第一篇:2012考研《數(shù)學(xué)》大綱綜述
2012考研《數(shù)學(xué)》大綱綜述:無變化
2011年9月15日教育部考試中心發(fā)布了2012年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱,與去年相比考試內(nèi)容和考試要求上沒有變化,具體如下:
試卷題型結(jié)構(gòu)為:?jiǎn)雾?xiàng)選擇題 8小題,每小題4分,共32分;
填空題 6小題,每小題4分,共24分;
解答題(包括證明題)9小題,共94分.數(shù)學(xué)一
高等數(shù)學(xué)部分:2012年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2011年相同.線性代數(shù)部分:2012年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2011年相同.概率論與數(shù)理統(tǒng)計(jì)部分:2012年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2011年相同.數(shù)學(xué)二
高等數(shù)學(xué)部分:2012年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2011年相同.線性代數(shù)部分:2012年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2011年相同.數(shù)學(xué)三
2012年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2011年相同.線性代數(shù)部分:2012年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2011年相同.概率論與數(shù)理統(tǒng)計(jì)部分:2012年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2011年相同.農(nóng)學(xué)數(shù)學(xué)
高等數(shù)學(xué)部分:2012年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2011年相同.線性代數(shù)部分:2012年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2011年相同.概率論與數(shù)理統(tǒng)計(jì)部分:2012年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2011年相同.大綱在考試要求和考試內(nèi)容上沒有變化,對(duì)于考生來說可以按照既定的復(fù)習(xí)計(jì)劃,按部就班的進(jìn)行備考了。與此同時(shí),同學(xué)們最好能夠根據(jù)考試大綱上的知識(shí)點(diǎn)再系統(tǒng)的復(fù)習(xí)一下相應(yīng)的考試點(diǎn),一方面可以起到鞏固提高的作用,另外一方方面,可以形成知識(shí)體系脈絡(luò)。如果對(duì)于考點(diǎn)的深度理解和可命題的角度自己不是很有把握,同學(xué)們可以結(jié)合由高等教育出版社出版的《2012年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱配套強(qiáng)化指導(dǎo)》這本書進(jìn)行復(fù)習(xí),達(dá)到事半功倍的效果。
第二篇:考研數(shù)學(xué)大綱
2012考研數(shù)學(xué)高頻考點(diǎn)盤點(diǎn)
第一,微分方程。高頻考點(diǎn):一階微分方程的通解或特解;可降階方程;線性常系數(shù)齊次和
非齊次方程的特解或通解;微分方程的建立與求解。
第二,向量代數(shù)和空間解析幾何。高頻考點(diǎn):求向量的數(shù)量積、向量積及混合積;求直線方
程和平面方程;平面與直線間關(guān)系及夾角的判定;旋轉(zhuǎn)面方程。
第三,一元函數(shù)積分學(xué)。高頻考點(diǎn):不定積分、定積分及廣義積分的計(jì)算;變上限積分的求導(dǎo)、極限等;積分中值定理和積分性質(zhì)的證明題;定積分的應(yīng)用,如計(jì)算旋轉(zhuǎn)面面積、旋轉(zhuǎn)
體體積、變力做功等。
第四,函數(shù)、極限、連續(xù)。高頻考點(diǎn):分段函數(shù)極限或已知極限確定原式中的常數(shù);討論函數(shù)連續(xù)性和判斷間斷點(diǎn)類型;無窮小階的比較;討論連續(xù)函數(shù)在給定區(qū)間上零點(diǎn)的個(gè)數(shù)或確
定方程在給定區(qū)間上有無實(shí)根。
第五,無窮級(jí)數(shù)。高頻考點(diǎn):級(jí)數(shù)的收斂、發(fā)散、絕對(duì)收斂和條件收斂;冪級(jí)數(shù)的收斂半徑和收斂域;冪級(jí)數(shù)的和函數(shù)或數(shù)項(xiàng)級(jí)數(shù)的和;函數(shù)展開為冪級(jí)數(shù)(包括寫出收斂域)或傅立葉
級(jí)數(shù);由傅立葉級(jí)數(shù)確定其在某點(diǎn)的和(通常要用狄里克雷定理)。
第六,一元函數(shù)微分學(xué)。高頻考點(diǎn):導(dǎo)數(shù)與微分的求解;隱函數(shù)求導(dǎo);分段函數(shù)和絕對(duì)值函數(shù)可導(dǎo)性;洛必達(dá)法則求未定式極限;函數(shù)極值;方程的根;證明函數(shù)不等式;羅爾定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理及輔助函數(shù)的構(gòu)造;最大值、最小值在物理、經(jīng)濟(jì)等方面實(shí)際應(yīng)用;用導(dǎo)數(shù)研究函數(shù)性態(tài)和描繪函數(shù)圖形,求曲線漸近線。第七,多元函數(shù)微分學(xué)。高頻考點(diǎn):偏導(dǎo)數(shù)存在、可微、連續(xù)的判斷;多元函數(shù)和隱函數(shù)的一階、二階偏導(dǎo)數(shù);二元、三元函數(shù)的方向?qū)?shù)和梯度;曲面和空間曲線的切平面和法線;多元函數(shù)極值或條件極值在幾何、物理與經(jīng)濟(jì)上的應(yīng)用;二元連續(xù)函數(shù)在有界平面區(qū)域上的最大值和最小值。
第八,多元函數(shù)積分學(xué)。這部分是數(shù)學(xué)一的內(nèi)容,海天考研網(wǎng)認(rèn)為高頻考點(diǎn)包括二、三重積分在各種坐標(biāo)下的計(jì)算,累次積分交換次序;第一型曲線和曲面積分計(jì)算;第二型(對(duì)坐標(biāo))曲線積分計(jì)算、格林公式、斯托克斯公式;第二型(對(duì)坐標(biāo))曲面積分計(jì)算、高斯公式;梯度、散度、旋度的綜合計(jì)算;重積分和線面積分應(yīng)用;求面積,體積,重量,重心,引力,變力
做功等。
第三篇:2018考研數(shù)學(xué)大綱(農(nóng)學(xué))
2018考研數(shù)學(xué)大綱(農(nóng)學(xué))
考研大綱匯總考研英語大綱考研政治大綱考研數(shù)學(xué)大綱考研專業(yè)課大綱出國(guó)留學(xué)考研網(wǎng)為大家提供2018考研數(shù)學(xué)大綱,2018考研數(shù)學(xué)大綱 數(shù)學(xué) I.考試性質(zhì)
農(nóng)學(xué)門類聯(lián)考數(shù)學(xué)是為高等院校和科研院所招收農(nóng)學(xué)門類的碩士研究生而設(shè)置的具有選拔性質(zhì)的全國(guó)聯(lián)考科目。其目的是科學(xué)、公平、有效地測(cè)試考生是否具備繼續(xù)攻讀農(nóng)學(xué)門類各專業(yè)碩士學(xué)位所需要的知識(shí)和能力要求,評(píng)價(jià)的標(biāo)準(zhǔn)是高等學(xué)校農(nóng)學(xué)學(xué)科優(yōu)秀本科畢業(yè)生所能達(dá)到的及格或及格以上水平,以利于各高等院校和科研院所擇優(yōu)選拔,確保碩士研究生的招生質(zhì)量。II.考查目標(biāo)
農(nóng)學(xué)門類數(shù)學(xué)考試涵蓋高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)等公共基礎(chǔ)課程。要求考生比較系統(tǒng)地理解數(shù)學(xué)的基本概念和基本理論,掌握數(shù)學(xué)的基本方法,具備抽象思維能力、邏輯推理能力、空間想象能力、運(yùn)算能力以及綜合運(yùn)用所學(xué)的知識(shí)分析問題和解決問題的能力。III.考試形式和試卷結(jié)構(gòu)
一、試卷滿分及考試時(shí)間 試卷滿分為150分,考試時(shí)間為180分鐘.二、答題方式
答題方式為閉卷、筆試.三、試卷內(nèi)容結(jié)構(gòu) 高等數(shù)學(xué)56% 線性代數(shù)22% 概率論與數(shù)理統(tǒng)計(jì)22%
四、試卷題型結(jié)構(gòu)
單項(xiàng)選擇題8小題,每小題4分,共32分 填空題6小題,每小題4分,共24分 解答題9小題,共94分 Ⅳ.考查內(nèi)容 高等數(shù)學(xué)
一、函數(shù)、極限、連續(xù) 考試內(nèi)容
函數(shù)的概念及表示法函數(shù)的有界性、單調(diào)性、周期性和奇偶性復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù)基本初等函數(shù)的性質(zhì)及其圖形初等函數(shù)函數(shù)關(guān)系的建立
數(shù)列極限與函數(shù)極限的定義及其性質(zhì)函數(shù)的左極限和右極限無窮小量和無窮大量的概念及其關(guān)系無窮小量的性質(zhì)及無窮小量的比較極限的四則運(yùn)算極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則兩個(gè)重要極限: 函數(shù)連續(xù)的概念函數(shù)間斷點(diǎn)的類型初等函數(shù)的連續(xù)性閉區(qū)間上連續(xù)函數(shù)的性質(zhì) 考試要求
1.理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立應(yīng)用問題中的函數(shù)關(guān)系.2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性.3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念.4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念.5.了解數(shù)列極限和函數(shù)極限的概念.6.了解極限的性質(zhì)與極限存在的兩個(gè)準(zhǔn)則,掌握極限的四則運(yùn)算法則,掌握利用兩個(gè)重要極限求極限的方法.7.理解無窮小量的概念和基本性質(zhì),掌握無窮小量的比較方法,了解無窮大量的概念及其與無窮小量的關(guān)系.8.理解函數(shù)連續(xù)性的概念,會(huì)判斷函數(shù)間斷點(diǎn)的類型.9.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì),并會(huì)應(yīng)用這些性質(zhì).二、一元函數(shù)微分學(xué) 考試內(nèi)容
導(dǎo)數(shù)和微分的概念導(dǎo)數(shù)的幾何意義函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系平面曲線的切線和法線導(dǎo)數(shù)和微分的四則運(yùn)算基本初等函數(shù)的導(dǎo)數(shù)復(fù)合函數(shù)和隱函數(shù)的微分法高階導(dǎo)數(shù)微分中值定理洛必達(dá)法則函數(shù)單調(diào)性的判別函數(shù)的極值函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線函數(shù)的最大值與最小值 考試要求
1.理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程和法線方程.2.掌握基本初等函數(shù)的導(dǎo)數(shù)公式、導(dǎo)數(shù)的四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求分段函數(shù)的導(dǎo)數(shù),會(huì)求隱函數(shù)的導(dǎo)數(shù).3.了解高階導(dǎo)數(shù)的概念,掌握二階導(dǎo)數(shù)的求法.4.了解微分的概念以及導(dǎo)數(shù)與微分之間的關(guān)系,會(huì)求函數(shù)的微分.5.理解羅爾定理和拉格朗日中值定理,掌握這兩個(gè)定理的簡(jiǎn)單應(yīng)用.6.會(huì)用洛必達(dá)法則求極限.7.掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及應(yīng)用.8.會(huì)用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性[注:在區(qū)間內(nèi),設(shè)函數(shù)f具有二階導(dǎo)數(shù).當(dāng)時(shí),f的圖形是凹的;當(dāng)時(shí),f的圖形是凸的],會(huì)求函數(shù)圖形的拐點(diǎn)和漸近線.三、一元函數(shù)積分學(xué) 考試內(nèi)容 原函數(shù)和不定積分的概念不定積分的基本性質(zhì)基本積分公式定積分的概念和基本性質(zhì)定積分中值定理積分上限的函數(shù)與其導(dǎo)數(shù)牛頓-萊布尼茨公式不定積分和定積分的換元積分方法與分部積分法反常積分定積分的應(yīng)用 考試要求
1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)與基本積分公式,掌握不定積分的換元積分法與分部積分法.2.了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會(huì)求它的導(dǎo)數(shù),掌握牛頓萊布尼茨公式,以及定積分的換元積分法與分部積分法.3.會(huì)利用定積分計(jì)算平面圖形的面積和旋轉(zhuǎn)體的體積.4.了解無窮區(qū)間上的反常積分的概念,會(huì)計(jì)算無窮區(qū)間上的反常積分.四、多元函數(shù)微積分學(xué) 考試內(nèi)容
多元函數(shù)的概念二元函數(shù)的幾何意義二元函數(shù)的極限與連續(xù)的概念多元函數(shù)偏導(dǎo)數(shù)的概念與計(jì)算多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)求導(dǎo)法二階偏導(dǎo)數(shù)全微分多元函數(shù)的極值和條件極值二重積分的概念、基本性質(zhì)和計(jì)算 考試要求
1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義.2.了解二元函數(shù)的極限與連續(xù)的概念.3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會(huì)求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會(huì)求全微分,會(huì)求多元隱函數(shù)的偏導(dǎo)數(shù).4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件.5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計(jì)算方法.五、常微分方程 考試內(nèi)容
常微分方程的基本概念變量可分離的微分方程一階線性微分方程 考試要求
1.了解微分方程及其階、解、通解、初始條件和特解等概念.2.掌握變量可分離的微分方程和一階線性微分方程的求解方法.線性代數(shù)
一、行列式 考試內(nèi)容
行列式的概念和基本性質(zhì)行列式按行展開定理 考試要求 1.了解行列式的概念,掌握行列式的性質(zhì).2.會(huì)應(yīng)用行列式的性質(zhì)和行列式按行展開定理計(jì)算行列式.二、矩陣 考試內(nèi)容
矩陣的概念矩陣的線性運(yùn)算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉(zhuǎn)置逆矩陣的概念和性質(zhì)矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價(jià) 考試要求
1.理解矩陣的概念,了解單位矩陣、對(duì)角矩陣、三角矩陣的定義及性質(zhì),了解對(duì)稱矩陣、反對(duì)稱矩陣及正交矩陣等的定義和性質(zhì).2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì).3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,了解伴隨矩陣的概念,會(huì)用伴隨矩陣求逆矩陣.4.了解矩陣的初等變換和初等矩陣及矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法.三、向量 考試內(nèi)容 向量的概念向量的線性組合與線性表示向量組的線性相關(guān)與線性無關(guān)向量組的極大線性無關(guān)組等價(jià)向量組向量組的秩向量組的秩與矩陣的秩之間的關(guān)系 考試要求
1.了解向量的概念,掌握向量的加法和數(shù)乘運(yùn)算法則.2.理解向量的線性組合與線性表示、向量組線性相關(guān)、線性無關(guān)等概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法.3.理解向量組的極大線性無關(guān)組和秩的概念,會(huì)求向量組的極大線性無關(guān)組及秩.4.了解向量組等價(jià)的概念,了解矩陣的秩與其行向量組的秩之間的關(guān)系.四、線性方程組 考試內(nèi)容
線性方程組的克拉默法則線性方程組有解和無解的判定齊次線性方程組的基礎(chǔ)解系和通解非齊次線性方程組的解與相應(yīng)的齊次線性方程組的解之間的關(guān)系非齊次線性方程組的通解 考試要求
1.會(huì)用克拉默法則解線性方程組.2.掌握非齊次線性方程組有解和無解的判定方法.3.理解齊次線性方程組的基礎(chǔ)解系的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法.4.了解非齊次線性方程組的結(jié)構(gòu)及通解的概念.5.掌握用初等行變換求解線性方程組的方法.
第四篇:2012年考研數(shù)學(xué)大綱函數(shù)
2012年考研數(shù)學(xué)大綱函數(shù)、極限和連續(xù)性
(一)考試內(nèi)容 共濟(jì)
函數(shù)的概念及表示法,函數(shù)的有界性、單調(diào)性、周期性和奇偶性,復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù),基本初等函數(shù)的性質(zhì)及其圖形,初等函數(shù),函數(shù)關(guān)系的建立。數(shù)列極限與函數(shù)極限的定義及其性質(zhì),函數(shù)的左極限和右極限,無窮小量和無窮大量的概念及其關(guān)系,無窮小量的性質(zhì)及其無窮小量的比較,極限的四則運(yùn)算,極限存在的兩個(gè)準(zhǔn)則:?jiǎn)握{(diào)有界準(zhǔn)則和夾逼準(zhǔn)則,兩個(gè)重要極限。同濟(jì)大學(xué)四平路函數(shù)連續(xù)的概念,函數(shù)間斷點(diǎn)的類型,初等函數(shù)的連續(xù)性,閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。
(二)考試要求 3362 3039
1.理解函數(shù)的概念,掌握函數(shù)的表示法,會(huì)建立應(yīng)用問題的函數(shù)關(guān)系。院
2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性。
3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念。336260 37
4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念。濟(jì)
5.了解數(shù)列極限和函數(shù)極限(包括左極限和右極限)的概念。336 26038
6.了解極限的性質(zhì)與極限存在的兩個(gè)準(zhǔn)則,掌握極限的四則運(yùn)算法則,掌握利用兩個(gè)重要極限求極限的方法。共濟(jì)網(wǎng)
7.理解無窮小量的概念和基本性質(zhì),掌握無窮小量的比較方法,了解無窮大量和無窮小量的關(guān)系。9
8.理解函數(shù)連續(xù)性的概念(含左連續(xù)和右連續(xù)),會(huì)判斷函數(shù)間斷點(diǎn)的類型。
9.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì)應(yīng)用這些性質(zhì)。共
我們?cè)谇蠼夂瘮?shù)的解析式時(shí),需要涉及到導(dǎo)數(shù)、積分、級(jí)數(shù)、微分方程等基本知識(shí),所以求解函數(shù)解析式往往是一些知識(shí)的綜合應(yīng)用,需要逐步求解。函數(shù)的性質(zhì)是考試的重點(diǎn),比如奇偶性、周期性,在極限這一章體現(xiàn)的不明顯,但是在定積分和二重積分的運(yùn)算中如果能夠準(zhǔn)確的應(yīng)用就能夠化簡(jiǎn)運(yùn)算,解決難題,所以屬于技巧性的考察,在考研的試題中對(duì)技巧的考察屬于重難點(diǎn),所以考生應(yīng)該提起重視。函數(shù)的有界性是證明題中經(jīng)常用到的,但要注意閉區(qū)間上應(yīng)用,如果是開區(qū)間,就要求解左端點(diǎn)處的右極限、右端點(diǎn)處的左極限。極限是考研的重點(diǎn),熟練掌握求解極限的方法是得高分的關(guān)鍵,極限的運(yùn)算法則必須遵從,兩個(gè)極限都存在才可以進(jìn)行極限的運(yùn)算,如果有一個(gè)不存在就無法進(jìn)行運(yùn)算。無窮小以及無窮大量是考察的重點(diǎn),首先要理解概念,弄清無窮大與無界的區(qū)別,無窮小與有界的區(qū)別,(前者能推出后者,后者不能推出前者。)對(duì)于無窮小的運(yùn)算,大家最好能夠熟練掌握等價(jià)無窮小代換,這樣可以化簡(jiǎn)極限運(yùn)算,但在運(yùn)算中要注意等價(jià)無窮小代換的條件,一般是積式用。在這需要大家注意一下階的概念。極限的保號(hào)性應(yīng)用比較廣泛,要領(lǐng)會(huì)如何“保號(hào)”得到不等式。在證明中還會(huì)用到最值定理,介值定理,零點(diǎn)定理。我們應(yīng)用最值定理估值計(jì)算,應(yīng)用介值定理證明存在零點(diǎn)。函數(shù)的連續(xù)性是考試的重點(diǎn),可能考察函數(shù)、分段函數(shù)、絕對(duì)值函數(shù)、導(dǎo)函數(shù)的連續(xù)性,應(yīng)用左右極限進(jìn)行求解,在求解過程中經(jīng)常會(huì)遇到一些特殊的函數(shù)比如指數(shù)函數(shù),反三角函數(shù),當(dāng)變量趨近于不同的值時(shí),極限可能不同。
第五篇:2014年考研數(shù)學(xué)大綱解析
2014考研數(shù)學(xué)大綱解析
試卷題型結(jié)構(gòu)為:
單項(xiàng)選擇題8小題,每小題4分,共32分;
填空題6小題,每小題4分,共24分;
解答題(包括證明題)9小題,共94分。
數(shù)學(xué)一
高等數(shù)學(xué)部分:2014年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2013年完全相同。
線性代數(shù)部分:2014年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2013年完全相同。
概率論與數(shù)理統(tǒng)計(jì)部分:2014年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2013年完全相同。
數(shù)學(xué)二
高等數(shù)學(xué)部分:2014年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2013年完全相同。
線性代數(shù)部分:2014年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2013年完全相同。
數(shù)學(xué)三
微積分部分:2014年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2013年完全相同。
線性代數(shù)部分:2014年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2013年完全相同。
概率論與數(shù)理統(tǒng)計(jì)部分:2014年全國(guó)碩士研究生入學(xué)統(tǒng)一考試數(shù)學(xué)考試大綱中的考試內(nèi)容和考試要求與2013年完全相同。