第一篇:13.5三角形全等的判定(三)北京課改版八年級上教案
13.5三角形全等的判定
(三)教學(xué)目標:
1、知識目標:
(1)掌握已知三邊畫三角形的方法;
(2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;
(3)會添加較明顯的輔助線.2、能力目標:
(1)通過尺規(guī)作圖使學(xué)生得到技能的訓(xùn)練;
(2)通過公理的初步應(yīng)用,初步培養(yǎng)學(xué)生的邏輯推理能力.3、情感目標:
(1)在公理的形成過程中滲透:實驗、觀察、歸納;
(2)通過變式訓(xùn)練,培養(yǎng)學(xué)生“舉一反三”的學(xué)習(xí)習(xí)慣.教學(xué)重點:SSS公理、靈活地應(yīng)用學(xué)過的各種判定方法判定三角形全等。
教學(xué)難點:如何根據(jù)題目條件和求證的結(jié)論,靈活地選擇四種判定方法中最適當(dāng)?shù)姆椒ㄅ卸▋蓚€三角形全等。
教學(xué)用具:直尺,微機 教學(xué)方法:自學(xué)輔導(dǎo) 教學(xué)過程:
一、新課引入
投影顯示
問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數(shù)據(jù)?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?
這個問題讓學(xué)生議論后回答,他們的答案或許只是一種感覺。于是教師要引導(dǎo)學(xué)生,抓住問題的本質(zhì):三角形的三個元素――三條邊。
二、公理的獲得
問:通過上面問題的分析,滿足什么條件的兩個三角形全等?
讓學(xué)生粗略地概括出邊邊邊的公理。然后和學(xué)生一起畫圖做實驗,根據(jù)三角形全等定義對公理進行驗證。(這里用尺規(guī)畫圖法)
公理:有三邊對應(yīng)相等的兩個三角形全等。
應(yīng)用格式:(略)
強調(diào)說明:
(1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結(jié)論。
(2)、在應(yīng)用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)
(3)、此公理與前面學(xué)過的公理區(qū)別與聯(lián)系
(4)、三角形的穩(wěn)定性:演示三角形的穩(wěn)定性與四邊形的不穩(wěn)定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結(jié)“三角形全等需要有3全獨立的條件”做好了準備,進行了溝通。
(5)說明AAA與SSA不能判定三角形全等。
三、公理的應(yīng)用
(1)講解例1。學(xué)生分析完成,教師注重完成后的點評。
例1 如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架
求證:AD⊥BC
分析:(設(shè)問程序)
(1)要證AD⊥BC只要證什么?
(2)要證∠1= 只要證什么?
(3)要證∠1=∠2只要證什么?
(4)△ABD和△ACD全等的條件具備嗎?依據(jù)是什么?
證明:(略)
四、課堂小結(jié)
五、作業(yè)
第二篇:三角形全等的判定教案(三)
三角形全等的條件
(三)教學(xué)目標
1.三角形全等的條件:角邊角、角角邊.
2.三角形全等條件小結(jié).
3.能運用全等三角形的條件,解決簡單的推理證明問題.
教學(xué)重點
已知兩角一邊的三角形全等探究.
教學(xué)難點
靈活運用三角形全等條件證明.
教學(xué)過程
Ⅰ.提出問題,創(chuàng)設(shè)情境
1.復(fù)習(xí):(1)三角形中已知三個元素,包括哪幾種情況?
三個角、三個邊、兩邊一角、兩角一邊.
(2)到目前為止,可以作為判別兩三角形全等的方法有幾種?各是什么?
三種:①定義;②SSS;③SAS.
2.在三角形中,已知三個元素的四種情況中,我們研究了三種,今天我們接著探究已知兩角一邊是否可以判斷兩三角形全等呢?
Ⅱ.導(dǎo)入新課
問題1:三角形中已知兩角一邊有幾種可能?
1.兩角和它們的夾邊.
2.兩角和其中一角的對邊.
問題2:
兩個三角形中有兩個內(nèi)角分別對應(yīng)相等,它們的夾邊也相等,?觀察它們是不是全等,你能得出什么規(guī)律?
畫一個△A'B'C',使A'B'= AB,∠A'=∠A,∠B'=∠B;
畫法:
①畫A'B'= AB;
②在A'B'的同旁畫∠DA'B'=∠A,∠EB'A'=∠B,A'D,B'E交于點C'
將所得三角形重疊在一起,發(fā)現(xiàn)完全重合,這說明這兩個三角形全等.
由此我們可提煉規(guī)律:
兩角和它們的夾邊對應(yīng)相等的兩個三角形全等(可以簡寫成“角邊角”或“ASA”).
思考:在一個三角形中兩角確定,第三個角一定確定.我們是不是可以不作圖,用“ASA”推出“兩角和其中一角的對邊對應(yīng)相等的兩三角形全等”呢?
探究問題4:
如圖,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC與△DEF全等嗎?能利用角邊角條件證明你的結(jié)論嗎?
證明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°
∠A=∠D,∠B=∠E
∴∠A+∠B=∠D+∠E
∴∠C=∠F
在△ABC和△DEF中
∴△ABC≌△DEF(ASA).
這也就是說明:兩個角和其中一角的對邊對應(yīng)相等的兩個三角形全等(可以簡寫成“角角邊”或“AAS”).
[例]如下圖,D在AB上,E在AC上,AB=AC,∠B=∠C.
求證:AD=AE.
[分析]AD和AE分別在△ADC和△AEB中,所以要證AD=AE,只需證明△ADC≌△AEB即可.
證明:在△ADC和△AEB中
所以△ADC≌△AEB(ASA)
所以AD=AE.
Ⅲ.課時小結(jié)
至此,我們有五種判定三角形全等的方法:
1.全等三角形的定義
2.判定定理:邊邊邊(SSS)邊角邊(SAS)角邊角(ASA)角角邊(AAS)
推證兩三角形全等時,要善于觀察,尋求對應(yīng)相等的條件,從而獲得解題途徑.
第三篇:全等三角形的判定教案
全等三角形的判定(第4課時)
教學(xué)任務(wù)分析
一、教學(xué)目標
1、知識技能:
1)掌握全等三角形的4種判定方法;
2)利用三角形全等的判定方法證明三角形全等;
3)通過證明三角形的全等,利用全等三角形的性質(zhì)來證明其他的結(jié)果。
2、教學(xué)思考
1)在經(jīng)歷尋找證明全等三角形的條件來感受全等三角形的判斷意義;
2)通過觀察、比較、證明,學(xué)會運用全等三角形的判斷條件去證明全等三角形;
3、解決問題
1)在經(jīng)歷解決實際問題的過程中,發(fā)展邏輯思維,發(fā)展觀察、抽象的能力,加強邏輯推理能力;
2)通過說、寫,提高解決問題的能力;
4、情感態(tài)度
通過交流,培養(yǎng)主動與他人合作的意識;
二、重點:全等三角形全等的判定
三、難點:對全等三角形全等的判定的應(yīng)用
教學(xué)流程安排
活動
1、復(fù)習(xí)全等三角形判斷的方法
活動
2、利用全等三角形判斷的方法證明全等三角形,根據(jù)全等三角形的性質(zhì)得到線段相等或角相等;
活動
3、小結(jié)與作業(yè)
活動內(nèi)容和目的
一、復(fù)習(xí)已經(jīng)學(xué)習(xí)過的全等三角形判斷方法: SSS、SAS、ASA、AAS
二、練習(xí)
1、如圖:
第四篇:192全等三角形的判定教案
19.2《全等三角形的判定》教案
---------探索由兩個全等三角形構(gòu)造新的全等三角形的圖形
教學(xué)目標: 知識與技能:
通過學(xué)生的動手操作,探索由兩個全等三角形構(gòu)造新的全等三角形的圖形,并進行簡單的推理說明。過程與方法:
1.培養(yǎng)學(xué)生的動手能力,認識到復(fù)雜的圖形都可以由簡單的圖形組合而成,增強學(xué)生的識圖能力。
2.培養(yǎng)學(xué)生的空間觀念,推理能力,發(fā)展有條理地表達能力,積累數(shù)學(xué)活動經(jīng)驗。
情感與態(tài)度: 激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情.教學(xué)重難點:
重點:探索由兩個全等三角形構(gòu)造新的全等三角形的圖形,并進行推理。難點:根據(jù)構(gòu)造后的圖形準確找出全等三角形。學(xué)習(xí)過程:
一.挑戰(zhàn)“記憶”:(回顧反思)
1.圖形的三種變換是什么?圖形經(jīng)過變換后有什么特征? 2.全等三角形的判定方法有哪些? 3.全等三角形的性質(zhì)有哪些?
4.如圖:AE=DB,BC=EF,BC∥EF,求證:△ABC≌△DEF.ABEDCF
5.以下的圖形你們熟悉嗎?我們在證明全等的時候要充分利用哪些條件? BAAACBAE
CD
BCE
BCE
AACBFO
CE
AODAOD
EEBBCCB 二.挑戰(zhàn)“手腦”:(探究交流)
(一)大家觀察以下幾個圖形:
AFOBEBCAODAODC
看看每一個圖形是由兩個完全重合的全等三角形經(jīng)過怎樣的變換形成的?在圖形中又有幾對全等三角形?并選取一對進行證明。
(二)你還能用重合的兩個全等三角形變換出其他出現(xiàn)新的全等三角形的圖形嗎?試一試。(不限對數(shù),可以是一對,也可以是多對,是多對的數(shù)數(shù)一共有多少對,并選取一對進行證明,注意:唯一的條件是原來的兩個三角形全等)三.挑戰(zhàn)“運用”:(反饋練習(xí))1.如圖
(一),在∠AOB的兩邊上截取AO=BO,OC=OD,連結(jié)AD、BC交于點P,連結(jié)OP,則下列結(jié)論:① △APC≌△BPD ② △ADO≌△BCO ③ △AOP≌△BOP ④ △OCP≌△ODP正確的是().A.①②③④ B.①②③ C.②③④ D.①③④ 2.如圖
(二),AD=AE,BD=CE,∠ADB=∠A EC=100°,∠BAE=70°,下列結(jié)論錯誤的是()A.△ABE≌△ACD B.△ABD≌△ACE C.∠DAE=40° D.∠C=30°
3.如圖(三),在△ABC中,AB=AC,D是BC的中點,DE⊥AB于E,DF⊥AC于F,則圖中共有全等三角形().A.5對 B.4對 C.3對 D.2對
CB
圖
(一)圖
(二)圖
(三)4.如圖,從下列四個條件:① BC=B'C,② AC=A'C,③ ∠A'CA=∠B'CB,④ AB=A'B'中,任取三個為條件,余下的一個為結(jié)論,則最多可以構(gòu)成正確的結(jié)論的個數(shù)是().A.1個 B.2個 C.3個 D.4個
四.挑戰(zhàn)“反思”:(歸納總結(jié))本節(jié)課,你對自己的表現(xiàn)滿意嗎?你有哪些收獲呢?大膽說一說,談一談。五.再上高峰:(拓展提高)
1.如圖:△ABC中,AB=AC,過點A作一直線MN平行于BC,角平分線BD、CF相交于點H,它們延長線分別交MN于點E、G,試在圖中找出三對全等三角形,并對其中一對給出證明。
AMGFHBC
END2.如圖:在△ABC中,∠C=90°,BC=AC,過C在△ABC外作直線AM⊥MN于M, BN⊥MN于N,(1)求證:MN=AM+BN;(2)若過點C作直線MN與AB邊相交,AM⊥MN于M,BN⊥MN于N,(1)中的結(jié)論還成立嗎?請說明理由。
MCNAB
第五篇:全等三角形判定一教案
《全等三角形判定一》教案設(shè)計
教學(xué)目標
一、知識目標
1、熟記邊角邊公理的內(nèi)容
2、能用邊角邊公理證明兩個三角形全等
二、能力目標
1、通過邊角邊公理的運用,提高學(xué)生的邏輯思維能力。
2、通過觀察幾何圖形,培養(yǎng)學(xué)生的識圖能力。
三、情感目標
1、通過幾何證明的教學(xué),使學(xué)生養(yǎng)成尊重客觀事實和形式質(zhì)疑的習(xí)慣。
2、通過自主學(xué)習(xí)的發(fā)展,體驗獲取教學(xué)知識的感受,培養(yǎng)學(xué)生勇于創(chuàng)新,多方位審視問題的技巧。
教學(xué)重點:學(xué)會運用公理證明兩個全等三角形。
教學(xué)難點:在較復(fù)雜的圖形中,找出證明兩個三角形全等的條件。教學(xué)用具:剪刀、直尺、量角器、多媒體 教學(xué)方法:自學(xué)、探究、輔導(dǎo)式 教學(xué)過程:
1、復(fù)習(xí)提問
什么樣的兩個圖形叫全等圖形?
2、公理的發(fā)現(xiàn) ①圖
②實驗:讓學(xué)生把所畫的三角形剪下來,同桌之間相互重疊,有什么發(fā)現(xiàn)?
得出初步結(jié)論。
3、針對得出的結(jié)論:學(xué)生思考并回答多媒體所出示的三角形,經(jīng)過
怎樣的位似變換后重合,并說明理由。
4、總結(jié)邊角邊公理——學(xué)生分析邊角邊的位置。
講解:例:
1、引導(dǎo)學(xué)生把圖形與條件有效的結(jié)合起來,強調(diào)證明的格式。
概括總結(jié)證明的步驟。學(xué)生練習(xí)P74:
P75:
1、2