第一篇:幾何證明選講教學(xué)指導(dǎo) 新課標(biāo) 選修4-1
幾何證明選講教學(xué)指導(dǎo)
在全省高中數(shù)學(xué)選修模塊教學(xué)研討會(huì)上對(duì)選修系列4教學(xué)指導(dǎo)研討的發(fā)言
吳公強(qiáng)
按照我省及寧夏回族自治區(qū)高中數(shù)學(xué)選修4專題系列選課方案,及07年高考說明的要求,我省統(tǒng)一選學(xué)4-1幾何證明選講 4-2矩陣與變換 4-4坐標(biāo)系與參數(shù)方程 4-5不等式選講 四門課程,以下我代表中心組就這四門課程的定位、教學(xué)目標(biāo)、教學(xué)法及復(fù)習(xí)迎考建議,借這個(gè)機(jī)會(huì)分專題同同志們一起進(jìn)行研討.
關(guān)于選修4-1專題:幾何證明選講的教學(xué)研究
一、學(xué)習(xí)本課程已有的相關(guān)知識(shí)準(zhǔn)備
(一)初中具體目標(biāo)
1.圖形的認(rèn)識(shí)
(1)點(diǎn)、線、面
通過豐富的實(shí)例,進(jìn)一步認(rèn)識(shí)點(diǎn)、線、面(如交通圖上用點(diǎn)表示城市,屏幕上的畫面是由點(diǎn)組成的)。
(2)角
①通過豐富的實(shí)例,進(jìn)一步認(rèn)識(shí)角。
②會(huì)比較角的大小,能估計(jì)一個(gè)角的大小,會(huì)計(jì)算角度的和與差,認(rèn)識(shí)度、分、秒,會(huì)進(jìn)行簡(jiǎn)單換算。
③了解角平分線及其性質(zhì)【1】角平分線上的點(diǎn)到角的兩邊距離相等,角的內(nèi)部到兩邊距離相等的點(diǎn)在角的平分線上。
(3)相交線與平行線 ①了解補(bǔ)角、余角、對(duì)頂角,知道等角的余角相等、等角的補(bǔ)角相等、對(duì)頂角相等。②了解垂線、垂線段等概念,了解垂線段最短的性質(zhì),體會(huì)點(diǎn)到直線距離的意義。③知道過一點(diǎn)有且僅有一條直線垂直于已知直線,會(huì)用三角尺或量角器過一點(diǎn)畫一條直線的垂線。
④了解線段垂直平分線及其性質(zhì)【1】線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等,到線段兩端點(diǎn)的距離相等的點(diǎn)在線段的垂直平分線上。
⑤知道兩直線平行同位角相等,進(jìn)一步探索平行線的性質(zhì)。
⑥知道過直線外一點(diǎn)有且僅有一條直線平行于已知直線,會(huì)用三角尺和直尺過已知直線外一點(diǎn)畫這條直線的平行線。
⑦體會(huì)兩條平行線之間距離的意義,會(huì)度量?jī)蓷l平行線之間的距離。
(4)三角形
①了解三角形有關(guān)概念(內(nèi)角、外角、中線、高、角平分線),會(huì)畫出任意三角形的角平分線、中線和高,了解三角形的穩(wěn)定性。
②探索并掌握三角形中位線的性質(zhì)。
③了解全等三角形的概念,探索并掌握兩個(gè)三角形全等的條件。
④了解等腰三角形的有關(guān)概念,探索并掌握等腰三角形的性質(zhì)【2】等腰三角形的兩底角相等,底邊上的高、中線及頂角平分線三線合一。和一個(gè)三角形是等腰三角形的條件【3】
[3]有兩個(gè)角相等的三角形是等腰三角形。;了解等邊三角形的概念并探索其性質(zhì)。
⑤了解直角三角形的概念,探索并掌握直角三角形的性質(zhì)【4】直角三角形的兩銳角互余,斜邊上的中線等于斜邊一半。和一個(gè)三角形是直角三角形的條件【5】有兩個(gè)角互余的三角形是直角三角形。
⑥體驗(yàn)勾股定理的探索過程,會(huì)運(yùn)用勾股定理解決簡(jiǎn)單問題;會(huì)用勾股定理的逆定理判
定直角三角形。
(5)四邊形
①探索并了解多邊形的內(nèi)角和與外角和公式,了解正多邊形的概念。
②掌握平行四邊形、矩形、菱形、正方形、梯形的概念和性質(zhì),了解它們之間的關(guān)系;了解四邊形的不穩(wěn)定性。
③探索并掌握平行四邊形的有關(guān)性質(zhì)【1】平行四邊形的對(duì)邊相等、對(duì)角相等、對(duì)角線互相平分。和四邊形是平行四邊形的條件【2】一組對(duì)邊平行且相等,或兩組對(duì)邊分別相等,或?qū)蔷€互相平分的四邊形是平行四邊形。
④探索并掌握矩形、菱形、正方形的有關(guān)性質(zhì)【3】矩形的四個(gè)角都是直角,對(duì)角線相等;菱形的四條邊相等,對(duì)角線互相垂直平分。和四邊形是矩形、菱形、正方形的條件【4】三個(gè)角是直角的四邊形,或?qū)蔷€相等的平行四邊形是矩形;四邊相等的四邊形,或?qū)蔷€互相垂直的平行四邊形是菱形。
⑤探索并了解等腰梯形的有關(guān)性質(zhì)【5】等腰梯形同一底上的兩底角相等,兩條對(duì)角線相等。和四邊形是等腰梯形的條件?!?】同一底上的兩底角相等的梯形是等腰梯形。
⑥探索并了解線段、矩形、平行四邊形、三角形的重心及物理意義(如一根均勻木棒、一塊均勻的矩形木重心)。
了解三角形的內(nèi)心和外心。
⑦通過探索平面圖形的鑲嵌,知道任意一個(gè)三角形、四邊形或正六邊形可以鑲嵌平面,并能運(yùn)用這幾種圖形進(jìn)行簡(jiǎn)單的鑲嵌設(shè)計(jì)。
(6)圓
①理解圓及其有關(guān)概念,了解弧、弦、圓心角的關(guān)系,探索并了解點(diǎn)與圓、直線與圓以及圓與圓的位置關(guān)系。
②探索圓的性質(zhì),了解圓周角與圓心角的關(guān)系、直徑所對(duì)圓周角的特征。
③了解三角形的內(nèi)心和外心。
④了解切線的概念,探索切線與過切點(diǎn)的半徑之間的關(guān)系;能判定一條直線是否為圓的切線,會(huì)過圓上一點(diǎn)畫圓的切線。
⑤會(huì)計(jì)算弧長(zhǎng)及扇形的面積,會(huì)計(jì)算圓錐的側(cè)面積和全面積。
(7)尺規(guī)作圖
①完成以下基本作圖:作一條線段等于已知線段,作一個(gè)角等于已知角,作角的平分線,作線段的垂直平分線。
②利用基本作圖作三角形:已知三邊作三角形;已知兩邊及其夾角作三角形;已知兩角及其夾邊作三角形;已知底邊及底邊上的高作等腰三角形。
③探索如何過一點(diǎn)、兩點(diǎn)和不在同一直線上的三點(diǎn)作圓。
④了解尺規(guī)作圖的步驟,對(duì)于尺規(guī)作圖題,會(huì)寫已知、求作和作法(不要求證明)。
(8)視圖與投影
①會(huì)畫基本幾何體(直棱柱、圓柱、圓錐、球)的三視圖(主視圖、左視圖、俯視圖),會(huì)判斷簡(jiǎn)單物體的三視圖,能根據(jù)三視圖描述基本幾何體或?qū)嵨镌汀?/p>
②了解直棱柱、圓錐的側(cè)面展開圖,能根據(jù)展開圖判斷和制作立體模型。
③了解基本幾何體與其三視圖、展開圖(球除外)之間的關(guān)系;通過典型實(shí)例,知道這種關(guān)系在現(xiàn)實(shí)生活中的應(yīng)用(如物體的包裝)。
④觀察與現(xiàn)實(shí)生活有關(guān)的圖片(如照片、簡(jiǎn)單的模型圖、平面圖、地圖等),了解并欣賞一些有趣的圖形(如雪花曲線、莫比烏斯帶)。
⑤通過背景豐富的實(shí)例,知道物體的陰影是怎么形成的,并能根據(jù)光線的方向辨認(rèn)實(shí)物的陰影(如在陽(yáng)光或燈光下,觀察手的陰影或人的身影)。
⑥了解視點(diǎn)、視角及盲區(qū)的涵義,并能在簡(jiǎn)單的平面圖和立體圖中表示。
⑦通過實(shí)例了解中心投影和平行投影。2.圖形與變換(1)圖形的軸對(duì)稱 ①通過具體實(shí)例認(rèn)識(shí)軸對(duì)稱,探索它的基本性質(zhì),理解對(duì)應(yīng)點(diǎn)所連的線段被對(duì)稱軸垂直平分的性質(zhì)。
②能夠按要求作出簡(jiǎn)單平面圖形經(jīng)過一次或兩次軸對(duì)稱后的圖形;探索簡(jiǎn)單圖形之間的軸對(duì)稱關(guān)系,并能指出對(duì)稱軸。
③探索基本圖形(等腰三角形、矩形、菱形、等腰梯形、正多邊形、圓)的軸對(duì)稱性及其相關(guān)性質(zhì)。
④欣賞現(xiàn)實(shí)生活中的軸對(duì)稱圖形,結(jié)合現(xiàn)實(shí)生活中典型實(shí)例了解并欣賞物體的鏡面對(duì)稱,能利用軸對(duì)稱進(jìn)行圖案設(shè)計(jì)。
(2)圖形的平移
①通過具體實(shí)例認(rèn)識(shí)平移,探索它的基本性質(zhì),理解對(duì)應(yīng)點(diǎn)連線平行且相等的性質(zhì)。②能按要求作出簡(jiǎn)單平面圖形平移后的圖形。
③利用平移進(jìn)行圖案設(shè)計(jì),認(rèn)識(shí)和欣賞平移在現(xiàn)實(shí)生活中的應(yīng)用。
(3)圖形的旋轉(zhuǎn)
①通過具體實(shí)例認(rèn)識(shí)旋轉(zhuǎn),探索它的基本性質(zhì),理解對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等、對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心連線所成的角彼此相等的性質(zhì)。
②了解平行四邊形、圓是中心對(duì)稱圖形。
③能夠按要求作出簡(jiǎn)單平面圖形旋轉(zhuǎn)后的圖形。
④欣賞旋轉(zhuǎn)在現(xiàn)實(shí)生活中的應(yīng)用。⑤探索圖形之間的變換關(guān)系(軸對(duì)稱、平移、旋轉(zhuǎn)及其組合)。[參見例2和例3] ⑥靈活運(yùn)用軸對(duì)稱、平移和旋轉(zhuǎn)的組合進(jìn)行圖案設(shè)計(jì)。(4)圖形的相似
①了解比例的基本性質(zhì),了解線段的比、成比例線段,通過建筑、藝術(shù)上的實(shí)例了解黃金分割。
②通過具體實(shí)例認(rèn)識(shí)圖形的相似,探索相似圖形的性質(zhì),知道相似多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例,面積的比等于對(duì)應(yīng)邊比的平方。
③了解兩個(gè)三角形相似的概念,探索兩個(gè)三角形相似的條件。
④了解圖形的位似,能夠利用位似將一個(gè)圖形放大或縮小。
⑤通過典型實(shí)例觀察和認(rèn)識(shí)現(xiàn)實(shí)生活中物體的相似,利用圖形的相似解決一些實(shí)際問題(如利用相似測(cè)量旗桿的高度)。
⑥通過實(shí)例認(rèn)識(shí)銳角三角函數(shù)(sinA,cosA,tanA),知道30°,45°,60°角的三角函數(shù)值;會(huì)使用計(jì)算器由已知銳角求它的三角函數(shù)值,由已知三角函數(shù)值求它對(duì)應(yīng)的銳角。
⑦運(yùn)用三角函數(shù)解決與直角三角形有關(guān)的簡(jiǎn)單實(shí)際問題。
3.圖形與坐標(biāo)
(1)認(rèn)識(shí)并能畫出平面直角坐標(biāo)系;在給定的直角坐標(biāo)系中,會(huì)根據(jù)坐標(biāo)描出點(diǎn)的位置、由點(diǎn)的位置寫出它的坐標(biāo)。[參見例4]
(2)能在方格紙上建立適當(dāng)?shù)闹苯亲鴺?biāo)系,描述物體的位置。[參見例5]
(3)在同一直角坐標(biāo)系中,感受圖形變換后點(diǎn)的坐標(biāo)的變化。[參見例6]
(4)靈活運(yùn)用不同的方式確定物體的位置。[參見例7]
4.圖形與證明
(1)了解證明的含義
①理解證明的必要性。
②通過具體的例子,了解定義、命題、定理的含義,會(huì)區(qū)分命題的條件(題設(shè))和結(jié)論。③結(jié)合具體例子,了解逆命題的概念,會(huì)識(shí)別兩個(gè)互逆命題,并知道原命題成立其逆命題不一定成立。
④通過具體的例子理解反例的作用,知道利用反例可以證明一個(gè)命題是錯(cuò)誤的。⑤通過實(shí)例,體會(huì)反證法的含義。
⑥掌握用綜合法證明的格式,體會(huì)證明的過程要步步有據(jù)。
(2)掌握以下基本事實(shí),作為證明的依據(jù)
①一條直線截兩條平行直線所得的同位角相等。
②兩條直線被第三條直線所截,若同位角相等,那么這兩條直線平行。
③若兩個(gè)三角形的兩邊及其夾角(或兩角及其夾邊,或三邊)分別相等,則這兩個(gè)三角形全等。
④全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角分別相等。
(3)利用(2)中的基本事實(shí)證明下列命題
①平行線的性質(zhì)定理(內(nèi)錯(cuò)角相等、同旁內(nèi)角互補(bǔ))和判定定理(內(nèi)錯(cuò)角相等或同旁內(nèi)角互補(bǔ),則兩直線平行)。
②三角形的內(nèi)角和定理及推論(三角形的外角等于不相鄰的兩內(nèi)角的和,三角形的外角大于任何一個(gè)和它不相鄰的內(nèi)角)。
③直角三角形全等的判定定理。
④角平分線性質(zhì)定理及逆定理;
三角形的三條角平分線交于一點(diǎn)(內(nèi)心)。⑤垂直平分線性質(zhì)定理及逆定理; 三角形的三邊的垂直平分線交于一點(diǎn)(外心)。⑥三角形中位線定理。
⑦等腰三角形、等邊三角形、直角三角形的性質(zhì)和判定定理。
⑧平行四邊形、矩形、菱形、正方形、等腰梯形的性質(zhì)和判定定理。
(4)通過對(duì)歐幾里得《原本》的介紹,感受幾何的演繹體系對(duì)數(shù)學(xué)發(fā)展和人類文明的價(jià)值。
《幾何原本》全書共分13卷,有5條公設(shè)、5個(gè)公理,119個(gè)定義和465 個(gè)命題,構(gòu)成歷史上第一個(gè)數(shù)學(xué)公理體系。命題1。47 就是著名的“勾股定理”
(二)高中必選系列 2-2推理與證明具體目標(biāo)
推理方法:(1)合情推理(歸納推理和類比推理).
(2)演繹推理.
證明方法:直接證明與間接證明.?dāng)?shù)學(xué)歸納法.
(1)了解合情推理的含義,能進(jìn)行簡(jiǎn)單的歸納推理和類比推理,做出數(shù)學(xué)猜想,體會(huì)并認(rèn)識(shí)合理推理在數(shù)學(xué)發(fā)現(xiàn)中的作用.
(2)了解演繹推理的含義,了解合情推理和演繹推理的聯(lián)系和差異.掌握演繹推理的“三段論”,能進(jìn)行一些簡(jiǎn)單的演繹推理.
(3)了解直接證明的兩種基本方法:綜合法和分析法。了解綜合法和分析法的思考過程和特點(diǎn).能套用綜合法或分析法的思考過程,證明一些簡(jiǎn)單的數(shù)學(xué)命題(證明步驟一般不超過五步).
(4)了解反證法的思考過程和特點(diǎn),能套用反證法的思考過程,證明一些簡(jiǎn)單的數(shù)學(xué)命題(證明步驟一般不超過四步).
(5)了解數(shù)學(xué)歸納法的原理,能用數(shù)學(xué)歸納法證明一些簡(jiǎn)單的數(shù)學(xué)命題(不要求用數(shù)學(xué)歸納法證明不等式有關(guān)命題,以及平面圖形中的有關(guān)命題).
二、課程標(biāo)準(zhǔn)內(nèi)容與要求
幾何證明選講有助于培養(yǎng)學(xué)生的邏輯推理能力,在幾何證明的過程中,不僅是邏輯演繹的程序,它還包含著大量的觀察、探索、發(fā)現(xiàn)的創(chuàng)造性過程。本專題從復(fù)習(xí)相似圖形的性質(zhì)入手,證明一些反映圓與直線關(guān)系的重要定理,并通過對(duì)圓錐曲線性質(zhì)的進(jìn)一步探索,提高學(xué)生空間想像能力、幾何直觀能力和運(yùn)用綜合幾何方法解決問題的能力。
1.復(fù)習(xí)相似三角形的定義與性質(zhì),了解平行截割定理,證明直角三角形射影定理。
2.證明圓周角定理、圓的切線的判定定理及性質(zhì)定理。
3.證明相交弦定理、圓內(nèi)接四邊形的性質(zhì)定理與判定定理、切割線定理。
4.了解平行投影的含義,通過圓柱與平面的位置關(guān)系,體會(huì)平行投影;證明平面與圓柱面的截線是橢圓(特殊情形是圓)。
5.通過觀察平面截圓錐面的情境,體會(huì)下面定理:
定理在空間中,取直線l為軸,直線l'與l相交于O點(diǎn),其夾角為α,l'圍繞l旋轉(zhuǎn)得到以O(shè)為頂點(diǎn),l'為母線的圓錐面,任取平面π,若它與軸l交角為β(π與l平行,記住β=0),則:
(1)β>α,平面π與圓錐的交線為橢圓;
(2)β=α,平面π與圓錐的交線為拋物線;
(3)β<α,平面π與圓錐的交線為雙曲線。
6.利用Dandelin雙球(這兩個(gè)球位于圓錐的內(nèi)部,一個(gè)位于平面π的上方,一個(gè)位于平面π的下方,并且與平面π及圓錐均相切)證明上述定理(1)情況。
7.試證明以下結(jié)果:①在6中,一個(gè)Dandelin球與圓錐面的交線為一個(gè)圓,并與圓錐的底面平行,記這個(gè)圓所在平面為π';②如果平面π與平面π'的交線為m,在5(1)中橢圓上任取一點(diǎn)A,該Dandelin球與平面π的切點(diǎn)為F,則點(diǎn)A到點(diǎn)F的距離與點(diǎn)A到直線m的距離比是小于1的常數(shù)e。(稱點(diǎn)F為這個(gè)橢圓的焦點(diǎn),直線m為橢圓的準(zhǔn)線,常數(shù)e為離心率。)
8.探索定理中(3)的證明,體會(huì)當(dāng)β無(wú)限接近α?xí)r平面π的極限結(jié)果。
三、教學(xué)建議
1、重視數(shù)學(xué)思維能力的培養(yǎng)
(1)一堂課能使學(xué)生有所領(lǐng)悟,就意味著有可能發(fā)展學(xué)生的數(shù)學(xué)空間。在本專題教學(xué)中要重視合情推理和演繹推理的啟發(fā)、應(yīng)用和培養(yǎng)。
(2)培養(yǎng)學(xué)生的幾何直觀能力。簡(jiǎn)單地講:幾何直觀能力就是發(fā)現(xiàn)輔助線的能力。
(3)以問題解決為特征的思維,是普遍存在的形式。對(duì)問題解決者來說,問題的解決過程總是創(chuàng)造性的。而重現(xiàn)和親歷發(fā)現(xiàn)的過程,是學(xué)習(xí)、研究數(shù)學(xué)的高招,也是我們從事數(shù)學(xué)的高招。
(4)重視直覺的培養(yǎng)和訓(xùn)練,引用彭加勒的一個(gè)著名觀點(diǎn),那就是:“邏輯用于證明,直覺用于發(fā)現(xiàn)?!?/p>
(5)注意辯證思維的引導(dǎo)。以研究圖形為主的幾何證明專題,在對(duì)圖形認(rèn)識(shí)的時(shí)候應(yīng)當(dāng)引導(dǎo)學(xué)生還要建立背景的意識(shí),當(dāng)以一部分圖形為主要觀察對(duì)象時(shí),其他部分就變成了背景,我們需要一道學(xué)生注意辯證地觀察、分析問題。
如:
已知:在三角形ABC中,由頂點(diǎn)B出發(fā)的高BD、角平分線BF和中線BE,分∠ABC為4 等分,求∠ABC的大小。
B
A DC
在解本題時(shí),有兩類刺激:一類是角;一類是線段。涉及到角的是:高、角的四等分線構(gòu)成的角的大小等;涉及到線段的是:中線角平分線的性質(zhì)等。學(xué)生在解題中,對(duì)這兩類刺激并不是均等地接受的。多數(shù)學(xué)生都因?yàn)榻堑男畔⒘看蠖呀亲鳛椤皥D形”,而把線當(dāng)作背景。實(shí)際上,此處的“圖形”處于未分化的模糊狀態(tài)。不宜直接由此解證題目,那就需要將“圖形”與“背景”加以轉(zhuǎn)換加以求解。
2、對(duì)本專題的教學(xué),都應(yīng)力求深入淺出。在對(duì)內(nèi)容與要求6、7的兩個(gè)命題證明過程中,蘊(yùn)涵著豐富的數(shù)學(xué)思想方法,它們有助于學(xué)生體會(huì)空間想像能力和幾何直觀能力在解決問題中的作用,有助于提高學(xué)生綜合運(yùn)用幾何知識(shí)解決問題的能力。教學(xué)時(shí),教師應(yīng)鼓勵(lì)學(xué)生獨(dú)立思考,主動(dòng)嘗試、探索,必要時(shí)要給予適當(dāng)?shù)闹笇?dǎo),并應(yīng)鼓勵(lì)學(xué)生寫出課題報(bào)告,盡可能清晰地表達(dá)自己的思考過程與論證過程。
在條件允許的學(xué)校,教師可以利用現(xiàn)代計(jì)算機(jī)技術(shù),動(dòng)態(tài)地展現(xiàn)Dandelin兩球的方法,幫助學(xué)生利用幾何直觀進(jìn)行思維。
3、考試內(nèi)容:
相似三角形.、平行截割定理.、直角三角形射影定理.、圓周角定理.、圓的切線的判定定理及性質(zhì)定理.、相交弦定理.、圓內(nèi)接四邊形的性質(zhì)定理與判定定理.、切割線定理.. 4、考試要求:
1. 理解相似三角形的定義與性質(zhì),了解平面截割定理.
掌握以下定理的證明:(1)直角三角形射影定理;(2)圓周角定理;(3)圓的切線判定定理與性質(zhì)定理;(4)相交弦定理;(5)圓內(nèi)接四邊形的性質(zhì)定理與判定定理(6)切割線定理
第二篇:幾何證明選講高考題(新課標(biāo))
i
幾何證明選講高考題匯編
潢川一中高二數(shù)學(xué)組
1.(2009新課標(biāo)全國(guó)卷)如圖,已知?ABC中的兩條角平分線AD和CE相交于H,?B=60?,F(xiàn)在AC上,且AE?AF。(I)證明:B,D,H,E四點(diǎn)共圓;(II)證明:CE平分?DEF。
2.(2010新課標(biāo)全國(guó)卷)如圖,已知圓上的 弧AC和 弧BD長(zhǎng)度相等,過C點(diǎn)的圓的切線與BA的延長(zhǎng)線交于E點(diǎn),證明:(I)∠ACE=∠BCD;(II)BC
2=BE×CD.- 1 -
3.(2011新課標(biāo)全國(guó)卷)如圖,D,E分別為?ABC的邊AB,AC上的點(diǎn),且不與?ABC的頂點(diǎn)重合.已知AE的長(zhǎng)為m,AC的長(zhǎng)為n,AD,AB的長(zhǎng)是關(guān)于x的方程x2
?14x?mn?0的兩個(gè)根.
(I)證明:C,B,D,E四點(diǎn)共圓(II)若?A?900,且m?4,n?6求C,B,D,E所在圓的半徑.
4.(2012新課標(biāo)全國(guó)卷)如圖,D,E分別為△ABC邊AB,AC的中點(diǎn),直線DE交△ABC的外接圓于F,G兩點(diǎn),若CF//AB.證明:(Ⅰ)CD=BC;(Ⅱ)△BCD∽△GBD
G
F
- 2 -
5.(2013新課標(biāo)全國(guó)Ⅰ卷)已知如圖,直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,?ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于點(diǎn)D。(Ⅰ)證明:DB?DC;
(Ⅱ)設(shè)圓的半徑為
1,BC,延長(zhǎng)CE交AB于點(diǎn)F,求?BCF外接圓的半徑。
6.(2013新課標(biāo)全國(guó)Ⅱ卷)如圖,CD為△ABC外接圓的切線,AB的延長(zhǎng)線交直線CD于點(diǎn)D,E,F(xiàn)分別為弦AB與弦AC上的點(diǎn),且BC·AE=DC·AF,B,E,F(xiàn),C四點(diǎn)共圓.(Ⅰ)證明:CA是△ABC外接圓的直徑;
(Ⅱ)若DB=BE=EA,求過B,E,F(xiàn),C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.
- 3 -
7.(2013遼寧高考)如圖,AB為圓O的直徑,直線CD與圓O相切于E, AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,連接AE,BE.證明:(?)?FEB??CEB;(??)EF2
?AD?BC.8.(2013江蘇高考)如圖,AB和BC分別與圓O相切于點(diǎn)D,C,AC經(jīng)過圓心O,且BC=2OC.求證:AC=2AD.- 4 -
幾何證明選講高考題匯編參考答案
1.解:(Ⅰ)在△ABC中,因?yàn)椤螧=60°,所以∠BAC+∠BCA=120°.因?yàn)锳D,CE是角平分線,所以∠HAC+∠HCA=60°,故∠AHC=120
于是∠EHD=∠AHC=120°.因?yàn)椤螮BD+∠EHD=180°,所以B,D,H,E四點(diǎn)共圓。
(Ⅱ)連結(jié)BH,則BH為?ABC的平分線,得?HBD?30° 由(Ⅰ)知B,D,H,E四點(diǎn)共圓,所以?CED??HBD?30° 又?AHE??EBD?60°,由已知可得EF?AD,可得
?CEF?30°所以CE平分?DEF
2.解:(Ⅰ)因?yàn)榛B,CD長(zhǎng)度相等,所以?BCD??ABC.又因?yàn)镋C與圓相切于點(diǎn)C,故?ACE??ABC
所以?ACE??BCD.……5分(Ⅱ)因?yàn)?ECB??CDB,?EBC??BCD, 所以?BDC∽?ECB,故
BCBE?CDBC
.即BC2
?BE?C.D3解:(I)連接DE,根據(jù)題意在△ADE和△ACB中,AD×AB=mn=AE×AC,即
ADAC?AE
AB
.又∠DAE=∠CAB,從而△ADE∽△ACB因此∠ADE=∠ACB所以C,B,D,E四點(diǎn)共圓。(Ⅱ)m=4,n=6時(shí),方程x2-14x+mn=0的兩根為x1=2,x2=12.故AD=2,AB=12.取CE的中點(diǎn)G,DB的中點(diǎn)F,分別過G,F(xiàn)作AC,AB的垂線,兩垂線相交于H點(diǎn),連接DH.因?yàn)镃,B,D,E四點(diǎn)共圓,所以C,B,D,E四點(diǎn)所在圓的圓心為H,半徑為DH.由于∠A=900,故GH∥AB,HF∥AC.HF=AG=5,DF=
2(12-2)=5.故C,B,D,E四點(diǎn)所在圓的半徑為52
- 5 -
4.解
5.解:(1)證明:連結(jié)DE,交BC于點(diǎn)G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因?yàn)镈B⊥BE,所以DE為直徑,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂線,所以BG=
.設(shè)DE的中點(diǎn)為O,連結(jié)BO,則∠BOG=60°.從而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF外接圓的半徑等于32
.6.解:(1)因?yàn)镃D為△ABC外接圓的切線,所以∠DCB=∠A.由題設(shè)知
BCFA?DC
EA,故△CDB∽△AEF,所以∠DBC=∠EFA.因?yàn)锽,E,F(xiàn),C四點(diǎn)共圓,所以∠CFE=∠DBC,故∠EFA=∠CFE=90°.所以∠CBA=90°,因此CA是△ABC外接圓的直徑.(2)連結(jié)CE,因?yàn)椤螩BE=90°,所以過B,E,F(xiàn),C四點(diǎn)的圓的直徑為CE,由DB=BE,有CE=DC,又BC2=DB·BA=2DB2,所以CA2=4DB2+BC2=6DB2.而DC2=DB·DA=3DB2,故過B,E,F(xiàn),C四點(diǎn)的圓的面積與△ABC外接圓面積的比值為12
.- 6 -
7解(?)由直線CD與圓O相切于E,得?EAB??CEB 由AB為圓O的直徑,得AE?EB,從而?EAB??EBF??
又EF垂直AB于F,得?FEB??EBF?
?,從而?FEB??CEB
(??)由BC垂直CD于C,得BC?CE
又EF垂直AB于F?EF?AB,?FEB??CEB,BE為公共邊,所以Rt?BCE≌Rt?BFE,所以BC?BF
同理可證,Rt?ADE≌Rt?AFE,所以AD?AF
又在Rt△AEB中, EF?AB,所以EF2
?AF?BF.綜上,EF2
?AD?BC.8證明:連結(jié)OD.因?yàn)锳B和BC分別與圓O相切于點(diǎn)D,C, 所以∠ADO=∠ACB=90°.又因?yàn)椤螦=∠A,所以Rt△ADO∽R(shí)t△ACB.所以
BCOD?AC
AD,又BC=2OC=2OD, 故AC=2AD.幾何證明選講----知識(shí)點(diǎn)總結(jié)
1、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。推理1:經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊。
推理2:經(jīng)過梯形一腰的中點(diǎn),且與底邊平行的直線平分另一腰。平分線分線段成比例定理
2、平分線分線段成比例定理:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例。推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例。
3、相似三角形的判定:
定義:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形。相似三角形對(duì)應(yīng)邊的比值叫做相似比(或相似系數(shù))。
- 7 -
由于從定義出發(fā)判斷兩個(gè)三角形是否相似,需考慮6個(gè)元素,即三組對(duì)應(yīng)角是否分別相等,三組對(duì)應(yīng)邊是否分別成比
例,顯然比較麻煩。所以我們?cè)?jīng)給出過如下幾個(gè)判定兩個(gè)三角形:
4、相似的簡(jiǎn)單方法:
(1)兩角對(duì)應(yīng)相等,兩三角形相似;
(2)兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似;(3)三邊對(duì)應(yīng)成比例,兩三角形相似。
5、預(yù)備定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與三角形相似。
6、判定定理1:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三
角形相似。簡(jiǎn)述為:兩角對(duì)應(yīng)相等,兩三角形相似。
7、判定定理2:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的兩邊和另一個(gè)三角形的兩邊對(duì)應(yīng)成比例,并且夾角相等,那么這兩個(gè)三角形相似。簡(jiǎn)述為:兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似。
8、判定定理3:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的三條邊和另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)
三角形相似。簡(jiǎn)述為:三邊對(duì)應(yīng)成比例,兩三角形相似。
9、引理:如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊。
10、定理:(1)如果兩個(gè)直角三角形有一個(gè)銳角對(duì)應(yīng)相等,那么它們相似;(2)如果兩個(gè)直角三角形的兩條直角邊對(duì)應(yīng)成比例,那么它們相似。
11、定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)三角形的斜邊和直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似。
12、相似三角形的性質(zhì):
- 8 -
(1)相似三角形對(duì)應(yīng)高的比、對(duì)應(yīng)中線的比和對(duì)應(yīng)平分線的比都等于相似比;(2)相似三角形周長(zhǎng)的比等于相似比;(3)相似三角形面積的比等于相似比的平方。
相似三角形外接圓的直徑比、周長(zhǎng)比等于相似比,外接圓的面積比等于相似比的平方。
22、相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等。
23、割線定理:從園外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等。
24、切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)。
25、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。
13、直角三角形的射影定理:直角三角形斜邊上的高是兩直角邊在斜邊上射影的比例中項(xiàng);兩直角邊分別是它們?cè)谛边吷仙溆芭c斜邊的比例中項(xiàng)。
14、圓周定理
圓周角定理:圓上一條弧所對(duì)的圓周角等于它所對(duì)的圓周角的一半。圓心角定理:圓心角的度數(shù)等于它所對(duì)弧的度數(shù)。
推論1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧相等。
推論2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。圓內(nèi)接四邊形的性質(zhì)與判定定理
16、定理1:圓的內(nèi)接四邊形的對(duì)角互補(bǔ)。
17、定理2:圓內(nèi)接四邊形的外角等于它的內(nèi)角的對(duì)角。
18、圓內(nèi)接四邊形判定定理:如果一個(gè)四邊形的對(duì)角互補(bǔ),那么這個(gè)四邊形的四個(gè)頂點(diǎn)共圓。
推論:如果四邊形的一個(gè)外角等于它的內(nèi)角的對(duì)角,那么這個(gè)四邊形的四個(gè)頂點(diǎn)共圓。圓的切線的性質(zhì)及判定定理。
19、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑。推論1:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)。推論2:經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。
20、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。弦切角的性質(zhì)
21、弦切角定理:弦切角等于它所夾的弧所對(duì)的圓周角。與圓有關(guān)的比例線段
- 9 -
- -
第三篇:選修4-1幾何證明選講練習(xí)題
幾何證明選講專項(xiàng)練習(xí)
1.(2008梅州一模文)如圖所示,在四邊形ABCD中,EF//BC,F(xiàn)G//AD,則
EFBC+FG
AD
= 2.(2008廣州一模文、理)在平行四邊形ABCD中,點(diǎn)E在邊AB上,且AE:EB=1:2,DE與AC交于 點(diǎn)F,若△AEF的面積為6cm
2,則△ABC的面積為 B cm2.
3.(2007廣州一模文、理)如圖所示,圓O上
一點(diǎn)C在直徑AB上的射影為D,CD=4,BD=8,則圓O的半徑等于.
4.(2007深圳二模文)如圖所示,從圓O
作圓O的割線PAB、PCD,AB是圓O若PA=4,PC=5,CD=
3,則∠CBD=__
5.(2008廣東文、理)已知PA是圓OPA=2.AC是圓O的直徑,PC與圓O交于點(diǎn)則圓O的半徑R=_______.6.(2007廣東文、理)如圖所示,圓OAB=6,C圓周上一點(diǎn),BC=3,過C過A作l的垂線AD,AD分別與直線lD、E,則∠DAC=,線段AE的長(zhǎng)為
7.(2008韶關(guān)一模理)如圖所示,PC切⊙O于 點(diǎn)C,割線PAB經(jīng)過圓心O,弦CD⊥AB于
點(diǎn)E,PC=4,PB=8,則CD=________.8.(2008深圳調(diào)研文)如圖所示,從圓O外一點(diǎn)A 引圓的切線AD和割線ABC,已知AD=,AC=6,圓O的半徑為3,則圓心O到AC的距 離為________.9.(2008東莞調(diào)研文、理)如圖所示,圓O上一點(diǎn)C在直徑AB上的射影為D,CD=4,則圓O的半徑等于.
10.(2008韶關(guān)調(diào)研理)如圖所示,圓O是
△ABC的外接圓,過點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,CD=AB=BC=3.則BD的長(zhǎng)______,AC的長(zhǎng)_______.11.(2007韶關(guān)二模理)如圖,⊙O′和
⊙O相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延長(zhǎng)線于N,MN=3,NQ=15,則 PN=______.
12.(2008廣州二模文、理)如圖所示, 圓的內(nèi)接
△ABC的∠C的平分線CD延長(zhǎng)后交圓于點(diǎn)E,連接BE,已知BD=3,CE=7,BC=5,則線段.N 13.(2007湛江一模文)如圖,四邊形ABCD內(nèi)接
于⊙O,BC是直徑,MN切⊙O于A,∠MAB=250,則∠D=___.14.(2007湛江一模理)如圖,在△ABC中,D 是AC的中點(diǎn),E是BD的中點(diǎn),AE交BC
D
于F,則
BFFC=
15.(2008惠州一模理)如圖:EB、EC是⊙O的兩 條切線,B、C是切點(diǎn),A、D是⊙O上兩點(diǎn),如果∠E=460,∠DCF=320,則∠A的度數(shù)是.16.(2008汕頭一模理)如圖,AB是圓O直線CE和圓O相切于點(diǎn)C,AD⊥CE于D,若AD=1,∠ABC=300,則圓O的面積是______.17.(2008佛山一模理)如圖,AB、CD是圓O的兩條弦,且AB是線段CD的中垂線,已知AB=6,CD=25,則線段AC的長(zhǎng)度為. C
18.已知:如圖,在梯形ABCD中,AD∥BC∥EF,E是AB的中點(diǎn),EF交BD于G,交AC于H.若
AD=5,BC=7,則GH=________.19.如圖,圓O上一點(diǎn)C在直徑AB上的射影為D.C
AD=2,AC= 25,則AB=____ B
20.如圖,PA是圓的切線,A為切點(diǎn),PBC是圓的割線,且PB=1PA
2BC,則PB的值是________.21.如圖,⊙O的割線PAB交⊙O于A、B兩點(diǎn),割線 PCD經(jīng)過圓心O,PE是⊙O的切線。已知PA=6,AB=7,PO=12,則PE=____⊙O的半徑是_______.22.已知一個(gè)圓的弦切角等于50°,那么這個(gè)弦切角 所夾的弧所對(duì)的圓心角的度數(shù)為_______.23.如圖,AB是直徑,點(diǎn)D在AB的延長(zhǎng)線上,BD=OB,若CD切⊙O于C點(diǎn),則∠CAB的度數(shù)
為,∠DCB的度數(shù)為,∠ECA的度數(shù)為___.24.如圖,AB,AC是⊙O的兩條切線,切點(diǎn)分別為 B、B、D是優(yōu)弧BC
?上的 點(diǎn),已知∠BAC=800,那么∠BDC =______.25.如圖,AB是⊙ O的弦,AD是⊙ O的切線,C為 AB
?上任一點(diǎn),∠ACB=1080,那么∠BAD =______.26.如圖,PA,PB切⊙ O于 A,B兩點(diǎn),AC⊥PB,且與⊙ O相交于 D,若∠DBC=220,則∠APB==________.27.如圖,AB是⊙O的直徑,點(diǎn)D在AB的延 長(zhǎng)線上,BD=OB,CD與⊙O切于C,那么 ∠CAB==________.28.已知:一個(gè)圓的弦切角是50°,那么這個(gè)弦 切角所夾的弧所對(duì)的圓心角的度數(shù)為_________.29.已知:如圖,CD是⊙O的直徑,AE切 ⊙O于點(diǎn)B,DC的延長(zhǎng)線交AB于點(diǎn)A,∠A =200,則∠DBE=________.30.如圖,△ABC中,∠C=900,⊙O切 AB于D,切BC于E,切AC于F,則∠EDF=________.31.如圖,AB是⊙ O的直徑,C,D是
⊙ O上的點(diǎn),∠BAC=200,?AD
?DC?,DE是⊙ O的切線,則∠EDC的度數(shù)是____.32.如圖,AB是⊙ O的直徑,PB,PC 分別切⊙ O于 B,C,若 ∠ACE=380,則∠P=_________.
33.如圖,AB是半圓O的直徑,C、D是半 圓上的兩點(diǎn),半圓O的切線PC交AB的延 長(zhǎng)線于點(diǎn)P,∠PCB=25°,則∠ADC為 A.105°B.115°C.120°D.125°
34.如圖,AB是⊙O的直徑,EF切⊙O于C,AD⊥EF于D,AD=2,AB=6,則AC的長(zhǎng)為 A.2B.3
C.D.4
35.如圖,直線 BC切⊙ 0于點(diǎn) A,則圖中的弦切角共有
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
36.如圖,AB是⊙ O的直徑,AC,BC是
⊙ O的弦,PC是⊙ O的切線,切點(diǎn)為 C,∠BAC=350,那么∠ACP等于
A.350B.550C.650D.1250
37.如圖,在⊙ O中,AB是弦,AC是⊙ O 的切線,A是切點(diǎn),過 B作BD⊥AC于D,BD交⊙ O于 E點(diǎn),若 AE平分∠BAD,則 ∠BAD=
A.300B.450C.050D.600
38.如圖,⊙O與⊙O′交于 A,B,⊙O的弦
AC與⊙O′相切于點(diǎn) A,⊙O′的弦AD與⊙O 相切于A點(diǎn),則下列結(jié)論中正確的是
A.∠1>∠2B.∠1=∠2C.∠1<∠2D.無(wú)法確定
39.如圖,E是⊙O內(nèi)接四邊形 ABCD兩條對(duì)角線的交點(diǎn),CD延長(zhǎng)線與過 A點(diǎn)的⊙ O的切線交于
F點(diǎn),若∠ABD=440,∠AED=1000,?AD?AB?,則∠AFC的度數(shù)為
C
F
A.780B.920C.560D.1450
第四篇:《選修2-1,幾何證明選講》習(xí)題
東方英文書院2011——2012學(xué)年高二數(shù)學(xué)測(cè)試卷(文科)
——《選修2-1,幾何證明選講》
以下公式或數(shù)據(jù)供參考
n
??y?bx?;b??⒈a?xy?nx?yii
i?
1?x
i?1n2i?nx2.
2、參考公式
3、K?
2n(ad?bc)2
(a?
b)(c
?d)(a?c)(b?d)n=a+b+c+d
一、選擇題(本大題共10小題,每小題5分,共50分)
1.在復(fù)平面內(nèi),復(fù)數(shù)i(i?1)對(duì)應(yīng)的點(diǎn)在()
A.第一象限
B.第二象限 C
.第三象限 D.第四象限
2.下面4個(gè)散點(diǎn)圖中,適合用線性回歸模型擬合其中兩個(gè)變量的是()
A.①②B.①③
C.②③
D.③④
3?)
A.2?
2B.2?
2C.2?2D.2?(2
4.已知???11,則下列命題:①?2?;②?2?;③1????2?0;④?3?1.其中真命題的個(gè)數(shù)?2是()
A.1B.2C.3D.
45.否定結(jié)論“至多有兩個(gè)解”的說法中,正確的是()
A.有一個(gè)解B.有兩個(gè)解
C.至少有三個(gè)解D.至少有兩個(gè)解
6.利用獨(dú)立性檢驗(yàn)來考察兩個(gè)變量X和Y是否有關(guān)系時(shí),通過查閱下表來確定斷言“X與Y有關(guān)系”的可信程度.如果??5.024,那么就有把握認(rèn)為“X與Y有關(guān)系”的百分比為()2
A.B.C.D.
7.復(fù)平面上矩形ABCD的四個(gè)頂點(diǎn)中,A,B,C所對(duì)應(yīng)的復(fù)數(shù)分別是2?3i,3?2i,?2?3i,則D點(diǎn)對(duì)應(yīng)的復(fù)數(shù)是()
A.?2?3iB.?3?2iC.2?3iD.3?
2i 8.下列推理正確的是()
A.如果不買彩票,那么就不能中獎(jiǎng);因?yàn)槟阗I了彩票,所以你一定中獎(jiǎng) B.因?yàn)閍?b,a?c,所以a?b?a?c C.若a,b?R?,則lga?lgb≥D.若a?R?,ab?0,則
ab??a?b???????≤???2 baa??b9.如圖,某人撥通了電話,準(zhǔn)備手機(jī)充值須進(jìn)行如下操作:
按照這個(gè)流程圖,操作步驟是()
A.1?5?1?1B.1?5?1?5C.1?5?2?110.若復(fù)數(shù)z滿足z?3?4i?4,則z的最小值是()A.
1B.2
C.
3D.4
D.?5?2?3
二、填空題(每小題5分,共20分)(15選做題,若兩題都做,則以第(1)題為準(zhǔn))
11.如右圖所示的程序框圖中,當(dāng)輸入的a值為0和4時(shí),輸出的值相等,則當(dāng)輸入的a值為3時(shí),則輸出的值為.
2根據(jù)以上數(shù)據(jù),得?2的值是,可以判斷種子經(jīng)過處理跟生病之間關(guān)(填“有”或“無(wú)”). 13.用三段論證明f(x)?x3?sinx(x?R)為奇函數(shù)的步驟是. 14.若z1?5,z2?3?4i且z1?z2是純虛數(shù),則z1? 15.(選作題:,請(qǐng)?jiān)谙旅鎯深}中選作一題)
(1).如圖,在?ABC中,DE//BC,EF//CD,若BC?3,DE?2,DF?1,則AB的長(zhǎng)為___________.
(2)如圖,已知⊙O的割線PAB交⊙O于A,B兩點(diǎn),割線PCD經(jīng)過圓心,若PA=3,AB=4,PO=5,則⊙O的半徑為_____________.第1題圖
三、解答題(共80分.解答題應(yīng)寫出推理、演算步驟)16.已知z1?1?3i,z2?6?8i,若
17.在各項(xiàng)為正的數(shù)列?an?中,數(shù)列的前n項(xiàng)和Sn滿足Sn?
1??,求z的值. zz1z
21?1??? a?n??2?an?
(1)求a1,a2,a3;(2)由(1)猜想數(shù)列?an?的通項(xiàng)公式;(3)求Sn
?BNA?45?,18、如圖,點(diǎn)B在⊙O上,M為直徑AC上一點(diǎn),BM的延長(zhǎng)線交⊙O于N,若⊙O的半徑為,求MN的長(zhǎng)為
B
M
ACO
19.(本小題16分)假設(shè)一個(gè)人從出生到死亡,在每個(gè)生日都測(cè)量身高,并作出這些數(shù)據(jù)散點(diǎn)圖,則這些點(diǎn)將不會(huì)落在一條直線上,但在一段時(shí)間內(nèi)的增長(zhǎng)數(shù)據(jù)有時(shí)可以用線性回歸來分析.下表是一位母親給兒子的成長(zhǎng)記錄:
(1)作出這些數(shù)據(jù)的散點(diǎn)圖;(2)求出這些數(shù)據(jù)的回歸方程.
20.已知關(guān)于x的方程:x2?(6?i)x?9?ai?0(a?R)有實(shí)數(shù)根b.(1)求實(shí)數(shù)a,b的值;
(2)若復(fù)數(shù)z滿足z?a?bi?2z?0,求z為何值時(shí),z有最小值,并求出z的最小值.
東方英文書院2011——2012學(xué)年高二數(shù)學(xué)測(cè)試卷(文科)
——《選修2-1,幾何證明選講》答案
一、選擇題
二、填空題:
11. 3120.164無(wú)13.14. 4?3i或?4?3i 15.1
3三、解答題:
16.解:由z1?1?3i,得
111?3i13????i. z11?3i(1?3i)(1?3i)1010
又由z2?6?8i,得
116?8i34????i. z26?8i(6?8i)(6?8i)5050
那么
111?31??43?1112?11i,??????????i???i??
zz2z1?5010??5010?25550
4225050(2?11i)
???i. ??
552?11i(2?11i)(2?11i)
得z??
19.解:(1)數(shù)據(jù)的散點(diǎn)圖如下:
(2)用y表示身高,x表示年齡,則數(shù)據(jù)的回歸方程為?y?6.317x?71.984.
20.解:(1)b是方程x2?(6?i)x?9?ai?0(a?R)的實(shí)根,?(b2?6b?9)?(a?b)i?0,?b2?6b?9?0故?,a?b?
解得a?b?3;
(2)設(shè)z?x?yi(x,y?R)由z?3?3i?2z,得(x?3)2?(y?3)2?4(x2?y2),即(x?1)2?(y?1)2?8,?Z點(diǎn)的軌跡是以O(shè)1(?11),為圓心,如圖,當(dāng)Z點(diǎn)為直線OO1與?O1的交點(diǎn)時(shí),z有最大值或最小值.
?
OO1?r?
? 當(dāng)z?1?
i時(shí),z?min
第五篇:幾何證明選講
幾何證明選講
2007年:
15.(幾何證明選講選做題)如圖4所示,圓O的直徑AB?6,C為圓周上一點(diǎn),BC?3,過C作圓的切線l,過A作l的 垂線AD,垂足為D,則?DAC?
A
2008年:
15.(幾何證明選講選做題)已知PA是圓O的切線,切點(diǎn)為A,PA=2.AC是圓O的直徑,PC與圓O交于B點(diǎn),PB=1,則圓O的半徑R=
圖
4l
2009年:
15.(幾何證明選講選做題)如下圖,點(diǎn)A、B、C是圓O上的點(diǎn),且AB=4,?ACB?30,則圓O的面積等于
o
2010年:
14.(幾何證明選講選做題)如上圖3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=
a,點(diǎn)E,F(xiàn)分別為線段AB,AD的中點(diǎn),則EF=2
2011年:
15.(幾何證明選講選做題)如圖,在梯形ABCD中,AB//CAD,B?4,C?D2,分別為E,F,上的點(diǎn),且ADBC,?
3EF,EFAB
則梯形ABFE與梯形EFCD的面積比為
A
2012年:
15.(幾何證明選講選做題)如圖3,直線PB與圓O相切與點(diǎn)B,D是弦AC上的點(diǎn),?PBA??DBA,若AD?m,AC?n,則AB
圖3
2013年:
15.(幾何證明選講選做題)如圖3,在矩形ABCD
中,AB?BC?3,BE?AC,垂足為E,則ED?
圖3