第一篇:2018年數(shù)學(xué)中考重點(diǎn):中考數(shù)學(xué)作輔助線規(guī)律總結(jié)
2018年數(shù)學(xué)中考重點(diǎn):中考數(shù)學(xué)作輔助線規(guī)律
總結(jié)
圖中有角平分線,可向兩邊作垂線。
也可將圖對折看,對稱以后關(guān)系現(xiàn)。
角平分線平行線,等腰三角形來添。
角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。
要證線段倍與半,延長縮短可試驗(yàn)。
三角形中兩中點(diǎn),連接則成中位線。
三角形中有中線,延長中線等中線。
平行四邊形出現(xiàn),對稱中心等分點(diǎn)。
梯形里面作高線,平移一腰試試看。
平行移動(dòng)對角線,補(bǔ)成三角形常見。
證相似,比線段,添線平行成習(xí)慣。
等積式子比例換,尋找線段很關(guān)鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項(xiàng)一大片。
半徑與弦長計(jì)算,弦心距來中間站。
圓上若有一切線,切點(diǎn)圓心半徑連。
切線長度的計(jì)算,勾股定理最方便。
要想證明是切線,半徑垂線仔細(xì)辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點(diǎn)圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點(diǎn)連。
弦切角邊切線弦,同弧對角等找完。
要想作個(gè)外接圓,各邊作出中垂線。
還要作個(gè)內(nèi)接圓,內(nèi)角平分線夢圓。
如果遇到相交圓,不要忘作公共弦。
要作等角添個(gè)圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
假如圖形較分散,對稱旋轉(zhuǎn)去實(shí)驗(yàn)。
基本作圖很關(guān)鍵,平時(shí)掌握要熟練。
解題還要多心眼,經(jīng)常總結(jié)方法顯。
切勿盲目亂添線,方法靈活應(yīng)多變。
分析綜合方法選,困難再多也會(huì)減。
虛心勤學(xué)加苦練,成績上升成直線。
第二篇:中考數(shù)學(xué)總結(jié)
九年級數(shù)學(xué)教學(xué)工作總結(jié)
周艷
本學(xué)期我仍擔(dān)任九年級(1)班、(2)班的數(shù)學(xué)教學(xué)工作,在本學(xué)期教學(xué)期間我認(rèn)真?zhèn)湔n、上課、聽課,及時(shí)批改作業(yè)、講評作業(yè),做好課后輔導(dǎo)工作,廣泛涉取各種知識(shí),不斷提高自己的業(yè)務(wù)水平。,充實(shí)自己的頭腦,形成比較完整的知識(shí)結(jié)構(gòu),嚴(yán)格要求學(xué)生,尊重學(xué)生,使學(xué)生學(xué)有所得,學(xué)有所用,不斷提高,從而不斷提高自己的教學(xué)水平和思想覺悟,并順利完成教育教學(xué)任務(wù)。下面我就這一學(xué)期中所做的一些工作做一下小結(jié)。
一、學(xué)生情況
九年級是初中三年的關(guān)鍵時(shí)期,學(xué)生取得好成績才是最重要的事情。本學(xué)期九年級(1)班的黃仙、李小娟、楊偉沙等,他(她)們學(xué)習(xí)態(tài)度端正,學(xué)習(xí)肯努力,但其他絕大部分同學(xué)學(xué)習(xí)積極性不高,整體學(xué)風(fēng)差,因此本班主要的工作重心是思想方面的引導(dǎo)及學(xué)風(fēng)的樹立。(2)班的學(xué)生除個(gè)別同學(xué)外,整體班風(fēng)、學(xué)風(fēng)都很濃,學(xué)習(xí)數(shù)學(xué)的積極性也很高,只需要做好復(fù)習(xí)工作既可以。
二、教學(xué)工作方面
1、備好課。本學(xué)期我每一節(jié)課前都認(rèn)真鉆研教材,對教材的基本思想、基本概念,了解教材的結(jié)構(gòu),重點(diǎn)與難點(diǎn),掌握知識(shí)的邏輯,能運(yùn)用自如,知道應(yīng)補(bǔ)充哪些資料,怎樣才能教好。了解學(xué)生的興趣、需要、方法、習(xí)慣,學(xué)習(xí)新知識(shí)可能會(huì)有哪些困難,采取相應(yīng)的預(yù)防 1 措施。考慮教法,解決如何把已掌握的教材傳授給學(xué)生,包括如何組織教材、如何安排每節(jié)課的活動(dòng)。
2、在課堂上,組織好課堂教學(xué),關(guān)注全體學(xué)生,注意信息反饋,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,課堂語言簡潔明了,課堂提問面向全體學(xué)生,注意引發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,課堂上講練結(jié)合,精講多練。
三、總復(fù)習(xí)工作面向全體學(xué)生
1、課堂上注重學(xué)生當(dāng)堂訓(xùn)練,教師精心講解,加強(qiáng)學(xué)生解題過程訓(xùn)練。如果只分析,優(yōu)等生還可以,但有些學(xué)生就可能跟不上,而且讓學(xué)生板演還能讓不同層次學(xué)生都有機(jī)會(huì)表現(xiàn),因?yàn)閷W(xué)生板演可為教師提供反饋信息,如暴露知識(shí)上的缺欠,可彌補(bǔ)講課中的不足,同時(shí),學(xué)生板演中出現(xiàn)的優(yōu)秀解題方法,為教師提供向?qū)W生學(xué)習(xí)的良好機(jī)會(huì);另外也可以培養(yǎng)學(xué)生膽識(shí),培養(yǎng)學(xué)生獨(dú)立思考能力,促進(jìn)記憶。
2、注重學(xué)生解題中的錯(cuò)誤分析
在總復(fù)習(xí)中,學(xué)生在解題中出現(xiàn)錯(cuò)誤是不可避免,教師針對錯(cuò)誤進(jìn)行系統(tǒng)分析是重要的,首先可以通過錯(cuò)誤來發(fā)現(xiàn)教學(xué)中的不足,從而采取措施進(jìn)行補(bǔ)救;錯(cuò)誤從一個(gè)特定角度揭示了學(xué)生掌握知識(shí)的過程,是學(xué)生在學(xué)習(xí)中對所學(xué)知識(shí)不斷嘗試的結(jié)果,教師認(rèn)真總結(jié),可以成為學(xué)生知識(shí)寶庫中的重要組成部分,使學(xué)生領(lǐng)略解決問題中的探索、調(diào)試過程,這對學(xué)生能力的培養(yǎng)會(huì)產(chǎn)生有益影響。
首先,應(yīng)預(yù)防錯(cuò)誤的發(fā)生,要了解不同層次學(xué)生對知識(shí)的掌握情況,調(diào)查中發(fā)現(xiàn):(1)審題能力差、(2)分析能力差、(3)缺少創(chuàng)新思維。并針對以上情況進(jìn)行了單獨(dú)訓(xùn)練,效果較好。其次,在復(fù)習(xí)過程中,提問是重要復(fù)習(xí)手段,對于學(xué)生錯(cuò)誤的回答,要分析其原因進(jìn)行有針對性的講解,這樣可以利用反面知識(shí)鞏固正面知識(shí)。
最后,課后的講評要抓住典型加以評述。事實(shí)證明,練是實(shí)踐,評是升華,只講不評,練習(xí)往往走過場。
四、自我提高
本學(xué)期在工作中不斷積累經(jīng)驗(yàn),并及時(shí)形成了材料。在中考復(fù)習(xí)中,發(fā)現(xiàn)問題及時(shí)進(jìn)行小結(jié)并進(jìn)行有針對性的訓(xùn)練。不斷提高自身業(yè)務(wù)素質(zhì)。現(xiàn)在網(wǎng)絡(luò)資源非常豐富,在網(wǎng)上可以找到很多有關(guān)中考的題和信息,給中考復(fù)習(xí)帶來了很大的方便。對學(xué)生進(jìn)行知識(shí)的傳授,激發(fā)和培養(yǎng)學(xué)生的學(xué)習(xí)興趣,都有很大的幫助。
在本學(xué)期我嚴(yán)格要求自己,在教學(xué)中虛心向別的教師請教。并利用業(yè)余時(shí)間了解先進(jìn)的教育教學(xué)方法,學(xué)習(xí)與借鑒對自己有用的教育學(xué)生的方法,加強(qiáng)理論學(xué)習(xí),努力提高自己的教育理念與自身素質(zhì)。
總之,初三總復(fù)習(xí)是重要的教學(xué)階段,是學(xué)生再學(xué)習(xí)的過程,是中考前很重要的一個(gè)階段,也是學(xué)生從整體上認(rèn)識(shí)初中數(shù)學(xué)的一個(gè)階段,是學(xué)生成績迅速提高的一個(gè)階段。在這個(gè)階段,我首先注重了基礎(chǔ)知識(shí)的復(fù)習(xí),然后進(jìn)行了能力的提高,最后進(jìn)行了綜合能力的提高。通過成績來看,兩個(gè)班都取得較好的成績,(1)班平均分為:分;及格率為: 優(yōu)生率為:;(2)班平均分為:分;及格率為: 優(yōu)生率為: ;整個(gè)年級全線排名是平均分第5名,及格率第4名,優(yōu)生 3 率第5名。這是所有學(xué)科中最好的成績。今后我將繼續(xù)努力,爭取取得更佳的成績。
第三篇:初中數(shù)學(xué)輔助線總結(jié)
初中數(shù)學(xué)幾何做輔助線的口訣-----作輔助線的方法和技巧
題中有角平分線,可向兩邊作垂線。
線段垂直平分線,可向兩端把線連。
三角形中兩中點(diǎn),連結(jié)則成中位線。
三角形中有中線,延長中線同樣長。
成比例,正相似,經(jīng)常要作平行線。
圓外若有一切線,切點(diǎn)圓心把線連。
如果兩圓內(nèi)外切,經(jīng)過切點(diǎn)作切線。
兩圓相交于兩點(diǎn),一般作它公共弦。
是直徑,成半圓,想做直角把線連。
作等角,添個(gè)圓,證明題目少困難。
輔助線,是虛線,畫圖注意勿改變。
圖中有角平分線,可向兩邊作垂線。
也可將圖對折看,對稱以后關(guān)系現(xiàn)。
角平分線平行線,等腰三角形來添。
角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。
要證線段倍與半,延長縮短可試驗(yàn)。
三角形中兩中點(diǎn),連接則成中位線。
三角形中有中線,延長中線等中線。
平行四邊形出現(xiàn),對稱中心等分點(diǎn)。
梯形里面作高線,平移一腰試試看。
平行移動(dòng)對角線,補(bǔ)成三角形常見。
證相似,比線段,添線平行成習(xí)慣。
等積式子比例換,尋找線段很關(guān)鍵。
直接證明有困難,等量代換少麻煩。斜邊上面作高線,比例中項(xiàng)一大片。半徑與弦長計(jì)算,弦心距來中間站。
圓上若有一切線,切點(diǎn)圓心半徑連。
切線長度的計(jì)算,勾股定理最方便。
要想證明是切線,半徑垂線仔細(xì)辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點(diǎn)圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點(diǎn)連。
弦切角邊切線弦,同弧對角等找完。
要想作個(gè)外接圓,各邊作出中垂線。
還要作個(gè)內(nèi)接圓,內(nèi)角平分線夢圓
第四篇:中考數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)
中考數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)總結(jié)
編輯: 2013-11-03
41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42、定理1 關(guān)于某條直線對稱的兩個(gè)圖形是全等形
43、定理 2 如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線
44、定理3 兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上
45、逆定理 如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形
48、定理 四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°
51、推論 任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1平行四邊形的對角相等
53、平行四邊形性質(zhì)定理2平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊 形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 60、矩形性質(zhì)定理1 矩形的四個(gè)角都是直角 61、矩形性質(zhì)定理2 矩形的對角線相等
62、矩形判定定理1 有三個(gè)角是直角的四邊形是矩形 63、矩形判定定理2 對角線相等的平行四邊形是矩形 64、菱形性質(zhì)定理1 菱形的四條邊都相等
65、菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角 66、菱形面積=對角線乘積的一半,即S=(a×b)÷2 67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形 69、正方形性質(zhì)定理1 正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角 71、定理1 關(guān)于中心對稱的兩個(gè)圖形是全等的
72、定理2 關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分
73、逆定理 如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱
74、等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個(gè)角相等 75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理 在同一底上的兩個(gè)角相等的梯 形是等腰梯形 77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1 經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
80、推論2
經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊 81、三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2
S=L×h 83、(1)比例的基本性質(zhì): 如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d 84、(2)合比性質(zhì):
如果a/b=c/d,那么(a±b)/b=(c±d)/d 85、(3)等比性質(zhì):
如果a/b=c/d=…=m/n(b+d+…+n≠0), 那么(a+c+…+m)/(b+d+…+n)=a/b 86、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應(yīng)線段成比例
87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例 88、定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊 89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例
90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
91、相似三角形判定定理1 兩角對應(yīng)相等,兩三角形相似(ASA)92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似 93、判定定理2 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94、判定定理3 三邊對應(yīng)成比例,兩三角形相似(SSS)95、定理 如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似
96、性質(zhì)定理1 相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比 97、性質(zhì)定理2 相似三角形周長的比等于相似比 98、性質(zhì)定理3 相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值 100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值 101、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合 103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合 104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓 106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線 107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線 109、定理 不在同一直線上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧 111、推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧 ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧 112、推論2 圓的兩條平行弦所夾的弧相等 113、圓是以圓心為對稱中心的中心對稱圖形
114、定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等 115、推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
116、定理 一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 118、推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3 如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形 120、定理 圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角 121、①直線L和⊙O相交
d﹤r ②直線L和⊙O相切
d=r ③直線L和⊙O相離
d﹥r(jià) 122、切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線 123、切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點(diǎn)的半徑 124、推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn) 125、推論2 經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
126、切線長定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等圓心和這一點(diǎn)的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理 弦切角等于它所夾的弧對的圓周角
129、推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等 130、相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等
131、推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng) 132、切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)
133、推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條 割線與圓的交點(diǎn)的兩條線段長的積相等 134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上 135、①兩圓外離
d﹥R+r ②兩圓外切
d=R+r ③兩圓相交
R-r﹤d﹤R+r(R﹥r(jià))④兩圓內(nèi)切
d=R-r(R﹥r(jià))⑤兩圓內(nèi)含
d﹤R-r(R﹥r(jià))136、定理 相交兩圓的連心線垂直平分兩圓的公共弦 137、定理 把圓分成n(n≥3): ⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形 138、定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓 139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n 140、定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形 141、正n邊形的面積Sn=pnrn/2
p表示正n邊形的周長 142、正三角形面積√3a/4
a表示邊長
143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 144、弧長計(jì)算公式:L=n兀R/180 145、扇形面積公式:S扇形=n兀R^2/360=LR/2 146、內(nèi)公切線長= d-(R-r)
外公切線長= d-(R+r)
三、常用數(shù)學(xué)公式
公式分類
公式表達(dá)式 乘法與因式分解
a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式
|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a| 一元二次方程的解
-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a 根與系數(shù)的關(guān)系
X1+X2=-b/a X1*X2=c/a
注:韋達(dá)定理 判別式
b2-4ac=0
注:方程有兩個(gè)相等的實(shí)根 b2-4ac>0
注:方程有兩個(gè)不等的實(shí)根 b2-4ac<0
注:方程沒有實(shí)根,有共軛復(fù)數(shù)根 某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圓半徑 余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
四、基本方法
1、配方法
所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個(gè)部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達(dá)定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計(jì)論二次方程根的符號(hào),解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。
5、待定系數(shù)法 在解數(shù)學(xué)問題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解題時(shí),我們常常會(huì)采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一個(gè)、一個(gè)也沒有;至少有n個(gè)、至多有(n一1)個(gè);至多有一個(gè)、至少有兩個(gè);唯
一、至少有兩個(gè)。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來證明或計(jì)算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來,通過運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數(shù)學(xué)問題的研究中,常常運(yùn)用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來,有利于對圖形本質(zhì)的認(rèn)識(shí)。
幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。
10、客觀性題的解題方法
選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識(shí)和基本技能,從而增大了試卷的容量和知識(shí)覆蓋面。
填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識(shí)復(fù)蓋面廣,評卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實(shí)例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發(fā),運(yùn)用概念、公式、定理等進(jìn)行推理或運(yùn)算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
(2)驗(yàn)證法:由題設(shè)找出合適的驗(yàn)證條件,再通過驗(yàn)證,找出正確答案,亦可將供選擇的答案代入條件中去驗(yàn)證,找出正確答案,此法稱為驗(yàn)證法(也稱代入法)。當(dāng)遇到定量命題時(shí),常用此法。
(3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。(4)排除、篩選法:對于正確答案有且只有一個(gè)的選擇題,根據(jù)數(shù)學(xué)知識(shí)或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。
(5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點(diǎn)來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,稱為分析法。
初中幾何常見輔助線作法歌訣匯編[轉(zhuǎn)]
人說幾何很困難,難點(diǎn)就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長縮短可試驗(yàn)。三角形中兩中點(diǎn),連接則成中位線。三角形中有中線,延長中線等中線。平行四邊形出現(xiàn),對稱中心等分點(diǎn)。梯形里面作高線,平移一腰試試看。平行移動(dòng)對角線,補(bǔ)成三角形常見。證相似,比線段,添線平行成習(xí)慣。等積式子比例換,尋找線段很關(guān)鍵。直接證明有困難,等量代換少麻煩。斜邊上面作高線,比例中項(xiàng)一大片。半徑與弦長計(jì)算,弦心距來中間站。圓上若有一切線,切點(diǎn)圓心半徑連。切線長度的計(jì)算,勾股定理最方便。要想證明是切線,半徑垂線仔細(xì)辨。是直徑,成半圓,想成直角徑連弦。弧有中點(diǎn)圓心連,垂徑定理要記全。圓周角邊兩條弦,直徑和弦端點(diǎn)連。弦切角邊切線弦,同弧對角等找完。要想作個(gè)外接圓,各邊作出中垂線。還要作個(gè)內(nèi)接圓,內(nèi)角平分線夢圓。如果遇到相交圓,不要忘作公共弦。內(nèi)外相切的兩圓,經(jīng)過切點(diǎn)公切線。若是添上連心線,切點(diǎn)肯定在上面。要作等角添個(gè)圓,證明題目少困難。輔助線,是虛線,畫圖注意勿改變。假如圖形較分散,對稱旋轉(zhuǎn)去實(shí)驗(yàn)。基本作圖很關(guān)鍵,平時(shí)掌握要熟練。解題還要多心眼,經(jīng)??偨Y(jié)方法顯。切勿盲目亂添線,方法靈活應(yīng)多變。分析綜合方法選,困難再多也會(huì)減。虛心勤學(xué)加苦練,成績上升成直線。
總結(jié):中考數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)就為大家介紹到這里了,希望能幫助大家復(fù)習(xí)病句修改的知識(shí)點(diǎn),祝同學(xué)們中考再創(chuàng)佳績!
閱讀本文的還閱讀了:
中考數(shù)學(xué)知識(shí)點(diǎn)幾何應(yīng)用題備考復(fù)習(xí)有多少 中考數(shù)學(xué)復(fù)習(xí)沖刺:注重知識(shí)點(diǎn)提高效率
第五篇:中考數(shù)學(xué)總結(jié)論文
優(yōu)化復(fù)習(xí)教學(xué) 提高復(fù)習(xí)效率
------2011中考數(shù)學(xué)總結(jié)
湖北口中學(xué)
鄢吉明
一、成績情況
本次中考,在全體師生的共同努力下,數(shù)學(xué)整體還不錯(cuò),但班級間有差異,我校數(shù)學(xué)學(xué)科成績上有效分46人,吻合39人,綜合名次居全縣第九位,我所任的兩個(gè)班有效分21人,吻合18人。二、一些不成熟的復(fù)習(xí)方法
1、在章節(jié)復(fù)習(xí)中注重知識(shí)的轉(zhuǎn)化
在復(fù)習(xí)過程中,不僅應(yīng)該要求學(xué)生對所學(xué)的知識(shí)、典型的例題進(jìn)行反思,而且還應(yīng)該重視對學(xué)生鞏固所學(xué)的知識(shí)由“量”到“質(zhì)”的飛躍這一轉(zhuǎn)化過程。按常規(guī)的方式進(jìn)行復(fù)習(xí),通常是按照課本的順序把學(xué)生學(xué)過的知識(shí),如數(shù)學(xué)概念、法則、公式和性質(zhì)等原本地復(fù)述梳理一遍。這樣做學(xué)生感到乏味又不易記憶。針對這一情況,我在復(fù)習(xí)概念時(shí),采用章節(jié)知識(shí)歸類法,即先列出所要復(fù)習(xí)的知識(shí)要點(diǎn),然后歸類排隊(duì),這樣做可增加學(xué)生復(fù)習(xí)的興趣,增強(qiáng)學(xué)生的記憶和理解,最主要的是起點(diǎn)了把章節(jié)知識(shí)由量到質(zhì)的飛躍,實(shí)現(xiàn)知識(shí)間的轉(zhuǎn)化。
2、在例題講解中注重知識(shí)的變化
復(fù)習(xí)課例題的選擇,應(yīng)是最有代表性和最能說明問題的典型習(xí)題。應(yīng)能突出重點(diǎn),反映大綱最主要、最基本的內(nèi)容和要求。對例題進(jìn)行分析和解答,發(fā)揮例題以點(diǎn)帶面的作用,有意識(shí)、有目的地在例題的基礎(chǔ)上作一系列的變化,達(dá)到能挖掘問題的內(nèi)涵和外延、在變化中鞏固知識(shí)、在運(yùn)動(dòng)中尋找規(guī)律的目的,實(shí)現(xiàn)復(fù)習(xí)的知識(shí)從量到質(zhì)的轉(zhuǎn)變。
例如,在復(fù)習(xí)二次函數(shù)的內(nèi)容時(shí),我選了這樣一個(gè)例題:二次函數(shù)的圖象經(jīng)過點(diǎn)(0,0)與(-1,-1),開口向上,且在x軸上截得的線段長為2。求它的解析式。因?yàn)槎魏瘮?shù)的圖象拋物線是軸對稱圖形,由題意畫圖后,不難看出(-1,-1)是頂點(diǎn),所以可用二次函數(shù)的頂點(diǎn)式y(tǒng)=-a(x+m)2+k,再求得它的解析式。在數(shù)學(xué)中我對例題作了變化,把題目中的“開口向上”這一條件去掉,求解析式。再次變化后,此題可有兩種情況(1)開口向上;(2)開口向下;所以有兩個(gè)結(jié)論
由于條件的不斷變化,使學(xué)生不能再套用原題的解題思路,從而改變了學(xué)生機(jī)械的模仿性,學(xué)會(huì)分析問題,尋找解決問題的途徑,達(dá)到了在變化中鞏固知識(shí),在運(yùn)動(dòng)中尋找規(guī)律的目的。從而在知識(shí)的縱橫聯(lián)系中,提高了學(xué)生靈活解題的能力。
3、注重優(yōu)化解題思路 一題多解有利于引導(dǎo)學(xué)生沿著不同的途徑去思考問題,可以優(yōu)化學(xué)生思維,因此要將一題多解作為一種解題的方法去訓(xùn)練學(xué)生。一題多解可以產(chǎn)生多種解題思路,要對多解進(jìn)行比較,找出新穎、獨(dú)特的最佳解才能成為名副其實(shí)的優(yōu)解思路。在數(shù)學(xué)復(fù)習(xí)時(shí),我不僅注意解題的多樣性,還重視引導(dǎo)學(xué)生分析比較各種解題思路和方法,提煉出最佳解法,從而達(dá)到優(yōu)化復(fù)習(xí)過程,優(yōu)化解題思路的目的。如計(jì)算(6x+y/2)(3x-y/4),這是一題多項(xiàng)式的乘法運(yùn)算,本題從表面上看無規(guī)律可找,其實(shí)從多項(xiàng)式系數(shù)看,發(fā)現(xiàn)第一個(gè)因式提出公因數(shù)2后,恰能構(gòu)成平方差公式的模型,顯然后一種解題思路優(yōu)于前一種解題的思路。計(jì)算此題若把各因式計(jì)算后再相乘,很繁瑣,若能把各因式逆用平方差公式,再計(jì)算、約分,可以迅速地求出結(jié)果。
在復(fù)習(xí)的過程中加強(qiáng)對解題思路優(yōu)化的分析和比較,有利于培養(yǎng)學(xué)生良好的數(shù)學(xué)品質(zhì)和思維品質(zhì),能為學(xué)生培養(yǎng)嚴(yán)謹(jǐn)、創(chuàng)新的學(xué)風(fēng)打下良好的基礎(chǔ)。
4、善于將知識(shí)習(xí)題歸類
考查同一知識(shí)點(diǎn),可以從不同的角度,采用不同的數(shù)學(xué)模型,提出多種不同的命題,我在復(fù)習(xí)引導(dǎo)學(xué)生將習(xí)題歸類,集中精力解決同類問題中的本質(zhì)問題,總結(jié)出解這一類問題的方法和規(guī)律。
通過歸類訓(xùn)練,學(xué)生便能在平時(shí)的學(xué)習(xí)中,注意做有心人,加強(qiáng)方法的積累和歸納,并能分析異同,把知識(shí)從一個(gè)角度遷移到另一個(gè)角度,最終達(dá)到常規(guī)圖形能熟悉、常規(guī)結(jié)論要記憶、類同方法全套用、獨(dú)創(chuàng)解法受啟發(fā)的層次,提高舉一反
三、觸類旁通的能力。
優(yōu)化復(fù)習(xí)過程,提高復(fù)習(xí)效率,可以將學(xué)生從題海戰(zhàn)術(shù)中解脫出來,使學(xué)生學(xué)得靈活,學(xué)得扎實(shí),是一個(gè)行之有效的重要途徑。
三、不足之處
從整體情況看,本屆數(shù)學(xué)不僅保住了上屆的成績,還從初考時(shí)的全縣末位上升到了第九位,從整套數(shù)學(xué)題來看,還是比較難的。我所任的兩個(gè)班,一個(gè)中等,一個(gè)一直在后面,本次也不例外,究其原因,有以下幾點(diǎn):
1、良好的班風(fēng)是成績的保證,我所任的兩個(gè)班,其中一個(gè)便是。教師更換頻繁,學(xué)生紀(jì)律渙散,兩極分化極為嚴(yán)重,直接影響結(jié)果。
2、我校地處鄂陜交界,經(jīng)濟(jì)條件落后,部分優(yōu)生即使考上,家庭也無力供應(yīng),致使學(xué)生放棄努力。
3、教師基本功也是成績的保證,我校由于地處偏遠(yuǎn),教師流動(dòng)性大,對學(xué)生的教育脫節(jié)比較嚴(yán)重,到初三臨時(shí)換教師,對學(xué)生也有影響。
4、由于本人的能力有限,在短時(shí)間內(nèi)無法將本班成績大幅度提高,也是成績不理想的一個(gè)重要原因。