型,并加以解決.7.創(chuàng)新意識:能發(fā)現(xiàn)問題、提出問題,綜合與靈活地應(yīng)用所學(xué)的數(shù)學(xué)知識、思想方法,選擇有效的方法和手段分析信息,進行獨立的思考、探索和研究,提出解決問題的思路,創(chuàng)造性地解決問題.創(chuàng)新意識是理性思維的高層次表現(xiàn).對數(shù)學(xué)問題的“觀察、猜測、抽象、概括、證明”,是發(fā)現(xiàn)問題和解決問題的重要途徑,對數(shù)學(xué)知識的遷移、組合、融會的程度越高,顯示出的創(chuàng)新意識也就越強.三、個性品質(zhì)要求
個性品質(zhì)是指考生個體的情感、態(tài)度和價值觀.要求考生具有一定的數(shù)學(xué)視野,認識數(shù)學(xué)的科學(xué)價值和人文價值,崇尚數(shù)學(xué)的理性精神,形成審慎的思維習(xí)慣,體會數(shù)學(xué)的美學(xué)意義.要求考生克服緊張情緒,以平和的心態(tài)參加考試,合理支配考試時間,以實事求是的科學(xué)態(tài)度解答試題,樹立戰(zhàn)勝困難的信心,體現(xiàn)鍥而不舍的精神.四、考查要求
數(shù)學(xué)學(xué)科的系統(tǒng)性和嚴密性決定了數(shù)學(xué)知識之間深刻的內(nèi)在聯(lián)系,包括各部分知識的縱向聯(lián)系和橫向聯(lián)系,要善于從本質(zhì)上抓住這些聯(lián)系,進而通過分類、梳理、綜合,構(gòu)建數(shù)學(xué)試卷的框架結(jié)構(gòu).1.對數(shù)學(xué)基礎(chǔ)知識的考查,既要全面又要突出重點.對于支撐學(xué)科知識體系的重點內(nèi)容,要占有較大的比例,構(gòu)成數(shù)學(xué)試卷的主體.注重學(xué)科的內(nèi)在聯(lián)系和知識的綜合性,不刻意追求知識的覆蓋面.從學(xué)科的整體高度和思維價值的高度考慮問題,在知識網(wǎng)絡(luò)的交匯點處設(shè)計試題,使對數(shù)學(xué)基礎(chǔ)知識的考查達到必要的深度.2.對數(shù)學(xué)思想方法的考查是對數(shù)學(xué)知識在更高層次上的抽象和概括的考查,考查時必須要與數(shù)學(xué)知識相結(jié)合,通過對數(shù)學(xué)知識的考查,反映考生對數(shù)學(xué)思想方法的掌握程度.3.對數(shù)學(xué)能力的考查,強調(diào)“以能力立意”,就是以數(shù)學(xué)知識為載體,從問題入手,把握學(xué)科的整體意義,用統(tǒng)一的數(shù)學(xué)觀點組織材料,側(cè)重體現(xiàn)對知識的理解和應(yīng)用,尤其是綜合和靈活的應(yīng)用,以此來檢測考生將知識遷移到不同情境中去的能力,從而檢測出考生個體理性思維的廣度和深度以及進一步學(xué)習(xí)的潛能.對能力的考查要全面,強調(diào)綜合性、應(yīng)用性,并要切合考生實際.對推理論證能力和抽象概括能力的考查貫穿于全卷,是考查的重點,強調(diào)其科學(xué)性、嚴謹性、抽象性;對空間想象能力的考查主要體現(xiàn)在對文字語言、符號語言及圖形語言的互相轉(zhuǎn)化上;對運算求解能力的考查主要是對算法和推理的考查,考查以代數(shù)運算為主;對數(shù)據(jù)處理能力的考查主要是考查運用概率統(tǒng)計的基本方法和思想解決實際問題的能力.4.對應(yīng)用意識的考查主要采用解決應(yīng)用問題的形式.命題時要堅持“貼近生活,背景公平,控制難度”的原則,試題設(shè)計要切合中學(xué)數(shù)學(xué)教學(xué)的實際和考生的年齡特點,并結(jié)合實踐經(jīng)驗,使數(shù)學(xué)應(yīng)用問題的難度符合考生的水平.5.對創(chuàng)新意識的考查是對高層次理性思維的考查.在考試中創(chuàng)設(shè)新穎的問題情境,構(gòu)造有一定深度和廣度的數(shù)學(xué)問題時,要注重問題的多樣化,體現(xiàn)思維的發(fā)散性;精心設(shè)計考查數(shù)學(xué)主體內(nèi)容、體現(xiàn)數(shù)學(xué)素質(zhì)的試題;也要有反映數(shù)、形運動變化的試題以及研究型、探索型、開放型等類型的試題.數(shù)學(xué)科的命題,在考查基礎(chǔ)知識的基礎(chǔ)上,注重對數(shù)學(xué)思想方法的考查,注重對數(shù)學(xué)能力的考查,展現(xiàn)數(shù)學(xué)的科學(xué)價值和人文價值,同時兼顧試題的基礎(chǔ)性、綜合性和應(yīng)用性,重視試題間的層次性,合理調(diào)控綜合程度,堅持多角度、多層次的考查,努力實現(xiàn)全面考查綜合數(shù)學(xué)素養(yǎng)的要求.
第四篇:高等數(shù)學(xué)考試大綱
演講稿 工作總結(jié) 調(diào)研報告 講話稿 事跡材料 心得體會 策劃方案
高等數(shù)學(xué)考試大綱
2011年山東省專升本高等數(shù)學(xué)(公共課)考試要求
總要求:考生應(yīng)了解或理解“高等數(shù)學(xué)”中函數(shù)、極限和連續(xù)、一元函數(shù)微分學(xué)、一元函數(shù)積分學(xué)、向量代數(shù)與空間解析幾何、多元函數(shù)微積分學(xué)、無窮級數(shù)、常微分方程的基本概念與基本理論;學(xué)會、掌握或熟練掌握上述各部分的基本方法。應(yīng)注意各部分知識的結(jié)構(gòu)及知識的內(nèi)在聯(lián)系;應(yīng)具有一定的抽象思維能力、邏輯推理能力、運算能力、空間想象能力;有運用基本概念、基本理論和基本方法正確地推理證明,準(zhǔn)確地計算;能綜合運用所學(xué)知識分析并解決簡單的實際問題。
一、函數(shù)、極限和連續(xù)
(一)函數(shù)
(1)理解函數(shù)的概念:函數(shù)的定義,函數(shù)的表示法,分段函數(shù)。
(2)理解和掌握函數(shù)的簡單性質(zhì):單調(diào)性,奇偶性,有界性,周期性。
精心收集
精心編輯
精致閱讀
如需請下載!
演講稿 工作總結(jié) 調(diào)研報告 講話稿 事跡材料 心得體會 策劃方案
(3)了解反函數(shù):反函數(shù)的定義,反函數(shù)的圖象。
(4)掌握函數(shù)的四則運算與復(fù)合運算。
(5)理解和掌握基本初等函數(shù):冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù),反三角函數(shù)。
(6)了解初等函數(shù)的概念。
(二)極限
(1)理解數(shù)列極限的概念:數(shù)列,數(shù)列極限的定義,能根據(jù)極限概念分析函數(shù)的變化趨勢。會求函數(shù)在一點處的左極限與右極限,了解函數(shù)在一點處極限存在的充分必要條件。
(2)了解數(shù)列極限的性質(zhì):唯一性,有界性,四則運算定理,夾逼定理,單調(diào)有界數(shù)列,極限存在定理,掌握極限的四則運算法則。
(3)理解函數(shù)極限的概念:函數(shù)在一點處極限的定義,左、右極限及其與極限的關(guān)系,x趨于無窮(x→∞,x→+∞,x→-∞)時函數(shù)的極限。
精心收集
精心編輯
精致閱讀
如需請下載!
演講稿 工作總結(jié) 調(diào)研報告 講話稿 事跡材料 心得體會 策劃方案
(4)掌握函數(shù)極限的定理:唯一性定理,夾逼定理,四則運算定理。
(5)理解無窮小量和無窮大量:無窮小量與無窮大量的定義,無窮小量與無窮大量的關(guān)系,無窮小量與無窮大量的性質(zhì),兩個無窮小量階的比較。
(6)熟練掌握用兩個重要極限求極限的方法。
(三)連續(xù)
(1)理解函數(shù)連續(xù)的概念:函數(shù)在一點連續(xù)的定義,左連續(xù)和右連續(xù),函數(shù)在一點連續(xù)的充分必要條件,函數(shù)的間斷點及其分類。
(2)掌握函數(shù)在一點處連續(xù)的性質(zhì):連續(xù)函數(shù)的四則運算,復(fù)合函數(shù)的連續(xù)性,反函數(shù)的連續(xù)性,會求函數(shù)的間斷點及確定其類型。
(3)掌握閉區(qū)間上連續(xù)函數(shù)的性質(zhì):有界性定理,最大值和最小值定理,介值定理(包括零點定理),會運用介值定理推證一些簡單命題。
(4)理解初等函數(shù)在其定義區(qū)間上連續(xù),并會利用連續(xù)性求極限。
精心收集
精心編輯
精致閱讀
如需請下載!
演講稿 工作總結(jié) 調(diào)研報告 講話稿 事跡材料 心得體會 策劃方案 二、一元函數(shù)微分學(xué)
(一)導(dǎo)數(shù)與微分
(1)理解導(dǎo)數(shù)的概念及其幾何意義,了解可導(dǎo)性與連續(xù)性的關(guān)系,會用定義求函數(shù)在一點處的導(dǎo)數(shù)。
(2)會求曲線上一點處的切線方程與法線方程。
(3)熟練掌握導(dǎo)數(shù)的基本公式、四則運算法則以及復(fù)合函數(shù)的求導(dǎo)方法。
(4)掌握隱函數(shù)的求導(dǎo)法、對數(shù)求導(dǎo)法以及由參數(shù)方程所確定的函數(shù)的求導(dǎo)方法,會求分段函數(shù)的導(dǎo)數(shù)。
(5)理解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的n階導(dǎo)數(shù)。
(6)理解函數(shù)的微分概念,掌握微分法則,了解可微與可導(dǎo)的關(guān)系,會求函數(shù)的一階微分。
(二)中值定理及導(dǎo)數(shù)的應(yīng)用
精心收集
精心編輯
精致閱讀
如需請下載!
演講稿 工作總結(jié) 調(diào)研報告 講話稿 事跡材料 心得體會 策劃方案
(1)了解羅爾中值定理、拉格朗日中值定理及它們的幾何意義。
(2)熟練掌握洛必達法則求“0/0”、“∞/ ∞”、“0?∞”、“∞-∞”、“1∞”、“00”和“∞0”型未定式的極限方法。
(3)掌握利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性及求函數(shù)的單調(diào)增、減區(qū)間的方法,會利用函數(shù)的增減性證明簡單的不等式。
(4)理解函數(shù)極值的概念,掌握求函數(shù)的極值和最大(小)值的方法,并且會解簡單的應(yīng)用問題。
(5)會判定曲線的凹凸性,會求曲線的拐點。
(6)會求曲線的水平漸近線與垂直漸近線。三、一元函數(shù)積分學(xué)
(一)不定積分
(1)理解原函數(shù)與不定積分概念及其關(guān)系,掌握不定積分性質(zhì),了解原函數(shù)存在定理。
精心收集
精心編輯
精致閱讀
如需請下載!
演講稿 工作總結(jié) 調(diào)研報告 講話稿 事跡材料 心得體會 策劃方案
(2)熟練掌握不定積分的基本公式。
(3)熟練掌握不定積分第一換元法,掌握第二換元法(限于三角代換與簡單的根式代換)。
(4)熟練掌握不定積分的分部積分法。
(二)定積分
(1)理解定積分的概念與幾何意義,了解可積的條件。
(2)掌握定積分的基本性質(zhì)。
(3)理解變上限的定積分是變上限的函數(shù),掌握變上限定積分求導(dǎo)數(shù)的方法。
(4)掌握牛頓—萊布尼茨公式。
(5)掌握定積分的換元積分法與分部積分法。
(6)理解無窮區(qū)間廣義積分的概念,掌握其計算方法。
精心收集
精心編輯
精致閱讀
如需請下載!
演講稿 工作總結(jié) 調(diào)研報告 講話稿 事跡材料 心得體會 策劃方案
(7)掌握直角坐標(biāo)系下用定積分計算平面圖形的面積。
四、向量代數(shù)與空間解析幾何
(一)向量代數(shù)
(1)理解向量的概念,掌握向量的坐標(biāo)表示法,會求單位向量、方向余弦、向量在坐標(biāo)軸上的投影。
(2)掌握向量的線性運算、向量的數(shù)量積與向量積的計算方法。
(3)掌握二向量平行、垂直的條件。
(二)平面與直線
(1)會求平面的點法式方程、一般式方程。會判定兩平面的垂直、平行。
(2)會求點到平面的距離。
(3)了解直線的一般式方程,會求直線的標(biāo)準(zhǔn)式方程、參數(shù)式方程。
精心收集
精心編輯
精致閱讀
如需請下載!
演講稿 工作總結(jié) 調(diào)研報告 講話稿 事跡材料 心得體會 策劃方案
會判定兩直線平行、垂直。
(4)會判定直線與平面間的關(guān)系(垂直、平行、直線在平面上)。
五、多元函數(shù)微積分
(一)多元函數(shù)微分學(xué)
(1)了解多元函數(shù)的概念、二元函數(shù)的幾何意義及二元函數(shù)的極值與連續(xù)概念(對計算不作要求)。會求二元函數(shù)的定義域。
(2)理解偏導(dǎo)數(shù)、全微分概念,知道全微分存在的必要條件與充分條件。
(3)掌握二元函數(shù)的一、二階偏導(dǎo)數(shù)計算方法。
(4)掌握復(fù)合函數(shù)一階偏導(dǎo)數(shù)的求法。
(5)會求二元函數(shù)的全微分。
(6)掌握由方程F(x,y,z)=0所確定的隱函數(shù)z=z(x,y)的一階偏導(dǎo)數(shù)的計算方法。
精心收集
精心編輯
精致閱讀
如需請下載!
演講稿 工作總結(jié) 調(diào)研報告 講話稿 事跡材料 心得體會 策劃方案
(7)會求二元函數(shù)的無條件極值。
(二)二重積分
(1)理解二重積分的概念、性質(zhì)及其幾何意義。
(2)掌握二重積分在直角坐標(biāo)系及極坐標(biāo)系下的計算方法。
六、無窮級數(shù)
(一)數(shù)項級數(shù)
(1)理解級數(shù)收斂、發(fā)散的概念。掌握級數(shù)收斂的必要條件,了解級數(shù)的基本性質(zhì)。
(2)掌握正項級數(shù)的比值數(shù)別法。會用正項級數(shù)的比較判別法。
(3)掌握幾何級數(shù)、調(diào)和級數(shù)與p級數(shù)的斂散性。
(4)了解級數(shù)絕對收斂與條件收斂的概念,會使用萊布尼茨判別法。
精心收集
精心編輯
精致閱讀
如需請下載!
演講稿 工作總結(jié) 調(diào)研報告 講話稿 事跡材料 心得體會 策劃方案
(二)冪級數(shù)
(1)了解冪級數(shù)的概念,收斂半徑,收斂區(qū)間。
(2)了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和、差、逐項求導(dǎo)與逐項積分)。
(3)掌握求冪級數(shù)的收斂半徑、收斂區(qū)間(不要求討論端點)的方法。
七、常微分方程
(一)一階微分方程
(1)理解微分方程的定義,理解微分方程的階、解、通解、初始條件和特解。
(2)掌握可分離變量方程的解法。
(3)掌握一階線性方程的解法。
(二)二階線性微分方程
精心收集
精心編輯
精致閱讀
如需請下載!
演講稿 工作總結(jié) 調(diào)研報告 講話稿 事跡材料 心得體會 策劃方案
(1)了解二階線性微分方程解的結(jié)構(gòu)。
(2)掌握二階常系數(shù)齊次線性微分方程的解法。
精心收集
精心編輯 精致閱讀 如需請下載!
第五篇:高等數(shù)學(xué)考試大綱
高等數(shù)學(xué)考試大綱
2013年6月
1.函數(shù) 極限與連續(xù)
函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的概念及性質(zhì) 初等函數(shù)
數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左右極限無窮小與無窮大的概念及其關(guān)系無窮小的性質(zhì)及無窮小的比較極限的四則運算極限存在的單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則兩個重要極限函數(shù)連續(xù)的概念函數(shù)間斷點的類型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質(zhì)
2.一元函數(shù)微分學(xué)
導(dǎo)數(shù)與微分的概念導(dǎo)數(shù)的物理意義與幾何意義函數(shù)的可導(dǎo)性與連續(xù)性的關(guān)系平面曲線的切線和法線基本初等函數(shù)的導(dǎo)數(shù)導(dǎo)數(shù)與微分的四則運算 復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法高階導(dǎo)數(shù)的概念羅爾定理拉格朗日中值定理洛必達法則函數(shù)單調(diào)性的判定函數(shù)的極值求法及其應(yīng)用函數(shù)的凸凹性、拐點及水平和垂直漸近線
3.一元函數(shù)積分學(xué)
原函數(shù)和不定積分的概念不定積分的基本性質(zhì)基本積分公式定積分的概念和性質(zhì)變上限定積分及其導(dǎo)數(shù)牛頓-萊布尼茲公式不定積分和定積分的換元積分法和分部積分法定積分的幾何應(yīng)用
4.線性代數(shù)基礎(chǔ)
矩陣的概念和性質(zhì)矩陣的計算矩陣的初等變換矩陣的秩矩陣可逆的充分必要條件逆矩陣的計算行列式的概念和性質(zhì)行列式的計算向量的概念向量組的線性相關(guān)和線性無關(guān)向量組的最大無關(guān)組及秩的概念及求法 線性方程組
解的結(jié)構(gòu)齊次和非齊次線性方程組的求解矩陣特征值和特征向量的概念及計算