第一篇:三角形的內(nèi)角和教案
三角形的內(nèi)角和教案
程
昆
教學內(nèi)容:人教版義務教育課程標準實驗教科書小學《數(shù)學》四年級下冊第五單元《三角形內(nèi)角和》
教學目標: 1.使學生經(jīng)歷自主探索三角形的內(nèi)角和的過程,知道三角形的內(nèi)角和是180°,能運用這一規(guī)律解決一些簡單的問題。
2.使學生在觀察、操作、分析、猜想、驗證、合作、交流等具體活動中,提高動手操作能力和數(shù)學思考能力。
3.使學生在參與數(shù)學學習活動的過程中,獲得成功的體驗,感受探索數(shù)學規(guī)律的樂趣,產(chǎn)生喜歡數(shù)學的積極情感,培養(yǎng)積極與他人合作的意識。
教學重點: 讓學生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應用的全過程。
教學難點:
驗證“三角形的內(nèi)角和是180°”。并運用這一知識解決實際問題。教學方法:自主探究性學習、小組合作學習教師準備:多媒體課件
學生準備:銳角三角形、直角三角形、鈍角三角形各兩個 量角器三角尺 教學過程:
一.激趣導入 揭示課題
1.導言:“同學們,這幾天我們都在研究什么知識?能說說你們都學過了了哪些三角形的知識嗎?
2.就這么簡單的一個三角形我們就得出了那么多的知識.數(shù)學知識真的神奇.3.課件出示數(shù)學故事
4.認識三角形的內(nèi)角,內(nèi)角和。
(1)講角三角形的內(nèi)角(課件出示)學生動手畫。(2).自主得出內(nèi)角和的概念。5.板書課題:三角形的內(nèi)角和
二、猜想驗證,探究規(guī)律
(一)引發(fā)猜想
1.師拿出兩個三角板,問:它們是什么三角形?各個角是多少度? 2.請大家拿出自己的兩個三角尺,根據(jù)剛才說的三個角的度數(shù),求出這兩個直角三角形的內(nèi)角和。
3.猜想:(1).三角形的內(nèi)角和是多少呢,現(xiàn)在你來猜一猜.(學生猜想)
(2).小結:研究數(shù)學問題就要像這樣,既能大膽地猜想,又敢于對結論提出質(zhì)疑.你能說清楚三角形的內(nèi)角和等于180°的理由嗎?是的,由猜想得出的結論往往是不可靠的,需要我們進一步去驗證。同學們能通過動手操作,想辦法來驗證自己的猜想嗎?(學生說想到的驗證方法)
(二).驗證規(guī)律 1.量角求和法證明:(1)出示合作要求
先聽合作要求:以小組為單位來量一量它們的內(nèi)角,注意分工:最好兩個人 量,一人記錄,一人計算,看哪一小組完成的好?
(2)學生聽合作要求后分組合作,將各種三角形的內(nèi)角和計算出來并填在小組活動記錄表中。(觀察哪組配合好)。
(3)指名匯報各組度量和計算內(nèi)角和的結果。(課件出示)(4)觀察:從大家量、算的結果中,你發(fā)現(xiàn)什么?
歸納小結:大家算出的三角形內(nèi)角和都等于或接近180°。(5)思考、討論:
通過測量計算,我們發(fā)現(xiàn)三角形的內(nèi)角和不一定等于180度,因為是測量所以能有誤差,所以測量出的結果不是很準確。那么還有更好的方法能驗證呢?
(三)驗證推測:
1.引導學生回憶,我們把180度的角叫什么角?不用測量,能不能用其它的方法知道三角形的內(nèi)角和是180度呢?請同學們先獨立思考,再在小組內(nèi)把你的想法與同伴進行交流,然后選用一種方法進行驗證??凑l最先發(fā)現(xiàn)其中的“奧秘”。
(1)小組合作,討論驗證方法。適時指導。(2)匯報驗證方法、結果。方法一:拼一拼
“180°是一個什么角?想一想,怎樣可以把三角形的三個內(nèi)角拼在一起?學生動手操作并匯報。(演示課件)。
師:把三角形的三個內(nèi)角湊到了一起,拼成了一個大角,角的兩條邊是不是在一條直線上呢?看起來挺像的,但在操作的過程中難免會產(chǎn)生誤差,有時會差一點點,誰還有別的方法確定三角形的內(nèi)角和一定是180°? 方法二:折拼的方法(課件出示)
學生匯報后師小結:我們要研究三角形的內(nèi)角和,實際上就是想辦法把三角形的三個內(nèi)角湊到一起,像剪和折的方法,看三個內(nèi)角拼到一起是不是180°,都是借助我們學過的平角解決的問題。
師小結:這種方法避免了在剪拼過程中由于操作出現(xiàn)的誤差,非常準確的說明了三角形的內(nèi)角和一定是180度。
(四)得出結論
1.請學生把剛才研究的三角形舉起來,看看銳角三角形、直角三角形、鈍角三角形這三類三角形的內(nèi)角和都是180°,現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。
2.介紹帕斯卡。
(1)帕斯卡的資料:(課件出示):
(2)小結:帕斯卡為科學作出了巨大的貢獻,在我們以后學習的知識中,也有很多定理是帕斯卡發(fā)現(xiàn)和驗證的,還有很多知識就是這樣被發(fā)現(xiàn)的。他12歲就發(fā)現(xiàn)三角形內(nèi)角和是180度,我們同學還不到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。
(3)質(zhì)疑問難:提出問題,師生共同解決。(4)游戲:猜角的度數(shù)(課件出示)
三、拓展應用,深化創(chuàng)新
1.在一個三角形中能不能有兩個直角?為什么?
2.在一個三角形中能不能有兩個鈍角?為什么?
3.(1)將兩個完全一樣的直角三角形拼成一個大三角形,這個大三角形的內(nèi)角和是多少?(2)將一個大三角形分成兩個小三角形,這兩個小三角形的內(nèi)角和分別是多少? 4.拓展創(chuàng)新根據(jù)所學的知識,你能想辦法求出下列圖形的內(nèi)角和嗎?
四邊形
五邊形
六邊形
五、總結反思
今天你學到了哪些知識?是怎樣獲取這些知識的?還有什么不懂的地方嗎?你感覺學得怎么樣?
六、布置作業(yè)
1.一個三角形最多有幾個直角? 2.最多有幾個鈍角?為什么? 3.拓展創(chuàng)新根據(jù)所學的知識,你能想辦法求出下列圖形的內(nèi)角和嗎?
四邊形
五邊形
六邊形
七、板書設計:
三角形的內(nèi)角和
量
拼
折
分 三角形的內(nèi)角和是180
第二篇:三角形內(nèi)角和教案
三角形內(nèi)角和教學設計
一、教材分析:
教材創(chuàng)設了一個有趣的問題情境,以此激發(fā)學生的興趣,引出探索活動。首先,教師應使學生明確“內(nèi)角”的意義,然后引導學生探索三角形內(nèi)角和等于多少。大多數(shù)學生會想到用測量角的方法,此時就可以安排小組活動。每組同學可以畫出大小、形狀不同的若干個三角形,分別量出三個內(nèi)角的度數(shù),并求出它們的和,填寫在教材提供的表中。最后發(fā)現(xiàn),大小、形狀不同的三角形,每一個三角形內(nèi)角和都在180°左右。三角形的內(nèi)角和是否正好等于180°呢?教材中安排了兩個活動:一是把三角形三個內(nèi)角撕下來,再拼在一起,組成一個平角,因此三角形內(nèi)角和是180度。二是把三個內(nèi)角折疊在一起,發(fā)現(xiàn)也能組成一個平角。每個活動都要使學生動手試一試,加深對三角形內(nèi)角和的認識,體驗三角形內(nèi)角和性質(zhì)的探索過程。
二、學生狀況分析:
學生在本課學習前已經(jīng)認識了三角形的基本特征及分類,并且在四年級(上冊)教材里已經(jīng)知道了兩塊三角尺上的每一個角的度數(shù),學生課上對數(shù)學知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題的策略多樣化。
三、學習目標:
1.通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180°。
2.知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。
3.發(fā)展學生動手操作、觀察比較和抽象概括的能力。體驗數(shù)學活動的探索樂趣,體會研究數(shù)學問題的思想方法。
4.能應用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題。
四、教具、學具準備:
課件、6張三角形的紙、學生準備任意三角形。
五、教學過程:
(一)設疑導入(2分鐘)
師:在平的數(shù)學學習中,我們經(jīng)常會使用一種工具——三角尺。(課件出示兩個三角尺)每個三角尺里都有三個角,我們把它叫內(nèi)角。(板書內(nèi)角)為了方便老師分別給兩個三角尺的內(nèi)角編上號,誰能告訴我它們分別是多少度?
師:請同學們仔細觀察比較一下,這兩個三角形有什么共同之處?
生:它們的內(nèi)角和都是180°。
師:你是怎么得出180°的?
生:30°+60°+90°=180°
師:那第二個呢?
生:45°+45°+90°=180°
師:同學們,通過剛才的算一算,我們得到這兩個直角三角形的內(nèi)角和都是180°,由此你想到什么呢?(這兩個直角三角形的內(nèi)角和都是180°,那其他的三角形呢?)
生A:其他三角形的內(nèi)角和也是180°
(二)動手操作,探究問題,以動啟思(20分鐘)
1、師:這只是我們的一種猜測,三角形的內(nèi)角和是否真的等于180°,還需要我們?nèi)ヲ炞C。接下來,我們就來驗證三角形的內(nèi)角和,老師為大家準備了1號——6號6個三角形,下面請每個同學選擇一個三角形來驗證。想一想,你準備用什么樣的方法來驗證三角形的內(nèi)角和,然后開始驗證。
(1)小組合作,討論驗證方法
(2)匯報驗證方法、結果
現(xiàn)在我們一起交流一下驗證的結果,交流的時候,你先介紹一下驗證的是幾號三角形,然后說一說是什么三角形,最后說一說內(nèi)角和是多少。
師:同學們我、其實剛才我在驗證的時候很多同學有的還是量一量的方法,從剛才過程中來看量一量的方法還是有誤差,所以老師建議大家可以是有更加準確、簡便的方法來驗證。
師:好,請同學們觀察大屏幕,這些三角形的內(nèi)角和都是180°,那么請問,現(xiàn)在我們能不能以下結論:所以的三角形的內(nèi)角和都是180°呢?
生:可以
師:難道你們都沒有懷疑這是老師故意安排好的呢?(沒有)那我告訴你們這就是老師故意安排好的,或許也是一種巧合。我們在科學研究的道路上就要敢于質(zhì)疑的精神,接下來我們怎么辦?(我們應該在找一些三角形驗證)這個建議非常好,找一些任意三角形這樣才有說服力。
師:每個同學都準備的三角形帶了嗎?下面就請同學來驗證你們自己帶來的三角形的內(nèi)角和究竟是多少度。學生匯報交流。
同學們我們這樣驗證,驗證完嗎?(驗證不完)
師:剛才我們通過算一算、拼一拼、折一折的方法,不管是老師提供的三角形還是你們自己準備的三角形這些直角、銳角、鈍角三角形的內(nèi)角和都是180°,那么我們可以概括成什么呢?
生:我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都是180°。
課件出示結論:三角形的內(nèi)角和是180°)。
師:看來我們的猜測是正確的,現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是1800”。(板書:三角形的內(nèi)角和是1800
(四)鞏固練習:(15分鐘)
學會了知識,我們就要懂得去運用。下面,我們就根據(jù)三角形內(nèi)角和的知識來解決一些相關的數(shù)學問題。(課件)
師:一塊三角尺的內(nèi)角和180°,兩塊同樣的三角尺拼成的一個大三角形的內(nèi)角和又是多少呢?
師:把大三角形平均分成兩份。它的(指均分后的一個小三角形)內(nèi)角和是多少度?(生有的答90 °,有的180 °。)
師:哪個對?為什么?
生:180°,因為它還是一個三角形。
師:每個小三角形的度數(shù)是180°,那么這樣的兩個小三角形拼成一個大三角形,內(nèi)角和是多少度? 這時學生的答案又出現(xiàn)了180°和360°兩種。
師:究竟誰對呢?大家可以在小組內(nèi)拼一拼,進行討論
生1:180°,因為兩個三角形拼在一起,就變成了一個三角形了,每個三角形的內(nèi)角和總是180°。
生2:我發(fā)現(xiàn)兩個小三角形拼成一個大三角形,拼接在一起的兩條邊上的兩個角沒有了,就比原來兩個三角形少180 °,所以大三角形的內(nèi)角和還是180°,不是360°。
師:三角形不論位置、大小、形狀如何,它的內(nèi)角和總是180°
1、三角形ABC是等腰三角形,角A是頂角等于50度,角B=?角C=?
教師引導學生復習等腰三角形的特征,再讓學生談談想法。
教師匯總解法:
180度-50度=130度130度÷2度=65度
知識拓展:三角形ABC是等腰三角形,角B是底角等于50度,頂角角A=?(學生自主完成匯報結果)教師匯總解法:
50度×2=100度180度-100度=80度
2、一個直角三角形,一個銳角為35度,求另一個銳角的度數(shù)。
教師帶領學生復習直角三角形的特征。(指名匯報)解法不唯一,只要學生思路正確老師應及時給與肯定。教師匯總解法:
(1)180度-90度=90度90度-35度=55度
(2)180度-35度=145度145度-90度=55度
(3)90度+35度=125度180度-125度=55度
(4)90度-35度=55度
3、下面的說法對嗎?
1)鈍角三角形的兩個銳角之和大于90度。()
2)大三角形的內(nèi)角和比小三角形的內(nèi)角和大。()
3)一個直角三角形中最多有一個直角。()
學生自主理解題意,教師引導學生說出對或錯的原因。
4、老師這還有一個難題需要解決,同學們愿意接受挑戰(zhàn)嗎?
師:老師手里有一個信封,信封里露出一來個角,這個角的度數(shù)是45度,請同學們判斷一下,隱藏在信封里的三角形是什么三角形?
師:信封里還露出一來個角,這個角的度數(shù)是45度,它是這個三角形內(nèi)角中最小的銳角,請同學們判斷一下,隱藏在信封里的三角形是什么三角形?
5、想一想,下面圖形的內(nèi)角和分別是多少?
學生小組討論如何分割,教師巡視并參與討論,討論完后小組匯報,指名板演。
(五)課堂小結
師:一節(jié)課快要結束了,那么我們回想一下這節(jié)課你有什么收獲,什么感想?
第三篇:三角形內(nèi)角和教案
三角形內(nèi)角和教學設計
講課人:閆轉
一、教學內(nèi)容:三角形內(nèi)角和(教材85頁的例五)
二、教學目標:1、2、3、知道三角形的內(nèi)角和是180°。正確計算三角形中某一個角的度數(shù)。培養(yǎng)學生分析、判斷的能力,滲透知識間的內(nèi)在聯(lián)系和轉化的數(shù)學思想。
三、教學重難點
理解并熟練運用三角形的內(nèi)角和是180°。
四、教具學具準備
不同形狀的三角形,量角器
五、教學過程:
(一)故事導入:
三角形家里的兄弟們在家里吵個不停,鈍角三角形說:“我有一個角最大,我的三個角之和也是最大”,直角三角形說:“我一個角都90°,更何況我長了三只腳,我肯定比你大”,等邊三角形說:“我三條邊都相等,我三個角的度數(shù)之和也不比你直角三角形,鈍角三角形三角之和小呀。這家兄弟就這樣,你一言,我一語的吵的不可開交,直角三角形和鈍角三角剛要動手打起來時,媽媽回來了。三角形媽媽很奇怪,急忙就問:怎么了孩子們?銳角三角形低著頭小聲說:媽媽,他們都說:他三個角之和比我大,是這樣的嗎?三角形媽媽哈哈大笑,我以為你們在吵什么呢?原來是這個問題,好了孩子們,要想知道你們?nèi)齻€角之和到底是多少?今天我?guī)銈內(nèi)コ菂^(qū)二小四年級那里的小朋友今天就在學習這節(jié)課,兄弟們跟著媽媽一起今天也來到我們的教室。同學們一會兒學會了,把正確答案告訴這幾位兄弟,好嗎?
(二)教學實施
(1)小組合作把準備的三角形折下來,在拼一拼,看能拼成一個什么角?
(2)反饋結果。
(3)學生總結結果。
三角形的內(nèi)角和是180°。(課件展示三角形的內(nèi)角和是180度。)
(4)(課件出示學過的三角形)請幾位同學告訴三角形家里的兄弟們,他們的內(nèi)角和是多少?
(三)設疑。
根據(jù)三角形的內(nèi)角和是180°如果知道兩個角的度數(shù),就可以求出第三個角的度數(shù)。(課件出示)
在一個直角三角形中,∠C=30°,求∠A的度數(shù)?
(1)學生讀題,分析題意。
(2)嘗試做題。
(3)教師訂正書寫。(課件出示)
∠A=180°-90°-30°
=60°
(四)做一做
1、在一個三角形中∠1=140°,∠3=25°.求∠2的度數(shù)?
2、我是小判官。(對的打√,錯的打×)
①把一個等腰三角形分成兩個完全一樣的小
三角形,每個小三角形的內(nèi)角和都是90度。
②直角三角形的兩個銳角和是90度。
③任何一個三角形的內(nèi)角和都是180度。
④鈍角三角形的兩個銳角之和大于90度,直角三角形的兩個銳角之和正好等于90度
3、求下面各角的度數(shù)。(課件出示)
(五)課堂作業(yè):
(1)三邊相等,求三個角的度數(shù)。(2)等腰三角形,頂角是96°,求底角(3)
在一個直角三角形中,有個銳角是40°,求另一個角。
(2)我給我女兒買了一個等腰三角形的風箏,他的一個底角是70°,它的頂
角是多少度?
(六)智力大闖關
我的一個內(nèi)角是72°,是另一個內(nèi)角的4倍,我是一個什么三角形?
六、課堂小結。
三角形的內(nèi)角和是多少? 三角形的內(nèi)角和是180度。
七、作業(yè)布置。
P88 頁 9、10
附板書設計:
三角形的內(nèi)角和是180°
第四篇:三角形內(nèi)角和教案
三角形內(nèi)角和教案
教學內(nèi)容:課本第67頁。
教學目標:通過操作活動探索發(fā)現(xiàn)和驗證“三角形的內(nèi)角和是180度”的規(guī)律。
通過量一量、剪一剪、拼一拼,培養(yǎng)學生合作能力、動手實踐能力和運用新知識解決問題的能力。
使學生體驗數(shù)學學習的樂趣,激發(fā)學生主動學習數(shù)學的興趣。教學重點:探索發(fā)現(xiàn)和驗證三角形內(nèi)角和是180度。教學難點:對不同探究方法的指導和學生對規(guī)律的應用。教學準備:課件,三角形,量角器。教學設計:
一、復習舊知,引出課題。誰能說說它們分別是什么三角形?
預設:銳角三角形,直角三角形,鈍角三角形。
請一位同學分別標出這些三角形的角,其余的同學在自己準備的三角形中標角。獨立完成,集體訂正。
其實這些角是三角形的內(nèi)角,誰能大膽猜一猜三角形內(nèi)角和是多少度? 預設:360°,180°,90°…….今天我們一起來探究三角形內(nèi)角和。板書課題:三角形內(nèi)角和
二、探究新知
1、小組合作。
課件展示:活動要求(1)4人一組,每人任選一個三角形用你的方法驗證三角形內(nèi)角和。
(2)小組交流各自的驗證方法和驗證結果,評選出較好的驗證方法并說明理由。(3)每組選派一名同學匯報。
預設:我們組選用的是量角法,依次測量出三角形內(nèi)角和是170°,185°,180°… 哪一組和這一組驗證方法不同?
預設:我們是把三角形的3個角剪下來拼在一起發(fā)現(xiàn)得到一個平角因此得知三角形內(nèi)角和是180°。
你能把你拼的過程給大家說詳細一些嗎?
預設:選出一個角,再選出一個角使得它的一邊與前一個角的一邊重合,剩下的角的一邊和前一個角的另一條邊重合,此時拼出一個平角因此三角形內(nèi)角和是180°。
我發(fā)現(xiàn)你選用的是銳角三角形,那直角三角形,鈍角三角形的內(nèi)角和是怎樣的?請同學們嘗試用這種方法驗證三角形內(nèi)角和。
預設:直角三角形內(nèi)角和是180°,鈍角三角形內(nèi)角和是180°??偨Y:通過撕(剪)拼法,我們驗證任意三角形內(nèi)角和是180°。
追問:同學們我有一個困惑剛才有部分同學通過測量角計算內(nèi)角和為什么不是180°,問題出在哪里?
預設:測量角的方法不正確。預設:三角形做得不規(guī)范。
預設:測量過程中存在誤差,導致不精確。
總結:撕(剪)拼法在驗證三角形內(nèi)角和精確性上優(yōu)勝于量角法。還有沒有同學想出不一樣的驗證方法呢?
預設1:課件展示折拼法,請一位同學說出具體的操作過程。剩下的同學仿照這種方法任選一個三角形驗證三角形內(nèi)角和。
預設2:同學上臺展示操作過程,其余同學觀察后并自行操作。
總結:
折拼法依然能驗證任意三角形內(nèi)角和是180°??磥斫鉀Q數(shù)學問題的方法不是唯一的,希望同學們在今后的學習當中能多思,多想充分挖掘自己的聰明才智。
三、知識運用,鞏固練習。
請同學們獨立完成下題。(每題10分共100分。)
1、如圖∠1=140°,∠3=25°,∠2=(°)。
2、一個直角三角形,一個銳角是50°,另一個銳角是(°)。
3、一個頂角是50°的等腰三角形的底角是(°)。
4、等邊三角形每個角是(°)。
5、等腰直角三角形的一個底角是(°)。
6、在一個三角形中,∠A=90°,∠B+∠C=(°)。
7、一個三角形中,有一個角是65°,另外的兩個角可能是(°)和(°)。
8、某同學把一塊三角形的玻璃打碎成三片,現(xiàn)在他要到玻璃店去配一塊形狀完全一樣的玻璃,那么最省事的辦法是帶()去。為什么?
②③①
9、把下面這個三角形沿虛線剪成兩個三角形,每個小三角形的內(nèi)角和是多少度?
10、根據(jù)三角形內(nèi)角和是 180 °。你能求出下面四邊形的內(nèi)角和嗎?
四、課后小結
請你談談本節(jié)課的收獲。
五、板書設計
任意三角形內(nèi)角和是180°。
第五篇:三角形內(nèi)角和教案
三角形的內(nèi)角和 教學設計
北坊小學 許燕
一、教學內(nèi)容:人教版義務教育課程標準實驗教科書四年級下冊第五單元“三角形的內(nèi)角和”。
二、教學目標:
1、讓學生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。
2、讓學生在動手獲取知識的過程中,培養(yǎng)學生的創(chuàng)新意識、探索精神和實踐能力,發(fā)展學生的空間觀念。并通過動手操作把三角形內(nèi)角和轉化為平角的探究活動,向學生滲透“轉化”數(shù)學思想。
3.培養(yǎng)學生善于傾聽、勤于思考的學習習慣和科學嚴謹?shù)膶W習態(tài)度。
三、教學重點:探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結出規(guī)律。
教學難點:對不同探究方法的指導和學生對規(guī)律的靈活應用。
四、教具學具準備:課件、學生準備不同類型的三角形各一個,量角器。
五、教學過程:
(一)、創(chuàng)設情景,引出問題
1、猜謎語:(課件)
形狀似座山,穩(wěn)定性能堅。
三竿首尾連,學問不簡單。
(打一圖形名稱)(板書:三角形)(課件演示三條線段圍成三角形的過程)。
2、前面我們學習了三角形的有關知識,這節(jié)課我們來學習三角形的內(nèi)角和。板書課題:三角形的內(nèi)角和
(二)探究新知
1、三角形的內(nèi)角、內(nèi)角和
(1)什么是三角形內(nèi)角,誰先來根據(jù)自己的理解說一說?
師:三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。為了方便研究,我們把每個三角形的3個內(nèi)角分別標上∠
1、∠
2、∠3,(2)三角形內(nèi)角和
師:內(nèi)角和指的又是什么?
生:三角形的三個內(nèi)角的度數(shù)的和,就是三角形的內(nèi)角和。
(多讓幾個學生說一說)
猜想與驗證
師:英國數(shù)學家牛頓說過:沒有大膽的猜想就作不出偉大的發(fā)現(xiàn)。請同學們大膽的猜想一下?三角形的內(nèi)角和會是多少度呢?
師:剛才我們對三角形的內(nèi)角和進行了大膽的猜測,是不是所有的三角形的內(nèi)角和都是180°呢?在猜想與事實之間是需要科學、嚴謹?shù)尿炞C的。同學們能不能想個什么好辦法來驗證三角形的內(nèi)角和就是180度呢?
3、操作驗證,小組合作。
老師為每個小組準備了一個學具筐,里面有不同的學習材料,或許這些材料會對你有所啟發(fā),幫助你想出好辦法。每人現(xiàn)在都認真的想一想,你打算怎樣來驗證三角形的內(nèi)角和
不是180o呢?利用課前準備的材料,選自己喜歡的三角形,想辦法進行驗證。
三角形的形狀 ∠1 ∠2 ∠3 三角形的內(nèi)角和(∠1+∠2+∠3)
鈍角三角形
直角三角形
銳角三角形
我們的結論
學生匯報。(課件演示驗證結果。)(1)匯報測量結果
為什么用測量計算的方法不能得到統(tǒng)一的結果呢?
(因為測量有誤差,所以匯報的測量結果,有的是180°,有的接近180°。)
師:其它小組的方法是怎樣的?
(2)剪、拼
a、學生上臺演示。你們組是怎么想到把三角形撕下來拼成一個平角來驗證的呢?
B、請大家四人小組合作,用他們的方法驗證其它三角形。
C、展示學生作品。
D、你們組把本不在一起的三個角,通過移動位置,轉化成一個平角來驗證,運用了轉化的策略,你們組也很會學習。
(3)折拼
師:條條大路通羅馬,其它小組的驗證方法是怎樣的?
師:我在電腦里收索到折的方法,請同學們看一看是怎么折的(課件演示)。
4、科學驗證方法
師:不同的方法,同樣的精彩,大家發(fā)現(xiàn)了嗎?無論是撕一撕、折一折、還是拼一拼,這些方法都有異曲同工之妙,那就是你們都用了轉化的策略。我發(fā)現(xiàn)你們都有數(shù)學家的頭腦,既然任何操作都難以消除誤差,那么這個180度是怎樣認定的呢?數(shù)學家在證明這一猜想時,也用了轉化的思想,一起來看(看課件)(出示圖片)
師:善于數(shù)學發(fā)現(xiàn)和思考使帕斯卡走上了成功的道路。成為偉大的數(shù)學家。他在12歲時就驗證了任何三角形的內(nèi)角和都是180°(課件)
③鉛筆旋轉法。
教師:下面請同學們拿出鉛筆,我們一起來做一個旋轉鉛筆的游戲——筆尖向左,旋轉第一個銳角,依次旋轉第二個銳角,再旋轉第三個銳角。師:開始和結束時的筆尖方向有什么變化? 生1:和剛開始上課時的鉛筆旋轉有點相似。生2:開始筆尖向左,現(xiàn)在的筆尖向右。
師:鉛筆繞著三角形三個內(nèi)角旋轉后筆尖、筆尾位置顛倒,這說明鉛筆正好旋轉了多少度?……
師:看到這些新的驗證方法,你有什么感想?
師:除了我們這節(jié)課大家想到的方法,還有很多方法也能驗證三角形的內(nèi)角和是180°到初中我們還要更嚴密的方法證明三角形的內(nèi)角和是180°。
三、解決相關問題
師:接下來,利用三角形的內(nèi)角和我們來解決一些相關的問題吧!
.1.看圖求出未知角的度數(shù)。(知識的直接運用,數(shù)學信息很淺顯)
猜猜∠3有多少度?∠1=40o
∠2=48o
2.爸爸給小紅買了一個等腰三角形的風箏。它的一個底角是70°,它的頂角是多少度?
3、思考:你能畫出一個有兩個直角或兩個鈍角的三角形嗎?為什么?
4、通過今天的學習,現(xiàn)在你能解決三角形三兄弟的紛爭了吧?你想對它們說的什么?
四、全課總結,完善新知
利用今天的學習方法我們還可以推理出四邊形、五邊形、六邊形,甚至更多邊形的內(nèi)角和,相信同學們只要你擁有善于發(fā)現(xiàn)的眼睛,勤于思考的大腦,勇于實踐的雙手,將來你也會像數(shù)學家帕斯卡一樣偉大。
五、板書設計:
三角形的內(nèi)角和是180°
∠1+∠2+∠3=180°
度量
剪拼
折拼