第一篇:高中數(shù)學(xué)教案點(diǎn)到直線的距離公式
高中數(shù)學(xué)教案
【課題】 點(diǎn)到直線的距離公式 【課題類型】新知課 【教學(xué)目的】
1.使學(xué)生了解點(diǎn)到直線的距離公式的推導(dǎo)過(guò)程 2.要求學(xué)生牢記并會(huì)靈活運(yùn)用點(diǎn)到直線的距離公式 【重點(diǎn)】掌握并會(huì)靈活運(yùn)用點(diǎn)到直線的距離公式 【難點(diǎn)】點(diǎn)到直線的距離公式的推導(dǎo)過(guò)程 【教學(xué)過(guò)程】 1.引出新課 ⑴提出問(wèn)題
讓同學(xué)們思考,在平面直角坐標(biāo)系中,如果已知某點(diǎn)P的坐標(biāo)為(x0,y0),直線L的方程 Ax+By+C=0,那么怎樣由點(diǎn)的坐標(biāo)和直線的方程直接求出點(diǎn)P到直線L的距離呢? ⑵提問(wèn)問(wèn)題
找同學(xué)回答點(diǎn)到直線的距離是如何定義的
(點(diǎn)P到直線L的距離d是點(diǎn)P到直線L的垂線段的長(zhǎng)度 ⑶做出圖形
讓同學(xué)觀察圖形,則圖中PQ即為所求點(diǎn)到直線的距離
引導(dǎo)學(xué)生思考,若求PQ,則要用到連點(diǎn)之間的距離公式,因此要求出點(diǎn)配合點(diǎn)Q的坐標(biāo),由于P點(diǎn)的坐標(biāo)已知,因此之需求Q.若求Q,由于Q是直線L與直線PQ的交點(diǎn),因此需要求出直線PQ的方程,又點(diǎn)P的坐標(biāo)已知,PQ與直線L垂直,故PQ的斜率為B/A 通過(guò)以上分析,可計(jì)算出PQ的長(zhǎng)度,即點(diǎn)P到直線L的距離
要求學(xué)生下去自己求解,但由于計(jì)算過(guò)程復(fù)雜,問(wèn)是否有簡(jiǎn)單的方法呢? 2.講新課 I.分析過(guò)程
⑴在圖上作出過(guò)P點(diǎn)與x軸,y軸垂直的直線PS,PR與直線分別交與S,R 讓同學(xué)們觀察是不是有什么新的思路。⑵兩分鐘后,和同學(xué)們一起分析,PQ相當(dāng)于直角三角線PRS斜邊上的高,即S=1/2|RS||PQ| 然而,直角三角形的面積S=1/2|PR||PS| 因此有
1/2|RS||PQ|=1/2|PR||PS| 即
|PQ|=|PR||PS|/PQ ⑶那么要求|PQ|,只需求解|PS|,|PR|,|PQ|,那么怎么求解這幾個(gè)量呢? II.推倒過(guò)程
此時(shí),可設(shè)P(x0,y0),則R(x1,y0),S(x0,y2)由
Ax1+By0+C=0 Ax0+By2+C=0
得
x1=(-By0-C)/A
y2=(-Ax0-C)/B 所以,|PR|=|x0-x1|=|(Ax0+By0+C)/A| |PS|=|y0-y2|=|(Ax0+By0+C)/C| |RS|=√PR*PR+PS*PS=√A*A+B*B/AB*| Ax0+By0+C| 代入面積公式,得
|PQ|=| Ax0+By0+C|/√A*A+B*B 3.講例題
求點(diǎn)P(X0.Y0)到直線2X+Y-10=0的距離 【留作業(yè)】 85頁(yè)2,3題
第二篇:《點(diǎn)到直線距離》說(shuō)課稿
《點(diǎn)到直線距離》說(shuō)課稿1
1.教材分析
1-1教學(xué)內(nèi)容及包含的知識(shí)點(diǎn)
(1)本課內(nèi)容是高中數(shù)學(xué)第二冊(cè)第七章第三節(jié)《兩條直線的位置關(guān)系》的最后一個(gè)內(nèi)容
(2)包含知識(shí)點(diǎn):點(diǎn)到直線的距離公式和兩平行線的距離公式
1-2教材所處地位、作用和前后聯(lián)系
本節(jié)課是兩條直線位置關(guān)系的最后一個(gè)內(nèi)容,在此之前,有對(duì)兩線位置關(guān)系的定性刻畫:平行、垂直,以及對(duì)相交兩線的定量刻畫:夾角、交點(diǎn)。在此之后,有圓錐曲線方程,因而本節(jié)既是對(duì)前面兩線垂直、兩線交點(diǎn)的復(fù)習(xí),又是為后面計(jì)算點(diǎn)線距離(在直線和圓錐曲線構(gòu)成的組合圖形中)提供一套工具。
可見,本課有承前啟后的作用。
1-3教學(xué)大綱要求
掌握點(diǎn)到直線的距離公式
1-4高考大綱要求及在高考中的顯示形式
掌握點(diǎn)到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構(gòu)成的組合圖形為背景,判斷直線和圓錐曲線的位置或構(gòu)成三角形求高,涉及絕對(duì)值,直線垂直,最小值等。
1-5教學(xué)目標(biāo)及確定依據(jù)
教學(xué)目標(biāo)
(1)掌握點(diǎn)到直線的距離的概念、公式及公式的推導(dǎo)過(guò)程,能用公式來(lái)求點(diǎn)線距離和線線距離。
(2)培養(yǎng)學(xué)生探究性思維方法和由特殊到一般的研究能力。
(3)認(rèn)識(shí)事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學(xué)生轉(zhuǎn)化知識(shí)的能力。
(4)滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。
確定依據(jù):
中華人民共和國(guó)教育部制定的《全日制普通高級(jí)中學(xué)數(shù)學(xué)教學(xué)大綱》(xxxx年4月第一版),《基礎(chǔ)教育課程改革綱要(試行)》,《高考考試說(shuō)明》(xxxx年)
1-6教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵
(1)重點(diǎn):點(diǎn)到直線的距離公式
確定依據(jù):由本節(jié)在教材中的地位確定
(2)難點(diǎn):點(diǎn)到直線的距離公式的推導(dǎo)
確定依據(jù):根據(jù)定義進(jìn)行推導(dǎo),思路自然,但運(yùn)算繁瑣;用等積法推導(dǎo),運(yùn)算較簡(jiǎn)單,但思路不自然,學(xué)生易被動(dòng),主體性得不到體現(xiàn)。
分析“嘗試性題組”解題思路可突破難點(diǎn)
(3)關(guān)鍵:實(shí)現(xiàn)兩個(gè)轉(zhuǎn)化。一是將點(diǎn)線距離轉(zhuǎn)化為定點(diǎn)到垂足的距離;二是利用等積法將其轉(zhuǎn)化為直角三角形中三頂點(diǎn)的距離。
2.教法
2-1發(fā)現(xiàn)法:本節(jié)課為了培養(yǎng)學(xué)生探究性思維目標(biāo),在教學(xué)過(guò)程中,使老師的主導(dǎo)性和學(xué)生的主體性有機(jī)結(jié)合,使學(xué)生能夠愉快地自覺(jué)學(xué)習(xí),通過(guò)學(xué)生自己練習(xí)“嘗試性題組”,引導(dǎo)、啟發(fā)學(xué)生分析、發(fā)現(xiàn)、比較、論證等,從而形成完整的數(shù)學(xué)模型。
確定依據(jù):
(1)美國(guó)教育學(xué)家波利亞的教與學(xué)三原則:主動(dòng)學(xué)習(xí)原則,最佳動(dòng)機(jī)原則,階段漸進(jìn)性原則。
(2)事物之間相互聯(lián)系,相互轉(zhuǎn)化的辯證法思想。
2-2教具:多媒體和黑板等傳統(tǒng)教具
3.學(xué)法
3-1發(fā)現(xiàn)法:豐富學(xué)生的數(shù)學(xué)活動(dòng),學(xué)生經(jīng)過(guò)練習(xí)、觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問(wèn)題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,再運(yùn)用所得理論和方法去解決問(wèn)題。
一句話:還課堂以生命力,還學(xué)生以活力。
3-2學(xué)情:
(1)知識(shí)能力狀況,本節(jié)為兩線位置關(guān)系的最后一個(gè)內(nèi)容,在這之前學(xué)生已經(jīng)系統(tǒng)的學(xué)習(xí)了直線方程的各種形式,有對(duì)兩線位置關(guān)系的定性認(rèn)識(shí)和對(duì)兩線相交的定量認(rèn)識(shí),為本節(jié)推證公式涉及到直線方程、兩線垂直、兩線交點(diǎn)作好了知識(shí)儲(chǔ)備。同時(shí)學(xué)生對(duì)解析幾何的實(shí)質(zhì)中,用坐標(biāo)系溝通直線與方程的研究辦法,有了初步認(rèn)識(shí),數(shù)形結(jié)合的思想正逐漸趨于成熟。
(2)心理特點(diǎn):又見“點(diǎn)到直線的距離”(初中已學(xué)習(xí)定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢動(dòng)機(jī)由此而生。
(3)生活經(jīng)驗(yàn):數(shù)學(xué)源于生活,生活中的點(diǎn)線距隨處可見,怎樣將實(shí)際問(wèn)題數(shù)學(xué)化,是每個(gè)追求成長(zhǎng)、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數(shù)學(xué)活動(dòng)能夠讓他們真正參與,體驗(yàn)過(guò)程,錘煉意志,培養(yǎng)能力。
3-3學(xué)具:直尺、三角板
3.教學(xué)程序
教學(xué)環(huán)節(jié)教學(xué)過(guò)程設(shè)計(jì)意圖
創(chuàng)設(shè)情景(三分鐘)喚醒舊知師:“距離產(chǎn)生美”。昨天我與**同學(xué)相隔遙遠(yuǎn),彼此毫無(wú)感覺(jué),今天的零距離蕩漾著親切,卻少了想象的空間,看來(lái)把握恰當(dāng)?shù)木嚯x才能感知美好。
(1)你有什么辦法能得到我(A點(diǎn))和**同學(xué)(B點(diǎn))之間的距離?
生:思考,回答。
(2)“形缺數(shù)時(shí)難入微”。(1)中的各種辦法中哪個(gè)較好?還有沒(méi)有更好的辦法。
生:比較,回答。
教學(xué)機(jī)智:針對(duì)學(xué)生的回答,老師進(jìn)行引導(dǎo)。老師進(jìn)行鋪墊、遞進(jìn),或深入、拓展。
師:由此看來(lái),兩點(diǎn)間距離公式成為解決該問(wèn)題的首選。讓我們一鼓作氣,繼續(xù)努力。提問(wèn)一:還原學(xué)生的數(shù)學(xué)現(xiàn)實(shí),誘發(fā)動(dòng)機(jī),樂(lè)于參與。
提問(wèn)二:既可點(diǎn)燃數(shù)形結(jié)合的思想,又可喚醒兩點(diǎn)間距離公式。
根據(jù)認(rèn)識(shí)發(fā)展理論,學(xué)生認(rèn)知結(jié)構(gòu)的發(fā)展是在其認(rèn)識(shí)的過(guò)程中伴隨同化和順應(yīng)的認(rèn)知結(jié)構(gòu)不斷再建構(gòu)的過(guò)程,達(dá)到以舊悟新的目的。(1)(2)兩問(wèn)的解決為后繼知識(shí)作好了鋪墊。
4.教學(xué)評(píng)價(jià)
學(xué)生完成反思性學(xué)習(xí)報(bào)告,書寫要求:
(1)整理知識(shí)結(jié)構(gòu)
(2)總結(jié)所學(xué)到的基本知識(shí),技能和數(shù)學(xué)思想方法
(3)總結(jié)在學(xué)習(xí)過(guò)程中的經(jīng)驗(yàn),發(fā)明發(fā)現(xiàn),學(xué)習(xí)障礙等,說(shuō)明產(chǎn)生障礙的原因
(4)談?wù)勀銓?duì)老師教法的建議和要求。
作用:
(1)通過(guò)反思使學(xué)生對(duì)所學(xué)知識(shí)系統(tǒng)化。反思的過(guò)程實(shí)際上是學(xué)生思維內(nèi)化,知識(shí)深化和認(rèn)知牢固化的一個(gè)心理活動(dòng)過(guò)程。
(2)報(bào)告的寫作本身就是一種創(chuàng)造性活動(dòng)。
(3)及時(shí)了解學(xué)生學(xué)習(xí)過(guò)程中的知識(shí)缺陷,思維障礙,有利于教師了解學(xué)生對(duì)自己的教法的滿意度和效果,以便作出及時(shí)調(diào)整,及時(shí)進(jìn)行補(bǔ)償性教學(xué)。
5.板書設(shè)計(jì)
(略)
6.教學(xué)的反思總結(jié)
心理歷練,得意之處,困惑之處,知識(shí)的傳承發(fā)展,如何修正完善等。
《點(diǎn)到直線距離》說(shuō)課稿2
一、關(guān)于教材分析
1、教材的地位和作用
“點(diǎn)到直線的距離”是在學(xué)生學(xué)習(xí)直線方程的基礎(chǔ)上,進(jìn)一步研究?jī)芍本€位置關(guān)系的一節(jié)內(nèi)容,我們知道兩條直線相交后,進(jìn)一步的量化關(guān)系是角度,而兩條直線平行后,進(jìn)一步的量化關(guān)系是距離,而平行線間的距離是通過(guò)點(diǎn)到直線距離來(lái)解決的。此外在研究直線與圓的位置關(guān)系、曲線上的點(diǎn)到直線的距離以及解析幾何中有關(guān)三角形面積的計(jì)算等問(wèn)題時(shí),都要涉及點(diǎn)到直線的距離。所以“點(diǎn)到直線的距離公式”是平面解析幾何的一個(gè)重要知識(shí)點(diǎn)。由于這一節(jié)是直線內(nèi)容的結(jié)尾部分,學(xué)生已經(jīng)具備直線的有關(guān)知識(shí)(如交點(diǎn)、垂直、向量、三角形等),因此,一方面公式的推導(dǎo)成為可能,另一方面公式的推導(dǎo)也是檢驗(yàn)學(xué)生是否真正掌握所學(xué)知識(shí)點(diǎn)的一個(gè)很好的課題。通過(guò)公式推導(dǎo)的獲得,可以培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力,以及自主探究和合作學(xué)習(xí)的能力。
2、教學(xué)目標(biāo)分析
我確定教學(xué)目標(biāo)的依據(jù)有以下三條:
(1)教學(xué)大綱、考試大綱的要求
(2)新教材的特點(diǎn)
(3)所教學(xué)生的實(shí)際情況
教學(xué)目標(biāo)包括:知識(shí)、能力、德育等方面的內(nèi)容。
“點(diǎn)到直線的距離公式”是平面解析幾何重要的基礎(chǔ)知識(shí),也是教學(xué)大綱和考試大綱要求掌握的一個(gè)知識(shí)點(diǎn)。按照大綱“在傳授知識(shí)的同時(shí),滲透數(shù)學(xué)思想方法,培養(yǎng)學(xué)生數(shù)學(xué)能力”的教學(xué)要求,結(jié)合新教材向量的引入,又根據(jù)所帶班級(jí)學(xué)生基礎(chǔ)和素質(zhì)教好的情況,我把本節(jié)課的教學(xué)目標(biāo)確定為:
(1)讓學(xué)生理解點(diǎn)到直線距離公式的推導(dǎo)思想,掌握點(diǎn)到直線距離公式及其應(yīng)用,會(huì)用點(diǎn)到直線距離求兩平行線間的距離;
(2)通過(guò)推導(dǎo)公式方法的發(fā)現(xiàn),培養(yǎng)學(xué)生觀察、思考、分析、歸納等數(shù)學(xué)能力;在推導(dǎo)過(guò)程中,滲透數(shù)形結(jié)合、轉(zhuǎn)化(或化歸)等數(shù)學(xué)思想以及特殊與一般的方法;
(3)通過(guò)本節(jié)學(xué)習(xí),引導(dǎo)學(xué)生用聯(lián)系與轉(zhuǎn)化的觀點(diǎn)看問(wèn)題,體驗(yàn)在探索問(wèn)題的過(guò)程中獲得的成功感。
3、教學(xué)重點(diǎn):點(diǎn)到直線距離公式的推導(dǎo)和應(yīng)用。
教學(xué)難點(diǎn):發(fā)現(xiàn)點(diǎn)到直線距離公式的推導(dǎo)方法。
二、關(guān)于教學(xué)方法和教學(xué)用具的說(shuō)明
1、教學(xué)方法的選擇
(1)指導(dǎo)思想:在“以生為本”理念的指導(dǎo)下,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”。
(2)教學(xué)方法:?jiǎn)栴}解決法、討論法等。
本節(jié)課的任務(wù)主要是公式推導(dǎo)思路的獲得和公式的推導(dǎo)及應(yīng)用。我選擇的是問(wèn)題解決法、討論法等。通過(guò)一系列問(wèn)題,創(chuàng)造思維情境,通過(guò)師生互動(dòng),讓學(xué)生體驗(yàn)、探究、發(fā)現(xiàn)知識(shí)的形成和應(yīng)用過(guò)程,以及思考問(wèn)題的方法,促進(jìn)思維發(fā)展;學(xué)生自主學(xué)習(xí),分工合作,使學(xué)生真正成為教學(xué)的主體。
2、教學(xué)用具的選用
在選用教學(xué)用具時(shí),我考慮到,在本節(jié)課的公式推導(dǎo)和例題求解中思路較多,所以采用了計(jì)算機(jī)多媒體和實(shí)物投影儀作為輔助教具。它可以將數(shù)學(xué)問(wèn)題形象、直觀顯示,便于學(xué)生思考,實(shí)物投影儀展示學(xué)生不同解題方案,提高課堂效率。
三、關(guān)于教學(xué)過(guò)程的設(shè)計(jì)
“數(shù)學(xué)是思維的體操”,一題多解可以培養(yǎng)和提高學(xué)生思維的靈活性,及分析問(wèn)題和解決問(wèn)題的能力。課程標(biāo)準(zhǔn)指出,教學(xué)中應(yīng)注意溝通各部分內(nèi)容之間的聯(lián)系,通過(guò)類比、聯(lián)想、知識(shí)的遷移和應(yīng)用等方式,使學(xué)生體會(huì)知識(shí)間的有機(jī)聯(lián)系,感受數(shù)學(xué)的整體性。課標(biāo)又指出,鼓勵(lì)學(xué)生積極參與教學(xué)活動(dòng)。為此,在具體教學(xué)過(guò)程中,把本節(jié)課分為以下:“創(chuàng)設(shè)情境提出問(wèn)題——自主探索推導(dǎo)公式——變式訓(xùn)練學(xué)會(huì)應(yīng)用——學(xué)生小結(jié)教師點(diǎn)評(píng)——課外練習(xí)鞏固提高”五個(gè)環(huán)節(jié)來(lái)完成。下面對(duì)每個(gè)環(huán)節(jié)進(jìn)行具體說(shuō)明。
[創(chuàng)設(shè)情境提出問(wèn)題]
1、這一環(huán)節(jié)要解決的主要問(wèn)題是:
創(chuàng)設(shè)情境,引導(dǎo)學(xué)生分析實(shí)際問(wèn)題,由實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,揭示本課任務(wù)。同時(shí)激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生數(shù)學(xué)建模能力。
2、具體教學(xué)安排:
多媒體顯示實(shí)例,電信局線路問(wèn)題,實(shí)際怎樣解決?能否轉(zhuǎn)化為解析幾何問(wèn)題?學(xué)生很快想到建立坐標(biāo)系。如何建立坐標(biāo)系?建系不同,點(diǎn)和直線方程不同,用點(diǎn)的坐標(biāo)和直線方程如何解決距離問(wèn)題,由此引出本課課題“點(diǎn)到直線的距離”。
[自主探索推導(dǎo)公式]
1、這一環(huán)節(jié)要解決的主要問(wèn)題是:
充分發(fā)揮學(xué)生的主體作用,引導(dǎo)學(xué)生發(fā)現(xiàn)點(diǎn)到直線距離公式的推導(dǎo)方法,并推導(dǎo)出公式。在公式的推導(dǎo)過(guò)程中,圍繞兩條線索:明線為知識(shí)的學(xué)習(xí),暗線為特殊與一般的邏輯方法以及轉(zhuǎn)化、數(shù)形結(jié)合等數(shù)學(xué)思想的滲透。
2、具體教學(xué)安排:
2.1學(xué)生初探解決特例
首先提出問(wèn)題:怎樣用解析幾何方法求解點(diǎn)到直線距離?由于字母的運(yùn)算有難度,引導(dǎo)學(xué)生從直線的特殊情況入手,這樣問(wèn)題比較容易解決。學(xué)生應(yīng)該能想到,如果直線是坐標(biāo)軸或平行坐標(biāo)軸的時(shí)候問(wèn)題比較容易解決,給予學(xué)生肯定的評(píng)價(jià)。學(xué)生自己完成推導(dǎo)過(guò)程,選兩名學(xué)生進(jìn)行板演。
2.2師生互動(dòng)獲取思路
特殊情況已經(jīng)解決,引導(dǎo)學(xué)生考慮一般直線的情況。通過(guò)學(xué)生思考,教師收集得到思路一:過(guò)作于點(diǎn),根據(jù)點(diǎn)斜式寫出直線方程,由
我及時(shí)評(píng)價(jià)這種方法思路自然,是一種解決辦法。為了拓展學(xué)生思維,我們根據(jù)已有的知識(shí)和經(jīng)驗(yàn),還有什么辦法能解決?
為此我啟發(fā)學(xué)生,提出問(wèn)題:
(1)求線段長(zhǎng)度可以構(gòu)造圖形嗎?
(2)什么圖形?如何構(gòu)造?(學(xué)生經(jīng)過(guò)討論,得到構(gòu)造三角形,把線段放在直角三角形中。)但是如何構(gòu)造又是一個(gè)難點(diǎn)。
(3)第三個(gè)頂點(diǎn)在什么位置?
(4)特殊情況與一般情況有聯(lián)系嗎?
學(xué)生通過(guò)觀察、討論會(huì)提出第三個(gè)頂點(diǎn)的不同位置:可能在直線與x軸的交點(diǎn)M或與y軸交點(diǎn)N;或根據(jù)特殊情況的證法提示,過(guò)P點(diǎn)作x、y軸的平行線與直線的交點(diǎn)R、S?;蛲瑫r(shí)做x、y軸平行線。這樣就收集到思路二、三、四。三種思路已經(jīng)有了,它們的共性是什么?學(xué)生能觀察出都在三角形中。我繼續(xù)引導(dǎo):能不能不構(gòu)造三角形?而是其它數(shù)學(xué)相關(guān)量?我們剛學(xué)習(xí)了向量知識(shí),能否用向量知識(shí)解決問(wèn)題呢?(由于在前面學(xué)習(xí)的向量知識(shí)中,向量的??梢员硎緝牲c(diǎn)之間的距離,而證明兩直線垂直時(shí)也已經(jīng)用到向量知識(shí),法向量又是本節(jié)課后閱讀材料,本班學(xué)生基礎(chǔ)和素質(zhì)較好,在學(xué)習(xí)直線方向向量時(shí)已經(jīng)布置閱讀)。
提出問(wèn)題:線段的長(zhǎng)度就是對(duì)應(yīng)向量的模,那么如何求得向量的模呢?根據(jù)實(shí)際情況提示一方面的方向完全由直線的方向而定(與法向量共線),另一方面的長(zhǎng)度又與點(diǎn)P有關(guān),它的長(zhǎng)度又如何控制下來(lái)?所以有思路五,由師生一起分析,取法向量=
2.3分工合作自主完成
學(xué)生提出了不同的解決方案,究竟哪種好呢?如果讓每位學(xué)生都去用不同解法探求,在課堂上時(shí)間顯然是不允許的,但教學(xué)中又要培養(yǎng)學(xué)生的運(yùn)算能力,如何解決這種矛盾呢?現(xiàn)代教育要求學(xué)生要有自主學(xué)習(xí)、合作學(xué)習(xí)能力,因此我叫學(xué)生對(duì)五種思路進(jìn)行分組練習(xí)。
在學(xué)生求解過(guò)程中,我巡視,觀看學(xué)生解題,了解情況,根據(jù)課堂時(shí)間的實(shí)際情況,選取做好的學(xué)生的解題過(guò)程用實(shí)物投影儀顯示。這樣不僅能讓全體學(xué)生看到不同思路的具體解法,還能得出最佳解題方案,接著我展示最佳解題方案的規(guī)范步驟。目的讓學(xué)生有良好的規(guī)范的書面表達(dá)習(xí)慣,起到教師典范的作用。
2.4公式小結(jié)概括提升
公式推導(dǎo)出,學(xué)生有了成功的喜悅。我也給予了肯定。但是由于公式的結(jié)果是一般情況得出的,而對(duì)于,點(diǎn)在直線上是否成立,它們與,點(diǎn)在直線外有什么關(guān)系?這并沒(méi)有驗(yàn)證。而我們要求學(xué)生考慮問(wèn)題要全面,為此我提出提問(wèn):①上式是由條件下得出,對(duì)成立嗎?②點(diǎn)P在直線
依據(jù)新課程的理念,教師要?jiǎng)?chuàng)造性地使用教材。在公式的推導(dǎo)過(guò)程中,我做了和教材不同的處理方法:(1)先特殊后一般的證法,(2)多角度構(gòu)造三角形,(3)知識(shí)聯(lián)系,向量解決。目的是讓學(xué)生在考慮問(wèn)題時(shí)有特殊到一般的意識(shí),符合學(xué)生認(rèn)知規(guī)律,使問(wèn)題的解決循序漸進(jìn)。向量是新教材內(nèi)容,是一種很好的數(shù)學(xué)工具,和解析幾何結(jié)合應(yīng)用是現(xiàn)在新教材知識(shí)的交匯點(diǎn)。而多角度考慮問(wèn)題,發(fā)散學(xué)生思維。
[變式訓(xùn)練學(xué)會(huì)應(yīng)用]
1、這一環(huán)節(jié)解決的主要問(wèn)題是:
通過(guò)練習(xí),熟悉公式結(jié)構(gòu),記憶并簡(jiǎn)單應(yīng)用公式。通過(guò)例題的不同解法,進(jìn)一步讓學(xué)生體會(huì)轉(zhuǎn)化(或化歸)的數(shù)學(xué)思想。
2、具體教學(xué)安排:
由學(xué)生完成下列練習(xí):
(1)解決課堂提出的實(shí)際問(wèn)題。(學(xué)生口答)
(2)求點(diǎn)P0(-1,2)到下列直線的距離:
①3x=2②5y=3③2x+y=10④y=-4x+1
設(shè)計(jì)說(shuō)明:練習(xí)1的設(shè)計(jì)解決了上課開始提出的實(shí)際問(wèn)題。練習(xí)2的設(shè)計(jì)故意選特殊直線和非直線方程一般式,主要強(qiáng)調(diào)在公式應(yīng)用時(shí),直線方程是一般式,應(yīng)用公式的準(zhǔn)確性。
例題(3)求平行線2x-7y+8=0和2x-7y-6=0的距離。
我選取的是課本例題,課本只有一種具體點(diǎn)的解法。我通過(guò)本節(jié)課的學(xué)習(xí),讓學(xué)生對(duì)知識(shí)從深度和廣度上進(jìn)行挖掘。通過(guò)幾何畫板的演示,讓學(xué)生直觀看到思考問(wèn)題的方法。除了選擇直線上的點(diǎn),還可以選取原點(diǎn),求它到兩條直線的距離,然后作和?;蛘哌x取直線外的點(diǎn)P,求它到兩條直線的距離,然后作差。由特殊點(diǎn)到任意點(diǎn),由特殊直線到任意直線,從而延伸出兩平行線間的距離。目的是在整個(gè)過(guò)程中,讓學(xué)生注意體會(huì)解題方法中的靈活性以及轉(zhuǎn)化等數(shù)學(xué)思想方法。
[學(xué)生小結(jié)教師點(diǎn)評(píng)]
1、這一環(huán)節(jié)解決的主要問(wèn)題和達(dá)到的目的是:
通過(guò)師生共同小結(jié),鞏固所學(xué)知識(shí),提煉用到的解決問(wèn)題的方法,其中蘊(yùn)涵的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生歸納概括能力。
2、具體教學(xué)安排:
本節(jié)課小結(jié)主要由學(xué)生完成知識(shí)總結(jié),通過(guò)學(xué)習(xí)知識(shí)所體驗(yàn)到的數(shù)學(xué)思想方法,由學(xué)生總結(jié)和相互補(bǔ)充,教師適當(dāng)點(diǎn)評(píng),加以經(jīng)驗(yàn)總結(jié)。
[課外練習(xí)鞏固提高]
①課本習(xí)題7.3的第13題—16題;
②總結(jié)寫出點(diǎn)到直線距離公式的多種方法。
設(shè)計(jì)說(shuō)明:作業(yè)1是課本習(xí)題,檢查學(xué)生所學(xué)知識(shí)掌握的程度。作業(yè)2是根據(jù)課堂分析,讓學(xué)生總結(jié)公式推導(dǎo)的方法。除了課堂上想到的方法還可以繼續(xù)思考,比如在用兩點(diǎn)距離公式整體代換等方法,發(fā)揮學(xué)生學(xué)習(xí)的自主性和思維的廣闊性。
四、關(guān)于教學(xué)評(píng)價(jià)的設(shè)計(jì)
新課程標(biāo)準(zhǔn)提出要加強(qiáng)過(guò)程性評(píng)價(jià),因而在具體教學(xué)過(guò)程中,我對(duì)于學(xué)生的語(yǔ)言與行為的表現(xiàn),及時(shí)給予肯定性的表?yè)P(yáng)和鼓勵(lì);學(xué)生思維暴露出問(wèn)題時(shí)及時(shí)評(píng)價(jià),矯正思維方向,調(diào)整教學(xué)思路;為了獲得后反饋信息,布置作業(yè),通過(guò)觀察學(xué)生完成作業(yè)情況,了解學(xué)生在知識(shí)技能和數(shù)學(xué)方法方面的收獲和不足,指導(dǎo)我今后教學(xué)。整個(gè)教學(xué)評(píng)價(jià)是在師生互動(dòng)中完成的。
《點(diǎn)到直線距離》說(shuō)課稿3
各位領(lǐng)導(dǎo)和老師,大家下午好!今天我說(shuō)課的題目是高中數(shù)學(xué)蘇教版必修2第二章第一節(jié)內(nèi)容《點(diǎn)到直線的距離》下面我想談?wù)勎覍?duì)這節(jié)課的一些淺薄的認(rèn)識(shí)。
解析幾何是17世紀(jì)數(shù)學(xué)發(fā)展的重大成果之一,其本質(zhì)是用代數(shù)方法研究圖形的幾何性質(zhì),體現(xiàn)了數(shù)形結(jié)合的重要數(shù)學(xué)思想,其主要內(nèi)容是計(jì)算和證明,而計(jì)算問(wèn)題則主要是距離和角的計(jì)算。其中距離的計(jì)算主要包括點(diǎn)、線、面之間距離的計(jì)算,而點(diǎn)到直線的距離處在關(guān)鍵的位置上。
《點(diǎn)到直線的距離》這一節(jié)是研究平面元素的位置關(guān)系,由定性研究到定量研究的第二節(jié)課。它是解決點(diǎn)線、線線距離的基礎(chǔ),也是研究直線與圓、圓與圓位置關(guān)系的重要工具,同時(shí)為后面學(xué)習(xí)圓錐曲線作準(zhǔn)備。教材試圖讓學(xué)生經(jīng)歷探索點(diǎn)到直線距離公式并論證這個(gè)公式的過(guò)程,深刻領(lǐng)會(huì)蘊(yùn)涵于其中的數(shù)學(xué)思想和方法,如數(shù)形結(jié)合、算法、函數(shù)等;并讓學(xué)生享受作為學(xué)習(xí)主體進(jìn)行探究、發(fā)現(xiàn)和創(chuàng)造的樂(lè)趣。
教材中以算法語(yǔ)言的形式給出了兩種推導(dǎo)點(diǎn)到直線的距離公式的方法,尤其是第二種方法是通過(guò)構(gòu)造形解決數(shù)的問(wèn)題,然后再把形代數(shù)化,這一正一逆,使數(shù)與形達(dá)到了完美的結(jié)合,其蘊(yùn)含的重要思想,需要學(xué)生細(xì)細(xì)體會(huì)。
針對(duì)咱們師范學(xué)校學(xué)生的特點(diǎn),結(jié)合本教材,本著低起點(diǎn)、高要求、循序漸進(jìn),充分調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性的原則,我制定了以下教學(xué)目標(biāo):
首先是掌握點(diǎn)到直線的距離公式,并能運(yùn)用它解決一些簡(jiǎn)單問(wèn)題;其次通過(guò)運(yùn)用面積法推導(dǎo)點(diǎn)到直線的距離公式的推導(dǎo)過(guò)程,使學(xué)生進(jìn)一步了解數(shù)學(xué)結(jié)合思想在解決具體問(wèn)題中的重要作用;第三讓學(xué)生經(jīng)歷自主探究,合作交流的過(guò)程,充分感受點(diǎn)到直線的距離公式的推導(dǎo)過(guò)程;同時(shí)通過(guò)此過(guò)程,滲透算法、化歸等思想,培養(yǎng)學(xué)生勇于探索、勇于創(chuàng)新的精神。
我把點(diǎn)到直線的距離公式的推導(dǎo)思路以及其簡(jiǎn)單的應(yīng)用作為本節(jié)課的教學(xué)重點(diǎn),而點(diǎn)到直線的距離公式的推導(dǎo)思路我認(rèn)為同時(shí)也是本節(jié)課的教學(xué)難點(diǎn)。
根據(jù)教學(xué)內(nèi)容和學(xué)生的學(xué)習(xí)狀況及其認(rèn)知特點(diǎn),本節(jié)課我準(zhǔn)備采用類比探究式教學(xué)模式。即:從學(xué)生熟知的實(shí)際生活背景出發(fā),通過(guò)由特殊到一般、從具體到抽象的課堂教學(xué)方式,引導(dǎo)學(xué)生探索點(diǎn)到直線的距離的求法。讓學(xué)生在合作交流、共同探討的氛圍中,認(rèn)識(shí)公式的推導(dǎo)過(guò)程及知識(shí)的運(yùn)用,進(jìn)一步提高學(xué)生幾何問(wèn)題代數(shù)化的數(shù)學(xué)思維能力。
下面我想說(shuō)一說(shuō)我的教學(xué)過(guò)程設(shè)計(jì)。本節(jié)課我準(zhǔn)備通過(guò)以下四個(gè)環(huán)節(jié)進(jìn)行。分別是問(wèn)題情境——合作探究——應(yīng)用舉例——?dú)w納總結(jié)。
也就是首先從一個(gè)具體的實(shí)際問(wèn)題入手,引導(dǎo)學(xué)生將其轉(zhuǎn)化為解析幾何問(wèn)題,建立坐標(biāo)系,由此引出本節(jié)課題,同時(shí)激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生簡(jiǎn)單的數(shù)學(xué)建模能力。
接下來(lái)進(jìn)入到第二個(gè)環(huán)節(jié),即點(diǎn)到直線的距離公式的推導(dǎo)過(guò)程。這個(gè)環(huán)節(jié)我主要是通過(guò)三個(gè)具體的問(wèn)題實(shí)現(xiàn)的。而這三個(gè)問(wèn)題是由特殊到一般、從具體到抽象的過(guò)程,符合學(xué)生的認(rèn)知規(guī)律。
第一個(gè)問(wèn)題雖然簡(jiǎn)單,但是是后面兩個(gè)問(wèn)題的基礎(chǔ),因此我準(zhǔn)備平均3到4位同學(xué)一組放手讓學(xué)生討論解決這個(gè)問(wèn)題的方法,在學(xué)生討論的過(guò)程中,適時(shí)的引導(dǎo)學(xué)生從不同的角度分析問(wèn)題,進(jìn)而尋求到不同的方法。那么結(jié)合學(xué)生現(xiàn)有的知識(shí)水平,我認(rèn)為學(xué)生可能會(huì)想到的方法不外乎會(huì)有以下幾種:(1)兩點(diǎn)間的距離公式;(2)面積法;(3)向量法。
也可能會(huì)有同學(xué)采用以下這兩種方法。由于這個(gè)問(wèn)題比較簡(jiǎn)單,因此我準(zhǔn)備讓學(xué)生結(jié)合找到的方法解決這個(gè)問(wèn)題并相互驗(yàn)證方法的正確性,體驗(yàn)成功的喜悅。
在問(wèn)題一的基礎(chǔ)上,引導(dǎo)學(xué)生尋找問(wèn)題二的解決辦法,這一過(guò)程,最重要的是將其化歸為第一個(gè)問(wèn)題的解決辦法。即過(guò)點(diǎn)P向X軸和Y軸作垂線構(gòu)造直角三角形,進(jìn)而引導(dǎo)學(xué)生發(fā)現(xiàn)第一個(gè)問(wèn)題的解決方法依然適用于問(wèn)題二。
這樣有了以上兩個(gè)問(wèn)題的解決作為鋪墊,第三個(gè)問(wèn)題的解決就是順理成章的了。雖然在前面兩個(gè)問(wèn)題的解決中并沒(méi)有要求學(xué)生說(shuō)出詳細(xì)的思路,但是經(jīng)過(guò)兩次針對(duì)性的訓(xùn)練,學(xué)生心里應(yīng)該有一個(gè)大概的思路,因此我準(zhǔn)備分成以下三個(gè)層次進(jìn)行:
第一個(gè)層次是讓學(xué)生說(shuō)一說(shuō)面積法推導(dǎo)點(diǎn)到直線的距離公式的思路;第二個(gè)層次則是師生共同用算法框圖的形式把思路寫出來(lái);第三個(gè)層次則是在以上兩個(gè)層次的基礎(chǔ)上,師生合作推導(dǎo)點(diǎn)到直線的距離公式的詳細(xì)過(guò)程。
最終推導(dǎo)得出點(diǎn)到直線的距離公式。
為了能夠讓學(xué)生迅速的掌握點(diǎn)到直線的距離公式,我準(zhǔn)備通過(guò)以下三個(gè)具體的例子及相關(guān)練習(xí)進(jìn)行針對(duì)性的訓(xùn)練。
第一個(gè)例子是公式的簡(jiǎn)單應(yīng)用問(wèn)題,學(xué)生應(yīng)該能夠很輕松的解決,同時(shí)在學(xué)生完成第一個(gè)例子的基礎(chǔ)上給出一個(gè)思考題,學(xué)生通過(guò)畫圖也應(yīng)該能夠解決。
而第二個(gè)例子則是公式的逆向運(yùn)用問(wèn)題,需要提醒學(xué)生注意多解的情況。那么第三個(gè)例子有以下幾個(gè)目的:第一個(gè)目的是公式的簡(jiǎn)單應(yīng)用,第二個(gè)目的則是讓學(xué)生發(fā)現(xiàn)選擇不同的點(diǎn)平行四邊形的高不變,第三個(gè)目的則是為平行直線間的距離作鋪墊。
接下來(lái)是進(jìn)行歸納小結(jié),此時(shí)應(yīng)該重點(diǎn)強(qiáng)調(diào)數(shù)形結(jié)合思想在本節(jié)課的充分體現(xiàn)。
最后是布置作業(yè)。
以上就是我的說(shuō)課內(nèi)容,謝謝大家!
《點(diǎn)到直線距離》說(shuō)課稿4
一、關(guān)于教材分析
1、教材的地位和作用
“點(diǎn)到直線的距離”是在學(xué)生學(xué)習(xí)直線方程的基礎(chǔ)上,進(jìn)一步研究?jī)芍本€位置關(guān)系的一節(jié)內(nèi)容,我們知道兩條直線相交后,進(jìn)一步的量化關(guān)系是角度,而兩條直線平行后,進(jìn)一步的量化關(guān)系是距離,而平行線間的距離是通過(guò)點(diǎn)到直線距離來(lái)解決的.此外在研究直線與圓的位置關(guān)系、曲線上的點(diǎn)到直線的距離以及解析幾何中有關(guān)三角形面積的計(jì)算等問(wèn)題時(shí),都要涉及點(diǎn)到直線的距離.所以 “點(diǎn)到直線的距離公式”是平面解析幾何的一個(gè)重要知識(shí)點(diǎn).由于這一節(jié)是直線內(nèi)容的結(jié)尾部分,學(xué)生已經(jīng)具備直線的有關(guān)知識(shí)(如交點(diǎn)、垂直、向量、三角形等),因此,一方面公式的推導(dǎo)成為可能,另一方面公式的推導(dǎo)也是檢驗(yàn)學(xué)生是否真正掌握所學(xué)知識(shí)點(diǎn)的一個(gè)很好的課題.通過(guò)公式推導(dǎo)的獲得,可以培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力,以及自主探究和合作學(xué)習(xí)的能力.
2、教學(xué)目標(biāo)分析
我確定教學(xué)目標(biāo)的依據(jù)有以下三條:
(1)教學(xué)大綱、考試大綱的要求
(2)新教材的特點(diǎn)
(3)所教學(xué)生的實(shí)際情況
教學(xué)目標(biāo)包括:知識(shí)、能力、德育等方面的內(nèi)容.
“點(diǎn)到直線的距離公式”是平面解析幾何重要的基礎(chǔ)知識(shí),也是教學(xué)大綱和考試大綱要求掌握的一個(gè)知識(shí)點(diǎn).按照大綱 “在傳授知識(shí)的同時(shí),滲透數(shù)學(xué)思想方法,培養(yǎng)學(xué)生數(shù)學(xué)能力”的教學(xué)要求,結(jié)合新教材向量的引入,又根據(jù)所帶班級(jí)學(xué)生基礎(chǔ)和素質(zhì)教好的情況,我把本節(jié)課的教學(xué)目標(biāo)確定為:
(1)讓學(xué)生理解點(diǎn)到直線距離公式的推導(dǎo)思想,掌握點(diǎn)到直線距離公式及其應(yīng)用,會(huì)用點(diǎn)到直線距離求兩平行線間的距離;
(2)通過(guò)推導(dǎo)公式方法的發(fā)現(xiàn),培養(yǎng)學(xué)生觀察、思考、分析、歸納等數(shù)學(xué)能力;在推導(dǎo)過(guò)程中,滲透數(shù)形結(jié)合、轉(zhuǎn)化(或化歸)等數(shù)學(xué)思想以及特殊與一般的方法;
(3)通過(guò)本節(jié)學(xué)習(xí),引導(dǎo)學(xué)生用聯(lián)系與轉(zhuǎn)化的觀點(diǎn)看問(wèn)題,體驗(yàn)在探索問(wèn)題的過(guò)程中獲得的成功感.
3、教學(xué)重點(diǎn):點(diǎn)到直線距離公式的推導(dǎo)和應(yīng)用.
教學(xué)難點(diǎn):發(fā)現(xiàn)點(diǎn)到直線距離公式的推導(dǎo)方法.
二、關(guān)于教學(xué)方法和教學(xué)用具的說(shuō)明
1、教學(xué)方法的選擇
(1)指導(dǎo)思想:在“以生為本”理念的指導(dǎo)下,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”.
(2)教學(xué)方法:?jiǎn)栴}解決法、討論法等.
本節(jié)課的任務(wù)主要是公式推導(dǎo)思路的獲得和公式的推導(dǎo)及應(yīng)用.我選擇的是問(wèn)題解決法、討論法等.通過(guò)一系列問(wèn)題,創(chuàng)造思維情境,通過(guò)師生互動(dòng),讓學(xué)生體驗(yàn)、探究、發(fā)現(xiàn)知識(shí)的形成和應(yīng)用過(guò)程,以及思考問(wèn)題的方法,促進(jìn)思維發(fā)展;學(xué)生自主學(xué)習(xí),分工合作,使學(xué)生真正成為教學(xué)的主體.
2、教學(xué)用具的選用
在選用教學(xué)用具時(shí),我考慮到,在本節(jié)課的公式推導(dǎo)和例題求解中思路較多,所以采用了計(jì)算機(jī)多媒體和實(shí)物投影儀作為輔助教具.它可以將數(shù)學(xué)問(wèn)題形象、直觀顯示,便于學(xué)生思考,實(shí)物投影儀展示學(xué)生不同解題方案,提高課堂效率.
三、關(guān)于教學(xué)過(guò)程的設(shè)計(jì)
“數(shù)學(xué)是思維的體操”,一題多解可以培養(yǎng)和提高學(xué)生思維的靈活性,及分析問(wèn)題和解決問(wèn)題的能力.課程標(biāo)準(zhǔn)指出,教學(xué)中應(yīng)注意溝通各部分內(nèi)容之間的聯(lián)系,通過(guò)類比、聯(lián)想、知識(shí)的遷移和應(yīng)用等方式,使學(xué)生體會(huì)知識(shí)間的有機(jī)聯(lián)系,感受數(shù)學(xué)的整體性.課標(biāo)又指出,鼓勵(lì)學(xué)生積極參與教學(xué)活動(dòng).為此,在具體教學(xué)過(guò)程中,把本節(jié)課分為以下:“創(chuàng)設(shè)情境 提出問(wèn)題——自主探索 推導(dǎo)公式——變式訓(xùn)練 學(xué)會(huì)應(yīng)用——學(xué)生小結(jié) 教師點(diǎn)評(píng)——課外練習(xí)鞏固提高”五個(gè)環(huán)節(jié)來(lái)完成.下面對(duì)每個(gè)環(huán)節(jié)進(jìn)行具體說(shuō)明.
(一)[創(chuàng)設(shè)情境 提出問(wèn)題]
1、這一環(huán)節(jié)要解決的主要問(wèn)題是:
創(chuàng)設(shè)情境,引導(dǎo)學(xué)生分析實(shí)際問(wèn)題,由實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,揭示本課任務(wù).同時(shí)激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生數(shù)學(xué)建模能力.
2、具體教學(xué)安排:
多媒體顯示實(shí)例,電信局線路問(wèn)題,實(shí)際怎樣解決?能否轉(zhuǎn)化為解析幾何問(wèn)題?學(xué)生很快想到建立坐標(biāo)系.如何建立坐標(biāo)系?建系不同,點(diǎn)和直線方程不同,用點(diǎn)的坐標(biāo)和直線方程如何解決距離問(wèn)題,由此引出本課課題“點(diǎn)到直線的距離”.
(二)[自主探索 推導(dǎo)公式]
1、這一環(huán)節(jié)要解決的主要問(wèn)題是:
充分發(fā)揮學(xué)生的主體作用,引導(dǎo)學(xué)生發(fā)現(xiàn)點(diǎn)到直線距離公式的推導(dǎo)方法,并推導(dǎo)出公式.在公式的推導(dǎo)過(guò)程中,圍繞兩條線索:明線為知識(shí)的學(xué)習(xí),暗線為特殊與一般的邏輯方法以及轉(zhuǎn)化、數(shù)形結(jié)合等數(shù)學(xué)思想的滲透.
2、具體教學(xué)安排:
2.1 學(xué)生初探 解決特例
首先提出問(wèn)題:怎樣用解析幾何方法求解點(diǎn)到直線距離?由于字母的運(yùn)算有難度,引導(dǎo)學(xué)生從直線的特殊情況入手,這樣問(wèn)題比較容易解決.學(xué)生應(yīng)該能想到,如果直線是坐標(biāo)軸或平行坐標(biāo)軸的時(shí)候問(wèn)題比較容易解決,給予學(xué)生肯定的評(píng)價(jià).學(xué)生自己完成推導(dǎo)過(guò)程,選兩名學(xué)生進(jìn)行板演.
2.2 師生互動(dòng) 獲取思路
特殊情況已經(jīng)解決,引導(dǎo)學(xué)生考慮一般直線的情況.通過(guò)學(xué)生思考,教師收集得到思路一:過(guò)作于點(diǎn),根據(jù)點(diǎn)斜式寫出直線方程,由與聯(lián)立方程組解得點(diǎn)坐標(biāo),然后利用兩點(diǎn)距離公式求得.我及時(shí)評(píng)價(jià)這種方法思路自然,是一種解決辦法.為了拓展學(xué)生思維,我們根據(jù)已有的知識(shí)和經(jīng)驗(yàn),還有什么辦法能解決?
為此我啟發(fā)學(xué)生,提出問(wèn)題:
(1)求線段長(zhǎng)度可以構(gòu)造圖形嗎?
(2)什么圖形?如何構(gòu)造?(學(xué)生經(jīng)過(guò)討論,得到構(gòu)造三角形,把線段放在直角三角形中.)但是如何構(gòu)造又是一個(gè)難點(diǎn).
(3)第三個(gè)頂點(diǎn)在什么位置?
(4)特殊情況與一般情況有聯(lián)系嗎?
學(xué)生通過(guò)觀察、討論會(huì)提出第三個(gè)頂點(diǎn)的不同位置:可能在直線與x軸的交點(diǎn)M或與y軸交點(diǎn)N;或根據(jù)特殊情況的證法提示,過(guò)P點(diǎn)作x、y軸的平行線與直線的交點(diǎn)R、S.或同時(shí)做x、y軸平行線.這樣就收集到思路二、三、四.三種思路已經(jīng)有了,它們的共性是什么?學(xué)生能觀察出都在三角形中.我繼續(xù)引導(dǎo):能不能不構(gòu)造三角形?而是其它數(shù)學(xué)相關(guān)量?我們剛學(xué)習(xí)了向量知識(shí),能否用向量知識(shí)解決問(wèn)題呢?(由于在前面學(xué)習(xí)的向量知識(shí)中,向量的??梢员硎緝牲c(diǎn)之間的距離,而證明兩直線垂直時(shí)也已經(jīng)用到向量知識(shí),法向量又是本節(jié)課后閱讀材料,本班學(xué)生基礎(chǔ)和素質(zhì)較好,在學(xué)習(xí)直線方向向量時(shí)已經(jīng)布置閱讀).
提出問(wèn)題:線段的長(zhǎng)度就是對(duì)應(yīng)向量的模,那么如何求得向量的模呢?根據(jù)實(shí)際情況提示一方面的方向完全由直線的方向而定(與法向量共線),另一方面的長(zhǎng)度又與點(diǎn)P有關(guān),它的長(zhǎng)度又如何控制下來(lái)?所以有思路五,由師生一起分析,取法向量=,而= ,以下只要求得,就可以得到距離.2.3 分工合作 自主完成學(xué)生提出了不同的解決方案,究竟哪種好呢?如果讓每位學(xué)生都去用不同解法探求,在課堂上時(shí)間顯然是不允許的,但教學(xué)中又要培養(yǎng)學(xué)生的運(yùn)算能力,如何解決這種矛盾呢?現(xiàn)代教育要求學(xué)生要有自主學(xué)習(xí)、合作學(xué)習(xí)能力,因此我叫學(xué)生對(duì)五種思路進(jìn)行分組練習(xí).在學(xué)生求解過(guò)程中,我巡視,觀看學(xué)生解題,了解情況,根據(jù)課堂時(shí)間的實(shí)際情況,選取做好的學(xué)生的解題過(guò)程用實(shí)物投影儀顯示.這樣不僅能讓全體學(xué)生看到不同思路的具體解法,還能得出最佳解題方案,接著我展示最佳解題方案的規(guī)范步驟.目的讓學(xué)生有良好的規(guī)范的書面表達(dá)習(xí)慣,起到教師典范的作用.
2.4 公式小結(jié) 概括提升公式推導(dǎo)出,學(xué)生有了成功的喜悅.我也給予了肯定.但是由于公式的結(jié)果是一般情況得出的,而對(duì)于,點(diǎn)在直線上是否成立,它們與,點(diǎn)在直線外有什么關(guān)系?這并沒(méi)有驗(yàn)證.而我們要求學(xué)生考慮問(wèn)題要全面,為此我提出提問(wèn):
①上式是由條件下得出,對(duì)成立嗎?
②點(diǎn)P在直線上成立嗎?
③公式結(jié)構(gòu)特點(diǎn)是什么?用公式時(shí)直線方程是什么形式?通過(guò)學(xué)生的討論,使學(xué)生了解公式適用的范圍:任意點(diǎn)、任意直線.同時(shí)體現(xiàn)整體認(rèn)識(shí)和分類討論思想.
依據(jù)新課程的理念,教師要?jiǎng)?chuàng)造性地使用教材.在公式的推導(dǎo)過(guò)程中,我做了和教材不同的處理方法
1)先特殊后一般的證法,
(2)多角度構(gòu)造三角形,
(3)知識(shí)聯(lián)系,向量解決.目的是讓學(xué)生在考慮問(wèn)題時(shí)有特殊到一般的意識(shí),符合學(xué)生認(rèn)知規(guī)律,使問(wèn)題的解決循序漸進(jìn).向量是新教材內(nèi)容,是一種很好的數(shù)學(xué)工具,和解析幾何結(jié)合應(yīng)用是現(xiàn)在新教材知識(shí)的交匯點(diǎn).而多角度考慮問(wèn)題,發(fā)散學(xué)生思維.
(三)[變式訓(xùn)練 學(xué)會(huì)應(yīng)用]
1、這一環(huán)節(jié)解決的主要問(wèn)題是:
通過(guò)練習(xí),熟悉公式結(jié)構(gòu),記憶并簡(jiǎn)單應(yīng)用公式.通過(guò)例題的`不同解法,進(jìn)一步讓學(xué)生體會(huì)轉(zhuǎn)化(或化歸)的數(shù)學(xué)思想.
2、具體教學(xué)安排:
由學(xué)生完成下列練習(xí):
(1)解決課堂提出的實(shí)際問(wèn)題.(學(xué)生口答)
(2)求點(diǎn)P0(-1,2)到下列直線的距離 :
①3x=2 ②5y=3 ③2x+y=10 ④y=-4x+1
設(shè)計(jì)說(shuō)明:練習(xí)1的設(shè)計(jì)解決了上課開始提出的實(shí)際問(wèn)題.練習(xí)2的設(shè)計(jì)故意選特殊直線和非直線方程一般式,主要強(qiáng)調(diào)在公式應(yīng)用時(shí),直線方程是一般式,應(yīng)用公式的準(zhǔn)確性.
例題(3)求平行線2x-7y+8=0和2x-7y-6=0的距離.
我選取的是課本例題,課本只有一種具體點(diǎn)的解法.我通過(guò)本節(jié)課的學(xué)習(xí),讓學(xué)生對(duì)知識(shí)從深度和廣度上進(jìn)行挖掘.通過(guò)幾何畫板的演示,讓學(xué)生直觀看到思考問(wèn)題的方法.除了選擇直線上的點(diǎn),還可以選取原點(diǎn),求它到兩條直線的距離,然后作和.或者選取直線外的點(diǎn)P,求它到兩條直線的距離,然后作差.由特殊點(diǎn)到任意點(diǎn),由特殊直線到任意直線,從而延伸出兩平行線間的距離.目的是在整個(gè)過(guò)程中,讓學(xué)生注意體會(huì)解題方法中的靈活性以及轉(zhuǎn)化等數(shù)學(xué)思想方法.
(四)[學(xué)生小結(jié) 教師點(diǎn)評(píng)]
1、這一環(huán)節(jié)解決的主要問(wèn)題和達(dá)到的目的是:
通過(guò)師生共同小結(jié),鞏固所學(xué)知識(shí),提煉用到的解決問(wèn)題的方法,其中蘊(yùn)涵的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生歸納概括能力.
2、具體教學(xué)安排:
本節(jié)課小結(jié)主要由學(xué)生完成知識(shí)總結(jié),通過(guò)學(xué)習(xí)知識(shí)所體驗(yàn)到的數(shù)學(xué)思想方法,由學(xué)生總結(jié)和相互補(bǔ)充,教師適當(dāng)點(diǎn)評(píng),加以經(jīng)驗(yàn)總結(jié).
(五)[課外練習(xí)鞏固提高]
① 課本習(xí)題7.3的第13題—16題;
② 總結(jié)寫出點(diǎn)到直線距離公式的多種方法.
設(shè)計(jì)說(shuō)明:作業(yè)1是課本習(xí)題,檢查學(xué)生所學(xué)知識(shí)掌握的程度.作業(yè)2是根據(jù)課堂分析,讓學(xué)生總結(jié)公式推導(dǎo)的方法.除了課堂上想到的方法還可以繼續(xù)思考,比如在用兩點(diǎn)距離公式整體代換等方法,發(fā)揮學(xué)生學(xué)習(xí)的自主性和思維的廣闊性.
四、關(guān)于教學(xué)評(píng)價(jià)的設(shè)計(jì)
新課程標(biāo)準(zhǔn)提出要加強(qiáng)過(guò)程性評(píng)價(jià),因而在具體教學(xué)過(guò)程中,我對(duì)于學(xué)生的語(yǔ)言與行為的表現(xiàn),及時(shí)給予肯定性的表?yè)P(yáng)和鼓勵(lì);學(xué)生思維暴露出問(wèn)題時(shí)及時(shí)評(píng)價(jià),矯正思維方向,調(diào)整教學(xué)思路;為了獲得后反饋信息,布置作業(yè),通過(guò)觀察學(xué)生完成作業(yè)情況,了解學(xué)生在知識(shí)技能和數(shù)學(xué)方法方面的收獲和不足,指導(dǎo)我今后教學(xué).整個(gè)教學(xué)評(píng)價(jià)是在師生互動(dòng)中完成的.
《點(diǎn)到直線距離》說(shuō)課稿5
一、教材分析:
1、地位與作用:解析幾何第一章主要研究的是點(diǎn)線、線線的位置關(guān)系和度量關(guān)系,其中以點(diǎn)點(diǎn)距離、點(diǎn)線距離、線線位置關(guān)系為重點(diǎn),點(diǎn)到直線的距離是其中最重要的環(huán)節(jié)之一,它是解決其它解析幾何問(wèn)題的基礎(chǔ)。本節(jié)是在研究了兩條直線的位置關(guān)系的判定方法的基礎(chǔ)上,研究?jī)蓷l平行線間距離的一個(gè)重要公式。推導(dǎo)此公式不僅完善了兩條直線的位置關(guān)系這一知識(shí)體系,而且也為將來(lái)用代數(shù)方法研究曲線的幾何性質(zhì)奠定了基礎(chǔ)。而更為重要的是:通過(guò)認(rèn)真設(shè)計(jì)這一節(jié)教學(xué),能使學(xué)生在探索過(guò)程中深刻地領(lǐng)悟到蘊(yùn)涵于公式推導(dǎo)中的重要的數(shù)學(xué)思想和方法,學(xué)會(huì)利用化歸思想和分類方法,由淺入深,由特殊到一般地研究數(shù)學(xué)問(wèn)題,同時(shí)培養(yǎng)學(xué)生濃厚的數(shù)學(xué)興趣和良好的學(xué)習(xí)品質(zhì)。
2、重點(diǎn)、難點(diǎn)及關(guān)鍵:重點(diǎn)是“公式的推導(dǎo)和應(yīng)用”,難點(diǎn)是“公式的推導(dǎo)”,關(guān)鍵是“怎樣自然地想到利用坐標(biāo)系中的x軸或y軸構(gòu)造Rt△,從而推出公式”。對(duì)于這個(gè)問(wèn)題,教材中的處理方法是:沒(méi)有說(shuō)明原因直接作輔助線(呈現(xiàn)教材)。這樣做,無(wú)法展現(xiàn)為什么會(huì)想到要構(gòu)造Rt△這一最需要學(xué)生探索的過(guò)程,不利于學(xué)生完整地理解公式的推導(dǎo)和掌握與之相應(yīng)的豐富的數(shù)學(xué)思想方法。如果照本宣科,則不能擺脫在客觀上對(duì)學(xué)生進(jìn)行灌注式教學(xué)。事實(shí)上,為了真正實(shí)現(xiàn)以學(xué)生為主體的教學(xué),讓學(xué)生真正地參與進(jìn)來(lái),起關(guān)鍵作用的是設(shè)計(jì)出有利于學(xué)生參與教學(xué)的內(nèi)容組織形式。因此,我沒(méi)有像教材中那樣直接作輔助線,而是對(duì)教學(xué)內(nèi)容進(jìn)行剪裁、重組和鋪墊,構(gòu)建出在探索結(jié)論過(guò)程中側(cè)重于學(xué)生能力培養(yǎng)的一系列教學(xué)環(huán)節(jié),采用將一般轉(zhuǎn)化到特殊的方法,引導(dǎo)學(xué)生通過(guò)對(duì)特殊的直觀圖形的觀察、研究,自己發(fā)現(xiàn)隱藏其中的Rt△,從而解出|PQ|。在此基礎(chǔ)上進(jìn)一步將特殊問(wèn)題還原到一般,學(xué)生便十分自然地想在坐標(biāo)系中探尋含PQ的Rt△,找不到,自然想到構(gòu)造,此時(shí)再過(guò)P點(diǎn)作x軸或y軸的平行線就顯得“瓜熟蒂落,水到渠成”了。本設(shè)計(jì)力求以啟迪思維為核心,設(shè)計(jì)出能啟發(fā)學(xué)生思維的“最近發(fā)展區(qū)”,從而突破難點(diǎn)的關(guān)鍵,推導(dǎo)出公式。
二、教學(xué)目標(biāo):
1、認(rèn)知目標(biāo):
(1)點(diǎn)到直線距離公式的推導(dǎo),并能用公式計(jì)算。
(2)領(lǐng)會(huì)滲透于公式推導(dǎo)中的數(shù)學(xué)思想(如化歸思想、數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想),掌握用化歸思想來(lái)研究數(shù)學(xué)問(wèn)題的方法。
2、能力目標(biāo):通過(guò)讓學(xué)生在實(shí)踐中探索、觀察、反思、總結(jié),發(fā)現(xiàn)問(wèn)題、解決問(wèn)題,從而達(dá)到培養(yǎng)學(xué)生的觀察能力、歸納能力、思維能力、應(yīng)用能力和創(chuàng)新能力的目的。
3、情感目標(biāo):培養(yǎng)學(xué)生勇于探索、善于研究的精神,挖掘其非智力因素資源,培養(yǎng)其良好的數(shù)學(xué)學(xué)習(xí)品質(zhì)。
三、學(xué)生情況分析:
學(xué)生在此之前已經(jīng)學(xué)習(xí)了點(diǎn)點(diǎn)距離、線線位置關(guān)系,初步掌握了“用代數(shù)的方法研究曲線的性質(zhì)”這一研究解析幾何問(wèn)題的重要方法,并且學(xué)習(xí)了三角函數(shù)的相關(guān)內(nèi)容,這就為構(gòu)造Rt△,利用三角形性質(zhì)以及同角公式推導(dǎo)點(diǎn)到直線的距離公式做好了鋪墊。并且,高二的學(xué)生已經(jīng)基本能夠從特殊的情況中發(fā)現(xiàn)規(guī)律,從而推廣為一般情況,關(guān)鍵是學(xué)生在這個(gè)方面的應(yīng)用意識(shí)還比較淡漠,所以本節(jié)課只要做好這種引導(dǎo)工作,學(xué)生是比較容易理解的。這也是本節(jié)課要突出的“從特殊到一般”的課堂設(shè)計(jì)的原因,能夠使學(xué)生充分地參與進(jìn)來(lái),體會(huì)到成功的喜悅。
四、教學(xué)方法:
本節(jié)課的內(nèi)容實(shí)際上并不是難度很大,關(guān)鍵是推導(dǎo)公式的方法的選擇,一旦找準(zhǔn)推導(dǎo)方法、作出相應(yīng)的輔助線,接下來(lái)的推導(dǎo)過(guò)程就是比較容易完成的。所以
1、遵循“數(shù)學(xué)學(xué)習(xí)的本質(zhì)是主體(學(xué)生)在頭腦中建構(gòu)和發(fā)展數(shù)學(xué)認(rèn)知結(jié)構(gòu)的過(guò)程,是主體的一種再創(chuàng)造行為”的理論,采取以“學(xué)生為主體,教師為主導(dǎo)的”啟發(fā)式、提問(wèn)式教學(xué)方法。
2、根據(jù)“教師應(yīng)尊重學(xué)生主體和主動(dòng)的精神,開發(fā)學(xué)生的智能,形成其健全個(gè)性”的原則,力求營(yíng)造民主的教學(xué)氛圍,使學(xué)生或顯性(答問(wèn)、板演等)或隱性(聆聽,苦思等)地參與全教學(xué)過(guò)程,學(xué)生在教師設(shè)計(jì)的問(wèn)題下,積極思考、動(dòng)手演練、步步深入,讓學(xué)生自己導(dǎo)出公式。
3、采用投影、計(jì)算機(jī)等教學(xué)手段,增大教學(xué)的容量和直觀性,有效提高教學(xué)效率和教學(xué)質(zhì)量。
4、以反饋調(diào)控為手段,力求反饋的全面性(優(yōu)、中、差生)與時(shí)效性(及時(shí)、中肯)。
五、教學(xué)程序:
⑴課題引入:復(fù)習(xí)如何判斷兩條直線的位置關(guān)系?如果兩直線相交,又如何求出交點(diǎn)的坐標(biāo)?這樣有意識(shí)地涉及兩直線垂直、兩直線的交點(diǎn)等知識(shí),既幫助學(xué)生整理、復(fù)習(xí)已學(xué)知識(shí)的結(jié)構(gòu),也讓學(xué)生在復(fù)習(xí)過(guò)程中自己“發(fā)現(xiàn)”尚未解決的問(wèn)題,使新授知識(shí)在原認(rèn)知結(jié)構(gòu)中找到生長(zhǎng)點(diǎn),自然地引出新問(wèn)題,符合學(xué)生的認(rèn)知規(guī)律,有利于學(xué)生形成合理、完善的認(rèn)知結(jié)構(gòu)。(3分鐘)
⑵課題解決:教學(xué)過(guò)程中,利用“從特殊到一般”的方法(由特殊直線到一般直線;由特殊點(diǎn)到一般的點(diǎn)),提出如下問(wèn)題:
先研究點(diǎn)到特殊的直線(平行于x軸和y軸的直線)的距離;
然后對(duì)于一般的直線,先研究特殊的點(diǎn)(原點(diǎn))到直線的距離(可以利用“等面積法”、“三角形相似的性質(zhì)”或“解直角三角形”三種思路求解),再將其解題方法推廣到一般的點(diǎn),就會(huì)自然想到構(gòu)造Rt△進(jìn)行求解了。
逐步逼近目標(biāo),在這過(guò)程中展示了數(shù)學(xué)知識(shí)產(chǎn)生的思維過(guò)程。調(diào)動(dòng)學(xué)生自覺(jué)地、主動(dòng)地參與進(jìn)來(lái),教師的主導(dǎo)作用,學(xué)生的主體作用都得以充分體現(xiàn)。在教學(xué)中只要抓住“構(gòu)造一個(gè)可用的三角形”這個(gè)關(guān)鍵,就能突破難點(diǎn),易于學(xué)生的理解和掌握。(27分鐘)
⑶例題練習(xí):推導(dǎo)出公式之后,通過(guò)例題講解和學(xué)生動(dòng)手練習(xí),進(jìn)一步鞏固公式的記憶和應(yīng)用。(12分鐘)
⑷小結(jié)作業(yè):師生互動(dòng),共同總結(jié)公式的推導(dǎo)過(guò)程以及公式的特征和應(yīng)用,布置課后作業(yè)。(3分鐘)
六、教學(xué)設(shè)計(jì)評(píng)價(jià):
《點(diǎn)到直線的距離公式》是解決理論和實(shí)際問(wèn)題的一個(gè)重要工具,這不僅是其有廣泛的應(yīng)用,而更重要的是公式推導(dǎo)過(guò)程中蘊(yùn)含著重要的數(shù)學(xué)思想,教學(xué)中理應(yīng)予以重視。因而,在設(shè)計(jì)這節(jié)課的教學(xué)方案時(shí),要力求暴露公式推導(dǎo)中的思維過(guò)程,突出整體觀念對(duì)思維過(guò)程的指導(dǎo)作用。但在以往的教學(xué)過(guò)程中遇到的最大困難是:思路自然的則運(yùn)算很繁,而運(yùn)算較簡(jiǎn)單的解法則思路又很不自然。這樣就造成了教學(xué)中通常采用“滿堂灌”、“注入式”,學(xué)生的思維得不到應(yīng)有的訓(xùn)練,學(xué)生的主體作用也不能充分體現(xiàn)出來(lái)。為避免這個(gè)問(wèn)題,有必要很好地探討一下,“點(diǎn)到直線的距離公式”的教學(xué)如何更合理,怎樣把教學(xué)過(guò)程變成師生共同探索、發(fā)現(xiàn)公式的過(guò)程,怎樣使推導(dǎo)過(guò)程自然而簡(jiǎn)練。
本節(jié)課是“兩條直線的位置關(guān)系”的最后一個(gè)內(nèi)容,在復(fù)習(xí)引入時(shí),有意識(shí)地涉及兩直線垂直、兩直線的交點(diǎn)等知識(shí),既幫助學(xué)生整理、復(fù)習(xí)已學(xué)知識(shí)的結(jié)構(gòu),也讓學(xué)生在復(fù)習(xí)過(guò)程中自己“發(fā)現(xiàn)”尚未解決的問(wèn)題,使新授知識(shí)在原認(rèn)知結(jié)構(gòu)中找到生長(zhǎng)點(diǎn),自然地引出新問(wèn)題,符合學(xué)生的認(rèn)知規(guī)律,有利于學(xué)生形成合理、完善的認(rèn)知結(jié)構(gòu)。教學(xué)過(guò)程中,逐步逼近目標(biāo),在這過(guò)程中展示了數(shù)學(xué)知識(shí)產(chǎn)生的思維過(guò)程。學(xué)生能夠自覺(jué)地、主動(dòng)地參與進(jìn)來(lái),教師的主導(dǎo)作用、學(xué)生的主體作用都得以充分體現(xiàn),經(jīng)常這樣做,學(xué)生的數(shù)學(xué)思維能力必將逐步得到提高。在教學(xué)中只要抓住“構(gòu)造一個(gè)可用的三角形”這個(gè)關(guān)鍵,就能突破難點(diǎn),還可以采用其他的方法推導(dǎo)“點(diǎn)到直線的距離”公式,易于學(xué)生的理解和掌握。
這堂課,既是一堂新課,也是實(shí)驗(yàn)課;既學(xué)習(xí)了新知識(shí),也鍛煉了用從特殊到一般,再?gòu)囊话愕教厥獾乃季S方法分析解決問(wèn)題的能力,提高了學(xué)生使用現(xiàn)代化工具的動(dòng)手能力;也讓學(xué)生感受到數(shù)學(xué)變化的美;也在學(xué)生個(gè)性情感中融入了創(chuàng)新的意識(shí)與膽量。
《點(diǎn)到直線距離》說(shuō)課稿6
教學(xué)目標(biāo):
(1)至少掌握點(diǎn)到直線的距離公式的一種推導(dǎo)方法,能用公式來(lái)求點(diǎn)到直線距離。
(2)培養(yǎng)學(xué)生探究能力和由特殊到一般的研究問(wèn)題的能力。
(3)認(rèn)識(shí)事物(知識(shí))之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學(xué)生轉(zhuǎn)化的思想和綜合應(yīng)用知識(shí)分析問(wèn)題解決問(wèn)題的能力。
(4)培養(yǎng)學(xué)生團(tuán)隊(duì)合作精神,培養(yǎng)學(xué)生個(gè)性品質(zhì),培養(yǎng)學(xué)生勇于探究的科學(xué)精神。
教學(xué)重點(diǎn):點(diǎn)到直線的距離公式推導(dǎo)及公式的應(yīng)用
教學(xué)難點(diǎn):點(diǎn)到直線的距離公式的推導(dǎo)
教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法、討論法
學(xué)習(xí)方法:任務(wù)驅(qū)動(dòng)下的研究性學(xué)習(xí)
教學(xué)時(shí)間:45分鐘
教學(xué)過(guò)程:
1、教師提出問(wèn)題,引發(fā)認(rèn)知沖突(約5分鐘)
問(wèn)題:假定在直角坐標(biāo)系上,已知一個(gè)定點(diǎn)P(x0,y0)和一條定直線l:AxByC=0,那么如何求點(diǎn)P到直線l的距離d?請(qǐng)學(xué)生思考并回答。
學(xué)生1:先過(guò)點(diǎn)P作直線l的垂線,垂足為Q,則|PQ|就是點(diǎn)P到直線l的距離d;然后用點(diǎn)斜式寫出垂線方程,并與原直線方程聯(lián)立方程組,此方程組的解就是點(diǎn)Q的坐標(biāo);最后利用兩點(diǎn)間距離公式求出|PQ|。
接著,教師用投影出示下列5道題(嘗試性題組),請(qǐng)5位學(xué)生上黑板練習(xí)(第(4)題請(qǐng)一位運(yùn)算能力強(qiáng)的同學(xué),其余學(xué)生在下面自己練習(xí),每做完一題立即講評(píng)):
(1)求P(1,2)到直線l:x=3的距離d;(答案:d=2)
(2)求P(x0,y0)到直線l:ByC=0(B≠0)的距離d;(答案:)
(3)求P(x0,y0)到直線l:AxC=0(A≠0)的距離d;(答案:)
(4)求P(6,7)到直線l:3x—4y5=0的距離d;(答案:d=1)
(5)求P(x0,y0)到直線l:AxByC=0(AB≠0)的距離d。
第(1)容易、(2)和(3)題雖然含有字母參數(shù),但由于直線的位置比較特殊,學(xué)生不難得出正確結(jié)論;第(4)題雖然運(yùn)算量較大,但按照剛才學(xué)生1回答的方法與步驟,也能順利解出正確答案;第(5)題雖然思路清晰,但由于字母參數(shù)過(guò)多、運(yùn)算量太大行不通。學(xué)生們陷入了困境。
2、教師啟發(fā)引導(dǎo),學(xué)生走出困境(約8分鐘)
教師:根據(jù)以上5位學(xué)生的運(yùn)算結(jié)果,你能得到什么啟示?
學(xué)生2:當(dāng)直線的位置比較特殊(水平或豎直)時(shí),點(diǎn)到直線的距離容易求得,而當(dāng)直線是傾斜位置時(shí)則較難;含有多個(gè)字母時(shí)雖然想起來(lái)思路很自然,但具體操作起來(lái)因計(jì)算量很大而無(wú)法得出結(jié)果。
教師:那么,練習(xí)(5)有沒(méi)有運(yùn)算量小一點(diǎn)的推導(dǎo)方法呢?我們能不能根據(jù)剛才的第(2)、(3)的啟示,借助水平、豎直情形和平面幾何知識(shí)來(lái)解決傾斜即一般情況呢?請(qǐng)同學(xué)們思考。
學(xué)生3:能!如圖1,過(guò)點(diǎn)P作x、y軸的垂線分別交直線l于S、R,則由三角形面積公式可得
|PQ|=(|PR|·|PS|)/|RS|
教師:|PR|怎么求?|PS|又怎么求?
學(xué)生3:設(shè)R(x1,y0),則由Ax1By0C=0,
得x1=—(By0C)/A,
∴|PR|=|x0—x1|=|Ax0By0C|/|A|;
同理:|PS|=|Ax0By0C|/|B|。
教師:|RS|怎么求?
學(xué)生3:|RS|==(/|AB|)·|Ax0By0C|。
教師:|PQ|結(jié)果是什么?
學(xué)生3:|PQ|=。
教師:公式的這種推導(dǎo)方法是否需要作補(bǔ)充說(shuō)明?
學(xué)生4:當(dāng)A=0或B=0時(shí),ΔPRS不存在,故應(yīng)說(shuō)明公式當(dāng)A=0或B=0時(shí)是否適用?
由(2)、(3)檢驗(yàn)可知公式依然成立,即公式對(duì)任意直線都適用。
3、教師提出問(wèn)題,學(xué)生分組討論(約10分鐘)
教師:推導(dǎo)點(diǎn)到直線的距離公式的方法不少。前面我們學(xué)了函數(shù)、三角函數(shù)、向量、不等式等數(shù)學(xué)知識(shí),你能用所學(xué)過(guò)的知識(shí)從不同角度、采用不同方法來(lái)推導(dǎo)這個(gè)公式嗎?請(qǐng)同學(xué)們先獨(dú)立思考,然后在小組上進(jìn)行討論交流,由組長(zhǎng)負(fù)責(zé)記錄。10分鐘后每組推選一名代表對(duì)本組找到的最好的一種推導(dǎo)方法通過(guò)實(shí)物投影進(jìn)行“成果”交流。
學(xué)生們積極探討;教師來(lái)回巡視,回答各研究小組的詢問(wèn)......
4、學(xué)生交流“成果”,教師點(diǎn)評(píng)小結(jié)(約16分鐘)
經(jīng)過(guò)約十分鐘的研討,各小組都找到了新的推導(dǎo)方法。于是教師請(qǐng)4名代表依次上講臺(tái)(讓準(zhǔn)備成熟的先講),借助實(shí)物投影介紹本組的“成果”。由于時(shí)間關(guān)系,每組只要求講一種方法,用時(shí)不超過(guò)4分鐘,且各組的方法不能重復(fù)。
學(xué)生5:我們用的是“設(shè)而不求,整體代換”的數(shù)學(xué)思想。請(qǐng)看投影屏幕:
設(shè)Q的坐標(biāo)為(x1,y1),則直線PQ的斜率k1=,又直線l的斜率k=—,于是由PQ⊥l得,k1k=—1即B(x1—x0)—A(y1—y0)=0①
又因?yàn)锳x1By1C=0,即Ax1By1=—C
兩邊同減Ax0By0得A(x1—x0)B(y1—y0)=—(Ax0By0C)②
于是①2②2得,(A2B2)[(x1—x0)2(y1—y0)2]=(Ax0By0C)2,
即(A2B2)d2=(Ax0By0C)2
所以d=。
教師:“設(shè)而不求,整體代換”,真是奧妙無(wú)窮,這是解析幾何減少運(yùn)算量的有效途徑,同時(shí)也體現(xiàn)了數(shù)學(xué)的內(nèi)在美,妙不可言。
學(xué)生6:我們小組向大家介紹一種獨(dú)特的方法——向量法,請(qǐng)看投影屏幕:
如圖2,設(shè)T(x1,y1)為直線l上的任意一點(diǎn),則Ax1By1C=0,=(x1—x0,y1—y0)
∵PQ⊥直線l,
∴平行于直線l的法向量=(A,B)
另設(shè)與的夾角為θ,則·=cosθ
即|A(x1—x0)B(y1—y0)|=|||cosθ|
即|Ax0By0C|=·d
∴d=。
教師:向量是數(shù)量與圖形的有機(jī)結(jié)合,解析幾何是用代數(shù)的方法解決幾何問(wèn)題,兩者都體現(xiàn)了數(shù)形結(jié)合的思想,第三小組的推導(dǎo)方法證明了這一點(diǎn),也再次說(shuō)明了向量具有很強(qiáng)的實(shí)用性與工具性,用向量法解解析幾何題確實(shí)行之有效。
學(xué)生7::我們小組向大家介紹向量的另一種方法,妙用向量數(shù)量積的性質(zhì).請(qǐng)看投影屏幕:
如圖3,設(shè)垂足是點(diǎn)H(m,n),
直線l的法向量共線,
這是相當(dāng)簡(jiǎn)單的方法了。
教師:巧妙利用向量數(shù)量積的性質(zhì)來(lái)求距離,簡(jiǎn)直是“巧奪天工”,與其他方法相比,這種方法有絕對(duì)優(yōu)勢(shì),我們必須重視對(duì)向量工具性的研究和應(yīng)用。
學(xué)生8:剛才三個(gè)小組的證明方法確實(shí)精彩,我們也發(fā)現(xiàn)了一種巧妙的方法,把它稱為“柯西不等式法”,請(qǐng)看投影屏幕:
我們知道,P點(diǎn)到直線l的距離,實(shí)質(zhì)上是點(diǎn)P與直線l上任意一點(diǎn)T的距離的最小值,于是我們?cè)O(shè)T(x1,y1)為直線l上的任一點(diǎn)(如圖2),則Ax1By1C=0,
而d=|PT|min,于是|PT|=
=×,
利用柯西不等式,便有|PT|≥=,
所以d=,此時(shí),即PT垂直于直線l。
教師:這一證法果然十分巧妙,包含的數(shù)學(xué)思想十分豐富。由點(diǎn)到直線的距想到最小值,又由最小值想到不等式,在一步步“轉(zhuǎn)化”中問(wèn)題得到圓滿解決。同時(shí)也體現(xiàn)了不等式的工具作用。
5、公式應(yīng)用(學(xué)生練習(xí),約3分鐘)
(1)求P(6,7)到直線l:3x—4y5=0的距離d。
(直接代公式得答案:d=1,檢驗(yàn)嘗試性題組第(4)的答案)
(2)求P(—1,1)到直線l:的距離d。
(先化直線方程為一般式再代公式得答案:)
6、教師小結(jié)并布置作業(yè)(約1分鐘)
這節(jié)課我們學(xué)習(xí)了點(diǎn)到直線的距離公式,在公式的推導(dǎo)中學(xué)到了許多重要的數(shù)學(xué)思想和方法,感受到了數(shù)學(xué)的奧妙,也感受到了成功的喜悅。其實(shí)這個(gè)公式的推導(dǎo)方法不下十種,由于課堂上時(shí)間緊,許多同學(xué)有創(chuàng)造性的推導(dǎo)方法不能進(jìn)行展示、交流,請(qǐng)同學(xué)們撰寫一篇題為《點(diǎn)到直線距離公式的多種推導(dǎo)方法》的數(shù)學(xué)小論文,作為本節(jié)課的作業(yè),允許三到四人合作完成。
設(shè)計(jì)說(shuō)明:
數(shù)學(xué)公式的教學(xué)應(yīng)包含兩個(gè)部分:公式的推導(dǎo)和公式的運(yùn)用。由于受應(yīng)試教育的影響,前者往往被“輕描淡寫”,而后者卻搞得“轟轟烈烈”,這顯然與“重結(jié)論,但更重過(guò)程”的現(xiàn)代教育理念相違背。其實(shí)數(shù)學(xué)公式的推導(dǎo)都蘊(yùn)含著豐富的數(shù)學(xué)思想和數(shù)學(xué)方法,誰(shuí)忽視了這個(gè)“產(chǎn)生過(guò)程”,誰(shuí)就忽視了數(shù)學(xué)的“精髓”,誰(shuí)就忽視了學(xué)生探究性思維品質(zhì)的培養(yǎng)。
這節(jié)課把研究性學(xué)習(xí)引入公式的教學(xué),讓學(xué)生真正成為課堂的主人。在推導(dǎo)公式的過(guò)程中,學(xué)生通過(guò)克服困難的經(jīng)歷,以及獲得成功的體驗(yàn),鍛煉了意志,增強(qiáng)了信心。其實(shí)所有公式的教學(xué)、定理的教學(xué)都應(yīng)向這個(gè)方向努力。
數(shù)學(xué)教學(xué),從根本上講就是提高學(xué)生的數(shù)學(xué)素質(zhì),提高學(xué)生的數(shù)學(xué)素質(zhì)的有效途徑有二:其一,使學(xué)生善于總結(jié),使零亂的知識(shí)系統(tǒng)化、綜合化;其二,使學(xué)生善于聯(lián)想,培養(yǎng)發(fā)散性思維。本節(jié)課使學(xué)會(huì)從不同的角度思考問(wèn)題,加強(qiáng)知識(shí)間的聯(lián)系,正是鍛練、提高學(xué)生運(yùn)用知識(shí)分析問(wèn)題和解決問(wèn)題的能力,從而提高數(shù)學(xué)素質(zhì)。
通過(guò)公式求點(diǎn)到直線的距離并不困難,但這個(gè)公式的推導(dǎo)方法不下十種,且各種推導(dǎo)都蘊(yùn)含著重要的數(shù)學(xué)思想、方法,由于課堂上時(shí)間緊,許多同學(xué)的有創(chuàng)造性的推導(dǎo)方法不能進(jìn)行展示、交流,故課外請(qǐng)同學(xué)們撰寫一篇題為《點(diǎn)到直線距離公式的多種推導(dǎo)方法》的數(shù)學(xué)小論文作為本節(jié)課的作業(yè)??紤]到同學(xué)的個(gè)體差異,故允許三到四人合作完成。同時(shí)通過(guò)學(xué)生小論文的完成情況對(duì)這節(jié)課的教學(xué)效果作出評(píng)價(jià)。
本課設(shè)計(jì)有一定的彈性,實(shí)際教學(xué)中,學(xué)生想到的推導(dǎo)方法不一定是上述幾種,我將針對(duì)每一種方法的特點(diǎn)進(jìn)行適當(dāng)?shù)狞c(diǎn)評(píng)。進(jìn)行交流的學(xué)生不一定是四人,若時(shí)間不夠,公式應(yīng)用留到下節(jié)課,本節(jié)課只完成公式推導(dǎo)。
《點(diǎn)到直線距離》說(shuō)課稿7
尊敬的領(lǐng)導(dǎo)、老師:
大家好,我今天說(shuō)課的內(nèi)容是,九年義務(wù)教育小學(xué)數(shù)學(xué)蘇教版四年級(jí)上冊(cè)第四單元第三節(jié)的內(nèi)容。接下來(lái),我將從以下幾個(gè)方面進(jìn)行我的說(shuō)課。
【說(shuō)教材】:
本課是小學(xué)數(shù)學(xué)空間與圖形中的學(xué)習(xí)內(nèi)容,它是在學(xué)生認(rèn)識(shí)了兩條直線的垂直關(guān)系的基礎(chǔ)上安排的。教材在例題中呈現(xiàn)了從一點(diǎn)向已知直線所畫的一條垂直線段和幾條不垂直的線段,讓學(xué)生通過(guò)度量,發(fā)現(xiàn)在這幾條線段中垂直的線段最短,這是垂直線段的性質(zhì)。接著揭示了點(diǎn)到直線距離的概念:從直線外一點(diǎn)到這條直線所畫的垂直線段的長(zhǎng)度,叫做這點(diǎn)到這條直線的距離?!跋胂胱鲎觥卑才帕?道題,第一題讓學(xué)生測(cè)量點(diǎn)到直線的距離;第二題讓學(xué)生在兩條平行線之間畫幾條與平行線垂直的線段,并測(cè)量這些線段的長(zhǎng)度,發(fā)現(xiàn)這些線段同樣長(zhǎng);第3、4兩題是點(diǎn)到直線的距離和垂直線段的性質(zhì)在日常生活中的具體運(yùn)用。
【說(shuō)教學(xué)目標(biāo)】:
1、知識(shí)與能力目標(biāo):讓學(xué)生經(jīng)歷垂直線段的性質(zhì)的探索過(guò)程,知道從直線外一點(diǎn)到已知直線所畫的線段中垂直線段最短,知道點(diǎn)到直線的距離。會(huì)測(cè)量點(diǎn)到直線的距離,會(huì)利用垂直線段的性質(zhì)解釋一些生活現(xiàn)象。
2、過(guò)程與方法目標(biāo):讓學(xué)生在學(xué)習(xí)過(guò)程中進(jìn)一步發(fā)展觀察能力、實(shí)踐能力,體會(huì)數(shù)與形的聯(lián)系,發(fā)展空間觀念。
3、情感與態(tài)度目標(biāo):讓學(xué)生進(jìn)一步體會(huì)數(shù)學(xué)和現(xiàn)實(shí)生活的聯(lián)系,進(jìn)一步培養(yǎng)數(shù)學(xué)應(yīng)用意識(shí)和學(xué)習(xí)數(shù)學(xué)的積極情感。
【教學(xué)重點(diǎn)】:
引導(dǎo)學(xué)生發(fā)現(xiàn)垂直線段的性質(zhì),理解點(diǎn)到直線的距離的概念。
【教學(xué)難點(diǎn)】:
認(rèn)識(shí)點(diǎn)到直線的距離,并能解決一些實(shí)際的問(wèn)題。
【說(shuō)教法和學(xué)法】:
新課標(biāo)要求我們?cè)趯?shí)際課堂教學(xué)中應(yīng)“激發(fā)學(xué)生獨(dú)立思考和創(chuàng)新的意識(shí),讓學(xué)生感受理解知識(shí)產(chǎn)生和發(fā)展的過(guò)程”。本節(jié)課借助多媒體,讓學(xué)生結(jié)合具體生活情境充分感知垂直線段最短,形成點(diǎn)到直線距離的概念。通過(guò)讓學(xué)生在畫一畫、量一量的操作活動(dòng)中加深學(xué)生對(duì)點(diǎn)到直線距離概念及垂直線段性質(zhì)的認(rèn)識(shí)。在操作活動(dòng)中,不僅培養(yǎng)學(xué)生學(xué)會(huì)與人交流合作的能力,還調(diào)動(dòng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的積極參與程度。
【說(shuō)教學(xué)過(guò)程】:
遵循學(xué)生學(xué)習(xí)數(shù)學(xué)的心理規(guī)律,從學(xué)生已有的生活經(jīng)驗(yàn)和知識(shí)體驗(yàn)出發(fā),我從三個(gè)環(huán)節(jié)來(lái)詮釋整個(gè)教學(xué)過(guò)程。
第一環(huán)節(jié):復(fù)習(xí)舊知
通過(guò)提問(wèn)和作圖幫助學(xué)生梳理了本單元已學(xué)的知識(shí),并為下面的教學(xué)做好鋪墊。
第二環(huán)節(jié):創(chuàng)設(shè)情境,學(xué)習(xí)新知
1、通過(guò)預(yù)設(shè)的接力賽跑活動(dòng)激發(fā)學(xué)生學(xué)習(xí)積極性。
2、提出比賽規(guī)則,出示比賽場(chǎng)景圖,讓學(xué)生初步發(fā)現(xiàn)垂直線段最短。
3、讓學(xué)生自己測(cè)量5條線段的長(zhǎng)度,并發(fā)現(xiàn)其中的垂直線段最短,認(rèn)識(shí)垂直線段的性質(zhì)。
4、教師指出點(diǎn)到直線的距離概念,指名學(xué)生說(shuō)說(shuō)什么叫“點(diǎn)到直線的距離”幫助學(xué)生更好理解概念。
第三環(huán)節(jié):鞏固新知,深化認(rèn)識(shí)
1、第一題讓學(xué)生說(shuō)說(shuō)什么叫“點(diǎn)到直線的距離”,再測(cè)量點(diǎn)到直線的距離,加深學(xué)生對(duì)概念的理解并發(fā)展學(xué)生的動(dòng)手操作能力。
2、第二題讓學(xué)生在兩條平行線之間畫幾條與平行線垂直的線段,并測(cè)量這些線段的長(zhǎng)度,發(fā)現(xiàn)這些線段同樣長(zhǎng);
3、第3、4兩題是點(diǎn)到直線的距離和垂直線段的性質(zhì)在日常生活中的具體運(yùn)用。加深學(xué)生對(duì)數(shù)學(xué)知識(shí)的理解,使學(xué)生體會(huì)學(xué)習(xí)數(shù)學(xué)的價(jià)值培養(yǎng)其數(shù)學(xué)應(yīng)用意識(shí)。
第四環(huán)節(jié):全課總結(jié)。
首先讓學(xué)生自己說(shuō)說(shuō),通過(guò)今天的學(xué)習(xí),你們學(xué)會(huì)了什么?學(xué)生自己小結(jié),對(duì)所學(xué)過(guò)的知識(shí)進(jìn)行整理,既能了解學(xué)生的掌握情況,又能培養(yǎng)學(xué)生的概括能力。教師及時(shí)給予評(píng)價(jià),讓學(xué)生體驗(yàn)成功,增強(qiáng)學(xué)習(xí)的信心。
《點(diǎn)到直線距離》說(shuō)課稿8
尊敬的各位評(píng)委、老師:
您們好!
今天我說(shuō)課的內(nèi)容是人教版高二第二冊(cè)(上)第七章第三節(jié)第4課時(shí):“點(diǎn)到直線的距離”.
下面根據(jù)我寫的教案,把我對(duì)本節(jié)課的教材分析、教學(xué)方法和教學(xué)用具、教學(xué)過(guò)程以及教學(xué)評(píng)價(jià)等方面的認(rèn)識(shí)做一個(gè)說(shuō)明.敬請(qǐng)各位專家多提寶貴意見.
一、關(guān)于教材分析
1、教材的地位和作用
“點(diǎn)到直線的距離”是在學(xué)生學(xué)習(xí)直線方程的基礎(chǔ)上,進(jìn)一步研究?jī)芍本€位置關(guān)系的一節(jié)內(nèi)容,我們知道兩條直線相交后,進(jìn)一步的量化關(guān)系是角度,而兩條直線平行后,進(jìn)一步的量化關(guān)系是距離,而平行線間的距離是通過(guò)點(diǎn)到直線距離來(lái)解決的.此外在研究直線與圓的位置關(guān)系、曲線上的點(diǎn)到直線的距離以及解析幾何中有關(guān)三角形面積的計(jì)算等問(wèn)題時(shí),都要涉及點(diǎn)到直線的距離.所以“點(diǎn)到直線的距離公式”是平面解析幾何的一個(gè)重要知識(shí)點(diǎn).由于這一節(jié)是直線內(nèi)容的結(jié)尾部分,學(xué)生已經(jīng)具備直線的有關(guān)知識(shí)(如交點(diǎn)、垂直、向量、三角形等),因此,一方面公式的推導(dǎo)成為可能,另一方面公式的推導(dǎo)也是檢驗(yàn)學(xué)生是否真正掌握所學(xué)知識(shí)點(diǎn)的一個(gè)很好的課題.通過(guò)公式推導(dǎo)的獲得,可以培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力,以及自主探究和合作學(xué)習(xí)的能力.
2教學(xué)目標(biāo)分析
我確定教學(xué)目標(biāo)的依據(jù)有以下三條:
(1)教學(xué)大綱、考試大綱的要求
(2)新教材的特點(diǎn)
(3)所教學(xué)生的實(shí)際情況
教學(xué)目標(biāo)包括:知識(shí)、能力、德育等方面的內(nèi)容.
“點(diǎn)到直線的距離公式”是平面解析幾何重要的基礎(chǔ)知識(shí),也是教學(xué)大綱和考試大綱要求掌握的一個(gè)知識(shí)點(diǎn).按照大綱“在傳授知識(shí)的同時(shí),滲透數(shù)學(xué)思想方法,培養(yǎng)學(xué)生數(shù)學(xué)能力”的教學(xué)要求,結(jié)合新教材向量的引入,又根據(jù)所帶班級(jí)學(xué)生基礎(chǔ)和素質(zhì)教好的情況,我把本節(jié)課的教學(xué)目標(biāo)確定為:
(1)讓學(xué)生理解點(diǎn)到直線距離公式的推導(dǎo)思想,掌握點(diǎn)到直線距離公式及其應(yīng)用,會(huì)用點(diǎn)到直線距離求兩平行線間的距離;
(2)通過(guò)推導(dǎo)公式方法的發(fā)現(xiàn),培養(yǎng)學(xué)生觀察、思考、分析、歸納等數(shù)學(xué)能力;在推導(dǎo)過(guò)程中,滲透數(shù)形結(jié)合、轉(zhuǎn)化(或化歸)等數(shù)學(xué)思想以及特殊與一般的方法;
(3)通過(guò)本節(jié)學(xué)習(xí),引導(dǎo)學(xué)生用聯(lián)系與轉(zhuǎn)化的觀點(diǎn)看問(wèn)題,體驗(yàn)在探索問(wèn)題的過(guò)程中獲得的成功感.
3、教學(xué)重點(diǎn):點(diǎn)到直線距離公式的推導(dǎo)和應(yīng)用.
教學(xué)難點(diǎn):發(fā)現(xiàn)點(diǎn)到直線距離公式的推導(dǎo)方法.
二、關(guān)于教學(xué)方法和教學(xué)用具的說(shuō)明
1、教學(xué)方法的選擇
(1)指導(dǎo)思想:在“以生為本”理念的指導(dǎo)下,充分體現(xiàn)“教師為主導(dǎo),學(xué)生為主體”.
(2)教學(xué)方法:?jiǎn)栴}解決法、討論法等.
本節(jié)課的任務(wù)主要是公式推導(dǎo)思路的獲得和公式的推導(dǎo)及應(yīng)用.我選擇的是問(wèn)題解決法、討論法等.通過(guò)一系列問(wèn)題,創(chuàng)造思維情境,通過(guò)師生互動(dòng),讓學(xué)生體驗(yàn)、探究、發(fā)現(xiàn)知識(shí)的形成和應(yīng)用過(guò)程,以及思考問(wèn)題的方法,促進(jìn)思維發(fā)展;學(xué)生自主學(xué)習(xí),分工合作,使學(xué)生真正成為教學(xué)的主體.
2、教學(xué)用具的選用
在選用教學(xué)用具時(shí),我考慮到,在本節(jié)課的公式推導(dǎo)和例題求解中思路較多,所以采用了計(jì)算機(jī)多媒體和實(shí)物投影儀作為輔助教具.它可以將數(shù)學(xué)問(wèn)題形象、直觀顯示,便于學(xué)生思考,實(shí)物投影儀展示學(xué)生不同解題方案,提高課堂效率.
三、關(guān)于教學(xué)過(guò)程的設(shè)計(jì)
“數(shù)學(xué)是思維的體操”,一題多解可以培養(yǎng)和提高學(xué)生思維的靈活性,及分析問(wèn)題和解決問(wèn)題的能力.課程標(biāo)準(zhǔn)指出,教學(xué)中應(yīng)注意溝通各部分內(nèi)容之間的聯(lián)系,通過(guò)類比、聯(lián)想、知識(shí)的遷移和應(yīng)用等方式,使學(xué)生體會(huì)知識(shí)間的有機(jī)聯(lián)系,感受數(shù)學(xué)的整體性.課標(biāo)又指出,鼓勵(lì)學(xué)生積極參與教學(xué)活動(dòng).為此,在具體教學(xué)過(guò)程中,把本節(jié)課分為以下:“創(chuàng)設(shè)情境提出問(wèn)題——自主探索推導(dǎo)公式——變式訓(xùn)練學(xué)會(huì)應(yīng)用——學(xué)生小結(jié)教師點(diǎn)評(píng)——課外練習(xí)鞏固提高”五個(gè)環(huán)節(jié)來(lái)完成.下面對(duì)每個(gè)環(huán)節(jié)進(jìn)行具體說(shuō)明.
(一)[創(chuàng)設(shè)情境提出問(wèn)題]
1、這一環(huán)節(jié)要解決的主要問(wèn)題是:
創(chuàng)設(shè)情境,引導(dǎo)學(xué)生分析實(shí)際問(wèn)題,由實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,揭示本課任務(wù).同時(shí)激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生數(shù)學(xué)建模能力.
2、具體教學(xué)安排:
多媒體顯示實(shí)例,電信局線路問(wèn)題,實(shí)際怎樣解決?能否轉(zhuǎn)化為解析幾何問(wèn)題?
學(xué)生很快想到建立坐標(biāo)系.如何建立坐標(biāo)系?建系不同,點(diǎn)和直線方程不同,用點(diǎn)的坐標(biāo)和直線方程如何解決距離問(wèn)題,由此引出本課課題“點(diǎn)到直線的距離”.
(二)[自主探索推導(dǎo)公式]
1、這一環(huán)節(jié)要解決的主要問(wèn)題是:
充分發(fā)揮學(xué)生的主體作用,引導(dǎo)學(xué)生發(fā)現(xiàn)點(diǎn)到直線距離公式的推導(dǎo)方法,并推導(dǎo)出公式.在公式的推導(dǎo)過(guò)程中,圍繞兩條線索:明線為知識(shí)的學(xué)習(xí),暗線為特殊與一般的邏輯方法以及轉(zhuǎn)化、數(shù)形結(jié)合等數(shù)學(xué)思想的滲透.
2、具體教學(xué)安排:
2.1學(xué)生初探解決特例
首先提出問(wèn)題:怎樣用解析幾何方法求解點(diǎn)到直線距離?由于字母的運(yùn)算有難度,引導(dǎo)學(xué)生從直線的特殊情況入手,這樣問(wèn)題比較容易解決.學(xué)生應(yīng)該能想到,如果直線是坐標(biāo)軸或平行坐標(biāo)軸的時(shí)候問(wèn)題比較容易解決,給予學(xué)生肯定的評(píng)價(jià).學(xué)生自己完成推導(dǎo)過(guò)程,選兩名學(xué)生進(jìn)行板演.
2.2師生互動(dòng)獲取思路
特殊情況已經(jīng)解決,引導(dǎo)學(xué)生考慮一般直線的情況.通過(guò)學(xué)生思考,教師收集得到思路一:過(guò)P作PQ ⊥ l于Q點(diǎn),根據(jù)點(diǎn)斜式寫出直線PQ方程,由PQ與l聯(lián)立方程組解得Q點(diǎn)坐標(biāo),然后利用兩點(diǎn)距離公式求得.
我及時(shí)評(píng)價(jià)這種方法思路自然,是一種解決辦法.為了拓展學(xué)生思維,我們根據(jù)已有的知識(shí)和經(jīng)驗(yàn),還有什么辦法能解決?為此我啟發(fā)學(xué)生,提出問(wèn)題:
(1)求線段長(zhǎng)度可以構(gòu)造圖形嗎?
(2)什么圖形?如何構(gòu)造?(學(xué)生經(jīng)過(guò)討論,得到構(gòu)造三角形,把線段放在直角三角形中.)但是如何構(gòu)造又是一個(gè)難點(diǎn).
(3)第三個(gè)頂點(diǎn)在什么位置?
(4)特殊情況與一般情況有聯(lián)系嗎?
學(xué)生通過(guò)觀察、討論會(huì)提出第三個(gè)頂點(diǎn)的不同位置:可能在直線l與x軸的交點(diǎn)M或與y軸交點(diǎn)N;或根據(jù)特殊情況的證法提示,過(guò)P點(diǎn)作x、y軸的平行線與直線l的交點(diǎn)R、S.或同時(shí)做x、y軸平行線.這樣就收集到思路二、三、四.
三種思路已經(jīng)有了,它們的共性是什么?學(xué)生能觀察出都在三角形中.我繼續(xù)引導(dǎo):能不能不構(gòu)造三角形?而是其它數(shù)學(xué)相關(guān)量?我們剛學(xué)習(xí)了向量知識(shí),能否用向量知識(shí)解決問(wèn)題呢?(由于在前面學(xué)習(xí)的向量知識(shí)中,向量的??梢员硎緝牲c(diǎn)之間的距離,而證明兩直線垂直時(shí)也已經(jīng)用到向量知識(shí),法向量又是本節(jié)課后閱讀材料,本班學(xué)生基礎(chǔ)和素質(zhì)較好,在學(xué)習(xí)直線方向向量時(shí)已經(jīng)布置閱讀).
提出問(wèn)題:線段的長(zhǎng)度就是對(duì)應(yīng)向量的模,那么如何求得向量PQ的模呢?根據(jù)實(shí)際情況提示一方面PQ的方向完全由直線的方向而定(與法向量共線),另一方面PQ的長(zhǎng)度又與點(diǎn)P有關(guān),它的長(zhǎng)度又如何控制下來(lái)?所以有思路五,由師生一起分析,取λλ(A, B )法向量n=,而PQ = n,以下只要求得,就可以得到距離.
2.3分工合作自主完成
學(xué)生提出了不同的解決方案,究竟哪種好呢?如果讓每位學(xué)生都去用不同解法探求,在課堂上時(shí)間顯然是不允許的,但教學(xué)中又要培養(yǎng)學(xué)生的運(yùn)算能力,如何解決這種矛盾呢?現(xiàn)代教育要求學(xué)生要有自主學(xué)習(xí)、合作學(xué)習(xí)能力,因此我叫學(xué)生對(duì)五種思路進(jìn)行分組練習(xí).
在學(xué)生求解過(guò)程中,我巡視,觀看學(xué)生解題,了解情況,根據(jù)課堂時(shí)間的實(shí)際情況,選取做好的學(xué)生的解題過(guò)程用實(shí)物投影儀顯示.這樣不僅能讓全體學(xué)生看到不同思路的具體解法,還能得出最佳解題方案,接著我展示最佳解題方案的規(guī)范步驟.目的讓學(xué)生有良好的規(guī)范的書面表達(dá)習(xí)慣,起到教師典范的作用.
2.4公式小結(jié)概括提升
公式推導(dǎo)出,學(xué)生有了成功的喜悅.我也給予了肯定.但是由于公式的結(jié)果是一般情況得出的,而對(duì)于當(dāng)A = 0,或B = 0時(shí),點(diǎn)在直線上是否成立,它們與當(dāng)AB ≠ 0時(shí),點(diǎn)在直線外有什么關(guān)系?這并沒(méi)有驗(yàn)證.而我們要求學(xué)生考慮問(wèn)題要全面,為此我提出提問(wèn):①上式是由條件下當(dāng)AB ≠ 0時(shí)得出,對(duì)當(dāng)A = 0,或B = 0時(shí)成立嗎?②點(diǎn)P在直線l上成立嗎?③公式結(jié)構(gòu)特點(diǎn)是什么?用公式時(shí)直線方程是什么形式?通過(guò)學(xué)生的討論,使學(xué)生了解公式適用的范圍:任意點(diǎn)、任意直線.同時(shí)體現(xiàn)整體認(rèn)識(shí)和分類討論思想.
依據(jù)新課程的理念,教師要?jiǎng)?chuàng)造性地使用教材.在公式的推導(dǎo)過(guò)程中,我做了和教材不同的處理方法:(1)先特殊后一般的證法,(2)多角度構(gòu)造三角形,(3)知識(shí)聯(lián)系,向量解決.目的是讓學(xué)生在考慮問(wèn)題時(shí)有特殊到一般的意識(shí),符合學(xué)生認(rèn)知規(guī)律,使問(wèn)題的解決循序漸進(jìn).向量是新教材內(nèi)容,是一種很好的數(shù)學(xué)工具,和解析幾何結(jié)合應(yīng)用是現(xiàn)在新教材知識(shí)的交匯點(diǎn).而多角度考慮問(wèn)題,發(fā)散學(xué)生思維.
(三)[變式訓(xùn)練學(xué)會(huì)應(yīng)用]
1、這一環(huán)節(jié)解決的主要問(wèn)題是:
通過(guò)練習(xí),熟悉公式結(jié)構(gòu),記憶并簡(jiǎn)單應(yīng)用公式.通過(guò)例題的不同解法,進(jìn)一步讓學(xué)生體會(huì)轉(zhuǎn)化(或化歸)的數(shù)學(xué)思想.
2、具體教學(xué)安排:
由學(xué)生完成下列練習(xí):
(1)解決課堂提出的實(shí)際問(wèn)題.(學(xué)生口答)
(2)求點(diǎn)P0(-1,2)到下列直線的距離:
①3x=2 ②5y=3 ③2x+y=10 ④y=-4x+1
設(shè)計(jì)說(shuō)明:練習(xí)1的設(shè)計(jì)解決了上課開始提出的實(shí)際問(wèn)題.練習(xí)2的設(shè)計(jì)故意選特殊直線和非直線方程一般式,主要強(qiáng)調(diào)在公式應(yīng)用時(shí),直線方程是一般式,應(yīng)用公式的準(zhǔn)確性.
例題(3)求平行線2x-7y+8=0和2x-7y-6=0的距離.
我選取的是課本例題,課本只有一種具體點(diǎn)的解法.我通過(guò)本節(jié)課的學(xué)習(xí),讓學(xué)生對(duì)知識(shí)從深度和廣度上進(jìn)行挖掘.通過(guò)幾何畫板的演示,讓學(xué)生直觀看到思考問(wèn)題的方法.除了選擇直線上的點(diǎn),還可以選取原點(diǎn),求它到兩條直線的距離,然后作和.或者選取直線外的點(diǎn)P,求它到兩條直線的距離,然后作差.由特殊點(diǎn)到任意點(diǎn),由特殊直線到任意直線,從而延伸出兩平行線間的距離.目的是在整個(gè)過(guò)程中,讓學(xué)生注意體會(huì)解題方法中的靈活性以及轉(zhuǎn)化等數(shù)學(xué)思想方法.
(四)[學(xué)生小結(jié)教師點(diǎn)評(píng)]
1、這一環(huán)節(jié)解決的主要問(wèn)題和達(dá)到的目的是:
通過(guò)師生共同小結(jié),鞏固所學(xué)知識(shí),提煉用到的解決問(wèn)題的方法,其中蘊(yùn)涵的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生歸納概括能力.
2、具體教學(xué)安排:
本節(jié)課小結(jié)主要由學(xué)生完成知識(shí)總結(jié),通過(guò)學(xué)習(xí)知識(shí)所體驗(yàn)到的數(shù)學(xué)思想方法,由學(xué)生總結(jié)和相互補(bǔ)充,教師適當(dāng)點(diǎn)評(píng),加以經(jīng)驗(yàn)總結(jié).
(五)[課外練習(xí)鞏固提高]
1課本習(xí)題7.3的第13題—16題;
2 總結(jié)寫出點(diǎn)到直線距離公式的多種方法.
設(shè)計(jì)說(shuō)明:作業(yè)1是課本習(xí)題,檢查學(xué)生所學(xué)知識(shí)掌握的程度.作業(yè)2是根據(jù)課堂分析,讓學(xué)生總結(jié)公式推導(dǎo)的方法.除了課堂上想到的方法還可以繼續(xù)思考,比如在用兩點(diǎn)距離公式整體代換等方法,發(fā)揮學(xué)生學(xué)習(xí)的自主性和思維的廣闊性.
四、關(guān)于教學(xué)評(píng)價(jià)的設(shè)計(jì)
新課程標(biāo)準(zhǔn)提出要加強(qiáng)過(guò)程性評(píng)價(jià),因而在具體教學(xué)過(guò)程中,我對(duì)于學(xué)生的語(yǔ)言與行為的表現(xiàn),及時(shí)給予肯定性的表?yè)P(yáng)和鼓勵(lì);學(xué)生思維暴露出問(wèn)題時(shí)及時(shí)評(píng)價(jià),矯正思維方向,調(diào)整教學(xué)思路;為了獲得后反饋信息,布置作業(yè),通過(guò)觀察學(xué)生完成作業(yè)情況,了解學(xué)生在知識(shí)技能和數(shù)學(xué)方法方面的收獲和不足,指導(dǎo)我今后教學(xué).整個(gè)教學(xué)評(píng)價(jià)是在師生互動(dòng)中完成的.
以上是我對(duì)這節(jié)課的設(shè)計(jì),懇請(qǐng)各位專家和老師批評(píng)、指正.
謝謝!
《點(diǎn)到直線距離》說(shuō)課稿9
一.教材分析:
1.本節(jié)教材在本章中的地位和作用:
本章內(nèi)容作為高中數(shù)學(xué)中僅有的兩章解析幾何知識(shí)的第一章,是屬于解析幾何學(xué)的基礎(chǔ)知識(shí),不但是進(jìn)一步學(xué)習(xí)圓錐曲線以及其他曲線方程的基礎(chǔ),也是學(xué)習(xí)導(dǎo)數(shù),微分、積分等的基礎(chǔ),在解決許多實(shí)際問(wèn)題中有著廣泛的應(yīng)用,而本節(jié)教材是本章教材三大部分的第一部分中的重要內(nèi)容,是本章環(huán)環(huán)緊扣的知識(shí)鏈中必不可少的一環(huán)。
這節(jié)課“點(diǎn)到直線的距離”是本節(jié)教材“兩直線的位置關(guān)系”的最后一個(gè)內(nèi)容,在解決實(shí)際生活問(wèn)題中以及代數(shù)、解析幾何、立體幾何中都有著重要而廣泛的應(yīng)用。例如:求最小值問(wèn)題,對(duì)一些新知識(shí)新概念的定義,建立方程的問(wèn)題等等,立竿見影,運(yùn)用點(diǎn)到直線的距離公式都可以簡(jiǎn)便迅速地解決問(wèn)題,還可使學(xué)生形成完整的直線這部分知識(shí)的結(jié)構(gòu)體系。
2、本節(jié)內(nèi)容的具體安排及編寫思路:
出于簡(jiǎn)潔性的考慮,教材編寫單刀直入地直接提出核心問(wèn)題,并給予解決的方法。我編寫本節(jié)教案時(shí),通過(guò)創(chuàng)設(shè)問(wèn)題情境引入課題,降低難度,教給學(xué)生從特殊到一般的研究問(wèn)題的方法和策略,激發(fā)學(xué)生去解決問(wèn)題,探究問(wèn)題,得出結(jié)論。在這個(gè)過(guò)程中,老師作適當(dāng)?shù)狞c(diǎn)撥、引導(dǎo),讓學(xué)生逐步逼近目標(biāo),充分展示數(shù)學(xué)知識(shí)產(chǎn)生的思維過(guò)程,讓學(xué)生均能自覺(jué)主動(dòng)地參與進(jìn)來(lái)。教師的主導(dǎo)作用,學(xué)生的主體地位都得以充分體現(xiàn),然后讓學(xué)生自己歸納、總結(jié)得出結(jié)論,享受成功的喜悅和快樂(lè)。對(duì)教材上的例10、例11,由于是直接應(yīng)用點(diǎn)到直線的距離公式,較易,故我讓學(xué)生直接去閱讀、去理解,熟悉點(diǎn)到直線的距離公式。但對(duì)例11的稍許變化,卻抓住不放,通過(guò)例11的解法的啟示,激發(fā)學(xué)生進(jìn)一步去應(yīng)用點(diǎn)到直線的距離公式去探究二平行直線間的距離公式,利用有限的時(shí)間和學(xué)生剛成功的那一股學(xué)習(xí)的慣性,對(duì)教材進(jìn)行拓廣,讓學(xué)生對(duì)歸納總結(jié)出的公式有更加深刻、透徹的理解和掌握,達(dá)到靈活應(yīng)用的目的。
3.教學(xué)目標(biāo):
1)、使學(xué)生掌握點(diǎn)到直線的距離公式及結(jié)構(gòu)特點(diǎn),并能熟練準(zhǔn)確的應(yīng)用這一公式,達(dá)到理解掌握知識(shí)的目的。
2)、學(xué)會(huì)尋找點(diǎn)到直線距離公式的思維過(guò)程及推導(dǎo)方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、探究問(wèn)題的能力。
3)、教學(xué)中體現(xiàn)數(shù)形結(jié)合、轉(zhuǎn)化的數(shù)學(xué)思想,分類討論的數(shù)學(xué)思想,培養(yǎng)學(xué)生在研究討論問(wèn)題時(shí)的數(shù)學(xué)技能和實(shí)際動(dòng)手能力以及思維的嚴(yán)密性。
4)、教學(xué)中鼓勵(lì)同學(xué)相互討論,取長(zhǎng)補(bǔ)短,培養(yǎng)學(xué)生的合作意識(shí)和團(tuán)隊(duì)精神。
4.重點(diǎn)、難點(diǎn):
理解和掌握點(diǎn)到直線的距離公式,熟練的應(yīng)用公式求點(diǎn)到直線的距離是本節(jié)學(xué)習(xí)的重點(diǎn),難點(diǎn)是點(diǎn)到直線距離公式的推導(dǎo)。
二.學(xué)情分析:
我所在的學(xué)?!拇ㄊ∏h中學(xué),雖然是一個(gè)國(guó)家級(jí)重點(diǎn)中學(xué),但同時(shí)又由于渠縣是一個(gè)農(nóng)業(yè)大縣,一個(gè)國(guó)家級(jí)貧困縣,80%以上的學(xué)生來(lái)自偏遠(yuǎn)的鄉(xiāng)村及山區(qū),教育理念和教育水平都較落后,學(xué)生在小學(xué)、初中階段基本上都是在死記硬背、囫圇吞棗中渡過(guò)的,很少在數(shù)學(xué)上享受過(guò)真正意義上的研究問(wèn)題、探索發(fā)現(xiàn)問(wèn)題的樂(lè)趣,都習(xí)慣于跟著老師的思路走,不善于自己開動(dòng)腦筋去研究問(wèn)題、探索問(wèn)題。鑒于此,我們?cè)诮虒W(xué)中正逐步采用探索式教學(xué),引導(dǎo)學(xué)生自己理解、掌握知識(shí),逐步培養(yǎng)和提高學(xué)生發(fā)現(xiàn)問(wèn)題、探索問(wèn)題的能力,以及合作意識(shí)和合作精神的目的。
三.主要教學(xué)構(gòu)想:
通過(guò)創(chuàng)設(shè)問(wèn)題情景自然引入課題,降低教材難度。主要由學(xué)生去探究,去發(fā)現(xiàn),去討論,去歸納總結(jié)得到公式,再輔以適當(dāng)?shù)睦}、習(xí)題幫助學(xué)生熟悉公式,學(xué)會(huì)運(yùn)用。特別是引導(dǎo)學(xué)生對(duì)例11的進(jìn)一步探究,既拓廣了教材,又進(jìn)一步加深了同學(xué)們對(duì)從特殊到一般的研究方法的理解。從而達(dá)到探究——討論——?dú)w納總結(jié)——完善結(jié)論——牢固掌握——靈活運(yùn)用的目的。
四.教學(xué)過(guò)程:
1.創(chuàng)設(shè)問(wèn)題情境:
實(shí)例:某供電局計(jì)劃年底解決本地區(qū)最后一個(gè)村莊的用電問(wèn)題,經(jīng)過(guò)測(cè)量,若按部門內(nèi)部設(shè)計(jì)的坐標(biāo)圖(即以供電局為直角坐標(biāo)原點(diǎn),正東方向?yàn)閤軸的正半軸,正北方向?yàn)閥軸的正半軸,長(zhǎng)度單位為千米),得知這個(gè)村莊的坐標(biāo)是(15,20),離它最近的只有一條直線線路通過(guò),其方程為:3x–4y–10=0,問(wèn)要完成任務(wù),至少需要多長(zhǎng)的電線?(如圖4—1所示)
〈字幕出示題及圖,讓學(xué)生閱讀、理解、思考,約2分鐘〉
引入課題:
[師講]同學(xué)們,通過(guò)剛才的讀題和理解已經(jīng)知道,這實(shí)際上是一個(gè)求點(diǎn)到直線的距離的問(wèn)題,也即我們這節(jié)課所要研究討論的問(wèn)題。
2.解決問(wèn)題情境:
[師繼續(xù)講]下面,請(qǐng)同學(xué)們應(yīng)用已學(xué)過(guò)的知識(shí),自己想一個(gè)辦法來(lái)解決此問(wèn)題,甚至不一定要求結(jié)果,只要得出一個(gè)思路即可。
〈讓同學(xué)思考、討論約5分鐘,然后讓學(xué)生自己舉手回答,老師點(diǎn)評(píng),約10分鐘〉
學(xué)生可能的回答:
[答一]拉一根繩子量一下即可。
[師問(wèn)]可以,但哪里去找那么長(zhǎng)的繩子?還有其它辦法嗎?
可能會(huì)有學(xué)生眾補(bǔ)充:測(cè)距儀!測(cè)距儀!
[師肯定]好辦法!將來(lái)肯定是做工程師的材料!請(qǐng)坐下。
[師繼續(xù)]但如果由于條件的限制,我們手里僅有紙、筆及三角板(或直尺),能不能發(fā)揮我們的數(shù)學(xué)特長(zhǎng),用所學(xué)數(shù)學(xué)知識(shí)來(lái)解決呢?
可以肯定,被開方式是一個(gè)二次項(xiàng)系數(shù)為正的二次函數(shù),x0又不受限制,應(yīng)該有最小值,從而︱PQ︱有最小值,此最小值即為所求。
[師肯定]好思路!既利用了直線方程設(shè)出了直線上的一點(diǎn),又利用兩點(diǎn)間的距離公式得到了一個(gè)二次項(xiàng)系數(shù)為正的二次函數(shù),且不管根號(hào)的影響,大著膽子求二次函數(shù)的最小值,求出的最小值開平方即得結(jié)果。但要考慮兩個(gè)問(wèn)題:①求出的二次函數(shù)的最小值有無(wú)為負(fù)數(shù)的可能?②此種方法的運(yùn)算量是否偏大?同學(xué)們可利用課后時(shí)間試著推演一下。
[答三]要求點(diǎn)P到直線上的點(diǎn)的最短距離,即求點(diǎn)P到直線的距離,由點(diǎn)到直線距離的概念,直接過(guò)點(diǎn)P作PQ垂直于直線于Q點(diǎn),則線段PQ的長(zhǎng)即為所求。(如圖4—2所示)
Q的坐標(biāo),再由兩點(diǎn)間的距離公式可得出:︱PQ︱=9
[師肯定]好思路!直接運(yùn)用了剛學(xué)過(guò)的直線的方程,二直線的交點(diǎn),二直線垂直的條件,兩點(diǎn)間的距離公式等知識(shí),用到了解析幾何的基本方法。在有數(shù)據(jù)做具體運(yùn)算時(shí)不失為一種好方法,但仍有一定的運(yùn)算量。不信,同學(xué)們下來(lái)后又可驗(yàn)算一番。
[答四]可能預(yù)習(xí)過(guò)教材的同學(xué)
過(guò)P作PQ垂直于直線于Q點(diǎn),則PQ即為所求,再過(guò)點(diǎn)P分別作軸、軸的平行線分別交直線于M,N點(diǎn)(如圖4—3所示)
[師肯定]方法相當(dāng)不錯(cuò)!既有數(shù)形結(jié)合的思想,構(gòu)造的思想,又妙用了解析幾何中坐標(biāo)的概念,直線上的點(diǎn)的概念及兩點(diǎn)間的距離公式等知識(shí)。但為什么如此做呢?(老師分析、歸納):該做法充分運(yùn)用了點(diǎn)P的坐標(biāo)的意義,通過(guò)體現(xiàn)點(diǎn)P的坐標(biāo),發(fā)現(xiàn)過(guò)P作軸、軸的平行線時(shí)與直線有二交點(diǎn),這二交點(diǎn)與點(diǎn)P自然而然地構(gòu)成了一個(gè)直角三角形,又由于這二交點(diǎn)在直線上,從而可得二交點(diǎn)的坐標(biāo),再由兩點(diǎn)間的距離公式可進(jìn)一步得到直角三角形的三條邊長(zhǎng),至此,由直角三角形面積公式得到點(diǎn)P到直線的距離|PQ|也就是水到渠成的事情了。但仍顯得有一定的運(yùn)算量。
(如果學(xué)生還有其它解法,老師可在黑板上隨機(jī)應(yīng)變地板書。)
(如果學(xué)生一個(gè)方法均未想到,老師可作如下引導(dǎo):字幕逐條顯示,圖形中的線段依順序逐一顯示
①什么是點(diǎn)P到直線的距離?
過(guò)P作直線的垂線,垂足為Q,則|PQ|即是點(diǎn)P到直線的距離。(如圖4—4所示)
②點(diǎn)P的坐標(biāo)的意義如何?
過(guò)P分別作軸、軸的垂線,垂足分別為K、I,則有向線段KP、IP的數(shù)量即為點(diǎn)P的坐標(biāo)。
③體現(xiàn)一下點(diǎn)P的坐標(biāo)如何?
發(fā)現(xiàn),過(guò)P作軸的垂線時(shí),與直線有一交點(diǎn)N,且N點(diǎn)的橫坐標(biāo)與點(diǎn)P的橫坐標(biāo)一致,而N點(diǎn)在直線上,從而由直線的方程可得N點(diǎn)的縱坐標(biāo),進(jìn)而得線段PN的長(zhǎng)。
受此啟發(fā),過(guò)P作軸的垂線PI時(shí),由于與直線無(wú)交點(diǎn),故作PI的反向延長(zhǎng)線與直線交于點(diǎn)M,從而點(diǎn)M的縱坐標(biāo)與點(diǎn)P的縱坐標(biāo)一致,且橫坐標(biāo)通過(guò)直線的方程也易求得,線段PM的長(zhǎng)也就求得了。
④眼前一亮,直角三角形MPN已渾然天成,且MN的長(zhǎng)也可由兩點(diǎn)間距離公式求得,從而由直角三角形面積公式可求得|PQ|的長(zhǎng)。
3.點(diǎn)到直線距離公式的推導(dǎo):〈15分鐘〉
[師講]通過(guò)前面[答二]、[答三]、[答四],我們都遇到了同一個(gè)攔路虎,即運(yùn)算量較大的問(wèn)題,而我們今后將會(huì)遇到大量的類似問(wèn)題,如果都如此運(yùn)算,未免太浪費(fèi)寶貴的時(shí)間。此時(shí)此刻,我們多么需要有一個(gè)簡(jiǎn)便的運(yùn)算點(diǎn)到直線的距離的公式來(lái)解救我們!
下面,就讓我們?nèi)ヌ骄窟@個(gè)公式吧,用我們今天的辛苦去換取我們明天的簡(jiǎn)捷吧?。ò凳竟降拇嬖冢ぐl(fā)同學(xué)們探究的興趣,增強(qiáng)同學(xué)們探究成功的信心。)
[出示問(wèn)題]在平面直角坐標(biāo)系中,如果已知某點(diǎn)P的的坐標(biāo)為(),直線的方程是Ax+By+C=0,(如圖所示),怎樣由點(diǎn)的坐標(biāo)和直線的方程去直接求點(diǎn)P到直線的距離?
[師講]下面,仍然請(qǐng)同學(xué)們自己想辦法解決此問(wèn)題。(可以讓前面一排的同學(xué)轉(zhuǎn)過(guò)去與后面的同學(xué)每四個(gè)人一組進(jìn)行討論解決。老師到同學(xué)們中間去巡視,了解同學(xué)們的思路,及時(shí)的加以點(diǎn)撥,同時(shí)也對(duì)同學(xué)們的探究方法和探究能力做到心中有數(shù)。)
[老師估計(jì)]由于有前面的[答二]、[答三]、[答四]或老師的引導(dǎo)作鋪墊,(這個(gè)鋪墊非常重要!故前面占用了較多的時(shí)間也不可惜?。┕蚀蠖鄶?shù)同學(xué)可能會(huì)按[答四]的方法做:老師可以作預(yù)見性的字幕板書,在大多數(shù)同學(xué)完成后再出示。如有同學(xué)按[答三]的思路做,老師提示,運(yùn)算量太大,一般不采用。
過(guò)點(diǎn)P作軸的平行線,交于點(diǎn)R();作軸的平行線,交于點(diǎn)S()。(如圖4—5所示)
此時(shí),可能同學(xué)們會(huì)大舒一口氣,但老師緊接著進(jìn)一步提出:“諸位,考慮到A,B為零的情況沒(méi)有?請(qǐng)進(jìn)一步考慮一下A,B為零的情況如何?”
抓住同學(xué)們思維不慎密之處,體現(xiàn)嚴(yán)密的邏輯思維,體現(xiàn)分類討論的思想同學(xué)們的思維可能又重新活躍起來(lái),進(jìn)行分類討論。
第三篇:向量與點(diǎn)到直線的距離公式的證明
向量與點(diǎn)到直線的距離公式的證明
安金龍
(蘇州工業(yè)園區(qū)
這樣處理,既避開了分類討論,又體現(xiàn)了平面向量的工具性。當(dāng)然,解析幾何作為一個(gè)內(nèi)涵豐富的數(shù)學(xué)分支,它和其它數(shù)學(xué)知識(shí)也會(huì)有密切的聯(lián)系,下面筆者列舉另外幾種推導(dǎo)方法: 2用習(xí)題結(jié)論巧推點(diǎn)到直線距離公式
老教材代數(shù)課本(人教版,下冊(cè).必修)第15頁(yè)習(xí)題十五第6題:
已知:
ad?,求證:(bc
?(a)
2b?2)c?(d當(dāng)cad?,b即c?,a)bd
ab
?時(shí),有(a2?b2()c2?d2)?(ac?bd)2.cd
上式實(shí)為柯西不等式的最簡(jiǎn)形式,很容易證明.故略去。下面給出點(diǎn)到直線的距離公式的最簡(jiǎn)推導(dǎo)。
已知點(diǎn)P(x0,y0)和直線l:Ax?By?C?0,則點(diǎn)到直線的距離即為點(diǎn)P到直線l上任意點(diǎn)所連結(jié)的線段中的最短線段.設(shè)M
?x,y?為直線l上任意一點(diǎn),點(diǎn)P到直線l的距離為d,則:
(Ax?Ax0)2(By?By0)2
PM?PM??22
AB2
(By?By0)222222(Ax?Ax0)?(A?B)PM?(A?B)[?] 22
AB
?(Ax?Ax0?By?By0)2=(?Ax0?By0?
C)2
AB
??d?PMmin?,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。
x?x0y?y03用直線的參數(shù)方程推導(dǎo)點(diǎn)到直線距離公式
證明:當(dāng)A?B?0時(shí)易驗(yàn)證公式成立,下證A?B?0時(shí)的情形:
(1)B>0時(shí),過(guò)點(diǎn)P作直線L的垂線,垂足為H,則直線PH的標(biāo)準(zhǔn)參數(shù)方程為:
?
x?x?t0??(t為參數(shù))?
?y?y?t0
??
將直線PH的參數(shù)方程代入直線L的方程得:
A(?x0?t+B(?y0?t??x,解之得點(diǎn)H
對(duì)應(yīng)的參數(shù)t
?C?0
?PH?d?PH?
(2)當(dāng)B時(shí),直線PH的標(biāo)準(zhǔn)參數(shù)方程為:
?
x?x?t?0??(t為參數(shù))
?
?y?y?t0
??
可得?PH
?
?d?PH?
4構(gòu)造引理推導(dǎo)點(diǎn)到直線距離公式
引理:如圖1,直角三角形MPN中,?MPN?90,MP?a,NP?b,則點(diǎn)P到直線MN的距離d滿足
?
a 圖
1N
??.222
dab
證明:由直角三角形的面積公式得:
?MP?NP??MN?d,22
11111即ab?,所以2?2?2.d,即?
dab2dab
下面就用引理證明點(diǎn)P?x0,y0?到直線l:Ax?By?C?0的距d?
證明:當(dāng)0時(shí)易證公式成立.當(dāng)A?B?0時(shí),如圖2所示,過(guò)點(diǎn)
P?x0,y0?分別作平行于x軸,y軸的兩條直線,分別交直線l:Ax?By?C?0
By?CAx?C于點(diǎn)M(-,y0)、N(x0,-),則AB
B0?yC
M?P0?,AAx?C
NP?y0?0.?MP?NP,?在RT?MPN中,B
點(diǎn)P到直線MN的距離d滿足:
1111
1??=?22
222dMPNP(x0?0)(y
0?0)BA2?B2,所以d? =2(Ax0?By0?C)
參考文獻(xiàn):
[1] 全日制普通高級(jí)中學(xué)教科書(人教版)(試驗(yàn)修訂本.必修)第二冊(cè)(上)第55~56頁(yè).[2] 王國(guó)平.中學(xué)生數(shù)學(xué).用習(xí)題結(jié)論巧推點(diǎn)線距離公式2001年1月上 [3] 張乃貴、段萍中學(xué)生數(shù)學(xué).點(diǎn)到直線的距離公式的又一證明.2001年1月上
[4] 陳志新.點(diǎn)到直線距離公式的又一證法.中學(xué)生數(shù)學(xué).2001年6月上
離為
:
第四篇:點(diǎn)到直線的距離教案
作者: 來(lái)源: 發(fā)布時(shí)間:2009-3-7 16:45:40 發(fā)布人:
《點(diǎn)到直線的距離》教案
《點(diǎn)到直線的距離》教案
首都師范大學(xué)附屬桂林實(shí)驗(yàn)中學(xué)高中數(shù)學(xué)組 葉景龍
課題:點(diǎn)到直線的距離
教材:人教版高二(上)第七章第三節(jié)第4課時(shí) 教材分析: 地位與作用
本節(jié)對(duì)“點(diǎn)到直線的距離”的認(rèn)識(shí),是從初中平面幾何的定性作圖,過(guò)渡到解析幾何的定量計(jì)算,其學(xué)習(xí)的平臺(tái)是學(xué)生已掌握了直線傾斜角、斜率、直線方程和兩條直線的位置關(guān)系等相關(guān)知識(shí).對(duì)“點(diǎn)到直線的距離”的研究,為以后直線與圓的位置關(guān)系和圓錐曲線的進(jìn)一步學(xué)習(xí)奠定了基礎(chǔ),具有承前啟后的重要作用. 教學(xué)目標(biāo):
1、至少掌握點(diǎn)到直線的距離公式的一種推導(dǎo)方法,能用公式來(lái)求點(diǎn)到直線距離;
2、通過(guò)自學(xué)教材上利用直角三角形的面積公式的證明過(guò)程,培養(yǎng)學(xué)生的數(shù)學(xué)閱讀能力;
3、讓學(xué)生了解和感受探索問(wèn)題的方法,以及用聯(lián)系的觀點(diǎn)看問(wèn)題.在探索問(wèn)題的過(guò)程中體驗(yàn)成功的喜悅.
教學(xué)重點(diǎn):點(diǎn)到直線距離公式及其應(yīng)用. 教學(xué)難點(diǎn): 點(diǎn)到直線的距離公式的推導(dǎo) 學(xué)情分析與學(xué)法指導(dǎo):
高二年級(jí)學(xué)生已掌握了三角函數(shù)、平面向量等有關(guān)知識(shí),具備了一定的利用代數(shù)方法研究幾何問(wèn)題的能力.根據(jù)我校學(xué)生生源結(jié)構(gòu),既有一等的陽(yáng)光生,也有七等的后進(jìn)生,思維差異比較大,要兩邊兼顧,本課采用由淺入深啟發(fā)式講解法、類比發(fā)現(xiàn)式教學(xué)法.教學(xué)時(shí)間:45分鐘 教學(xué)過(guò)程:
一、創(chuàng)設(shè)情境,提出問(wèn)題(3分鐘)
設(shè)想:如圖臨桂縣汽車站因業(yè)務(wù)需要,欲建一條到圖中鐵路
經(jīng)過(guò)測(cè)量,若按照部門內(nèi)部設(shè)計(jì)好的坐標(biāo)圖(即以金源太陽(yáng)城為原點(diǎn)),得知汽車站的坐標(biāo)為P(2,1),而鐵路所在的直線方程為 .則綠色通道的最短距離是多少? 這個(gè)實(shí)際問(wèn)題要解決,要轉(zhuǎn)化成什么樣的數(shù)學(xué)問(wèn)題? 學(xué)生得出就是求點(diǎn)到直線的距離.教師提出這堂課我們就來(lái)學(xué)習(xí)點(diǎn)到直線的距離,并板書寫課題:點(diǎn)到直線的距離.
二、解決問(wèn)題 1.問(wèn)題再現(xiàn)(8分鐘)
多媒體顯示
設(shè)計(jì)意圖:讓學(xué)生感受數(shù)學(xué)來(lái)源于生活,感受數(shù)學(xué)無(wú)處不在,激發(fā)學(xué)生學(xué)習(xí)的興趣,為引入正題做準(zhǔn)備 初中知識(shí)回顧!
請(qǐng)5位學(xué)生上黑板練習(xí)(第(4)題請(qǐng)一位運(yùn)算能力強(qiáng)的同學(xué),其余學(xué)生在下面自己練習(xí),每做完一題立即講評(píng)),教師巡堂檢查.教師評(píng)價(jià):此方法思路自然,但是運(yùn)算繁瑣.并多媒體展示求解過(guò)程. 的綠色通道,請(qǐng)?jiān)趫D中標(biāo)出“通道”位置,使“通道”最短。實(shí)際的例子
多媒體顯示:假定在直角坐標(biāo)系上,已知一個(gè)定點(diǎn)P(x0,y0)和一條定直線l: Ax+By+C=0,那么如何求點(diǎn)P到直線l的距離d?(請(qǐng)學(xué)生思考并回答)
學(xué)生1:先過(guò)點(diǎn)P作直線l的垂線,垂足為Q,則|PQ|就是點(diǎn)P到直線l的距離d;然后用點(diǎn)斜式寫出垂線方程,并與原直線方程聯(lián)立方程組,此方程組的解就是點(diǎn)Q的坐標(biāo);最后利用兩點(diǎn)間距離公式求出|PQ|。
接著,教師用投影出示下列5道題(嘗試性題組),(1)求P(2 ,1)到直線l:x=3的距離d;(答案:d=1)(2)求P(x0,y0)到直線l:By+C=0(B≠0)的距離d;(答案:)
(3)求P(x0,y0)到直線l:Ax+C=0(A≠0)的距離d;(答案:)
(4)求P(2 ,1)到直線l: 的距離d;(答案:)
(5)求P(x0,y0)到直線l:Ax+By+C=0(AB≠0)的距離d。第(1)容易、(2)和(3)題雖然含有字母參數(shù),但由于直線的位置比較特殊,學(xué)生不難得出正確結(jié)論;第(4)題雖然運(yùn)算量較大,但按照剛才學(xué)生1回答的方法與步驟,也能順利解出正確答案;第(5)題雖然思路清晰,但由于字母參數(shù)過(guò)多、運(yùn)算量太大行不通。學(xué)生們陷入了困境。
2.啟發(fā)引導(dǎo),學(xué)生走出困境(2分鐘)
教師:根據(jù)以上5位學(xué)生的運(yùn)算結(jié)果,你能得到什么啟示? 學(xué)生2:當(dāng)直線的位置比較特殊(水平或豎直)時(shí),點(diǎn)到直線的距離容易求得,而當(dāng)直線是傾斜位置時(shí)則較難;含有多個(gè)字母時(shí)雖然想起來(lái)思路很自然,但具體操作起來(lái)因計(jì)算量很大而無(wú)法得出結(jié)果。
教師:那么,練習(xí)(5)有沒(méi)有運(yùn)算量小一點(diǎn)的推導(dǎo)方法呢?我們能不能根據(jù)剛才的第(2)、(3)的啟示,借助水平、豎直情形和平面幾何知識(shí)來(lái)解決傾斜即一般情況呢? 教師:能否用其它方法,不求點(diǎn)Q的坐標(biāo),求線段PQ的長(zhǎng)度?
學(xué)生:放在三角形---特殊三角形---直角三角形中. 教師:如何構(gòu)造三角形?第三個(gè)頂點(diǎn)選在什么位置? 學(xué)生:可過(guò)P點(diǎn)做x,y軸的平行線與直線 的交點(diǎn)R、S.請(qǐng)同學(xué)們思考怎樣求點(diǎn)到直線的距離。
3.點(diǎn)到直線的距離公式的推導(dǎo)過(guò)程(17分鐘)學(xué)生思考回答下列想法:
方法1:利用直角三角形的面積公式(學(xué)生自學(xué))
如圖1,過(guò)點(diǎn)P作x、y軸的垂線分別交直線l于S、R,則由三角形面積公式可得
方法2:利用余弦值推導(dǎo)
指導(dǎo)學(xué)生自學(xué)教材的證明過(guò)程,培養(yǎng)學(xué)生的數(shù)學(xué)閱讀能力和獲取信息的能力.
解析幾何與三角函數(shù)結(jié)合 如下圖,過(guò)P作PM⊥x軸交l于M,構(gòu)造直角△PQM,怎樣用|PM|表示|PQ|?,點(diǎn)P(x0,y0)到直線l:Ax+By+C=0的距離公式為:
方法3:利用向量推導(dǎo)
已知直線 的法向量,則,如何選取法向量?直線的方向向量,則法向量為,或,或其它.由師生一起分析得出取 = . 教師板演:,由于點(diǎn)Q在直線上,所以滿足直線方程 ,解得
4.點(diǎn)到直線的距離公式的應(yīng)用(13分鐘)用公式解決課題引入時(shí)提出的問(wèn)題.例1 求點(diǎn) 到下列直線的距離: ⑴ ⑵ ⑶ ⑷ 分析:⑴
可能會(huì)有學(xué)生在代人公式計(jì)算時(shí),忘掉絕對(duì)值符號(hào).教師要給予糾正,強(qiáng)調(diào)距離是一個(gè)非負(fù)數(shù). ⑵
教材上的解法是結(jié)合圖形直接得到點(diǎn)到直線的距離,也可能會(huì)有學(xué)生是直接代人公式計(jì)算,教師指出對(duì)于 或 的特殊情況,一般結(jié)合圖形直接得到結(jié)論. ⑶
部分學(xué)生可能會(huì)對(duì)代入公式后計(jì)算得0這一結(jié)果感到困惑,教師要引導(dǎo)學(xué)生思考此時(shí)點(diǎn)與直線的位置關(guān)系,指出當(dāng)點(diǎn)落在直線上時(shí)公式仍然成立. ⑷
在補(bǔ)充的問(wèn)題⑷中所給出的直線方程不是一般式,所以在代人公式計(jì)算前,學(xué)生必須將直線方程化為一般式,以便確定
教師評(píng)析:向量是一種很好的數(shù)學(xué)工具,和解析幾何結(jié)合應(yīng)用是高中數(shù)學(xué)知識(shí)的交匯點(diǎn).而且這種方法在今后解析幾何與向量結(jié)合的題目中,用坐標(biāo)聯(lián)系轉(zhuǎn)化是常用方法.
與開題呼應(yīng)!
公式的鞏固,強(qiáng)調(diào)運(yùn)用公式時(shí)的注意事項(xiàng).系數(shù),從而達(dá)到強(qiáng)調(diào)公式運(yùn)用前提的目的.
教師:使用點(diǎn)到直線的距離公式的前提條件是把直線的方程化成一般式方程,如果給出的直線方程不是一般式方程,應(yīng)先將方程化成一般式,以便確定系數(shù) 的值,這一點(diǎn)對(duì)于直線方程中含參數(shù)的問(wèn)題尤為重要.
例2 ⑴已知點(diǎn) 到直線 的距離為,求 的值;⑵已知點(diǎn) 到直線 的距離為,求 的值. 教師:如何求實(shí)數(shù) 的值? 解:⑴
⑵
教師:這兩問(wèn)直線方程中參數(shù) 的幾何意義是什么? 學(xué)生:⑴中 表示直線的斜率; ⑵中 表示直線在 軸上的截距. 教師:兩個(gè)小問(wèn)的幾何意義是什么?
學(xué)生:⑴點(diǎn) 到兩條直線的距離相等,所以點(diǎn) 在兩條直線所成角的角平分線上;⑵所得的兩條直線互相平行且距離為2.(教師利用幾何畫板進(jìn)行數(shù)學(xué)實(shí)驗(yàn))
三、課時(shí)小結(jié)(2分鐘)本課主要學(xué)習(xí)了以下內(nèi)容:
⑴ 點(diǎn)到直線的距離公式的推導(dǎo)中不同的思路:利用直角三角形的面積公式、利用余弦值、利用平面向量; ⑵ 點(diǎn)到直線的距離公式:點(diǎn) 到直線(其中)的距離 說(shuō)明:對(duì)于 的特殊情況時(shí)公式仍然適用. ⑶ 應(yīng)用點(diǎn)到直線的距離公式的前提條件.
四、課后作業(yè)
1、課本習(xí)題7.3的第13題----16題;
2、總結(jié)寫出點(diǎn)到直線距離公式的多種方法.
能力提升,求參數(shù) 的值及幾何意義.教師引導(dǎo)學(xué)生歸納總結(jié)本節(jié)課所學(xué)習(xí)的主要內(nèi)容.
板書設(shè)計(jì)
課題:點(diǎn)到直線的距離
推導(dǎo)點(diǎn)到直線的距離方法:
方法1: 利用直角三角形的面積公式推導(dǎo)
方法2: 利用余弦值推導(dǎo) 方法3:利用向量推導(dǎo) 點(diǎn)到直線的距離:
教學(xué)反思
本節(jié)課花了大量的時(shí)間在思考多種方法推導(dǎo)點(diǎn)到直線的距離公式,在課堂上展示了四種方法,讓學(xué)生至少掌握一種推導(dǎo)方法,主要注重培養(yǎng)了學(xué)生的思維,所以練習(xí)的量少了點(diǎn),對(duì)于公式運(yùn)用的鞏固還有待加強(qiáng).公式的應(yīng)用: 例1
例2
課堂小結(jié)
課后作業(yè)
第五篇:高中數(shù)學(xué)_談“點(diǎn)到直線距離公式”的向量推導(dǎo)方法
談“點(diǎn)到直線距離公式”的向量推導(dǎo)方法
貴州省黃平縣舊州中學(xué) 楊勝萬(wàn)
在人教大綱版高二數(shù)學(xué)上冊(cè)中,關(guān)于點(diǎn)到直線距離公式的推導(dǎo)方法,教材介紹了兩種推導(dǎo)方法,并詳細(xì)給出了利用直角三角形的面積公式推導(dǎo)得出點(diǎn)到直線的距離公式的具體過(guò)程。其實(shí)關(guān)于點(diǎn)到直線的距離公式的推導(dǎo)方法,除上述方法之外,還有其它很多方法,在這些方法中,向量法(利用平面向量的有關(guān)知識(shí)來(lái)推導(dǎo)的方法)是一種行之有效的推導(dǎo)方法。其推導(dǎo)思路簡(jiǎn)單明了、運(yùn)算量也較小。下面筆者給出向量法推導(dǎo)點(diǎn)到直線的距離的具體過(guò)程,以供同行參考:
已知直線:
和點(diǎn),為點(diǎn)
到直線的距離。現(xiàn)不妨設(shè)且,則直線的斜率為,其方向向量為,從而易知其法向量,又設(shè)點(diǎn)為直線上的任一點(diǎn)(如圖所示),于是有:
由平面向量的有關(guān)知識(shí),可得:
顯然,當(dāng)或
時(shí),上述公式仍成立。
上述推導(dǎo)方法利用了向量的數(shù)量積知識(shí)來(lái)進(jìn)行推導(dǎo)出了點(diǎn)到直線的距離公式,這是一種比較重要有數(shù)學(xué)思想方法。我們還可將這種思想方法進(jìn)一步推廣到在立體幾何中,如何利用空間向量解決求點(diǎn)到平面的距離問(wèn)題。