八年級數(shù)學(xué)第二學(xué)期期末檢測題_______________中學(xué)________________年級____________班
姓名_____________座號_______
--------------------密------------------------------------------------------------------封----------------------------------------------------------------------線----------
(6)
檢測范圍:全冊
完卷時間:120分鐘
滿分:120分
一、填空題。
(每小題2分,共20分)1、當x_______時,分式有意義。
2、用科學(xué)記數(shù)法表示:0.002008=_______。
3、反比例函數(shù)y=的圖象分布在第一、三象限內(nèi),則k的取值范圍是
______。
4、在△ABC中,∠A∶∠B∶∠C=1∶2∶3,AB=8,則BC=______。
5、矩形ABCD的對角線AC、BD交于點O,∠AOD=120°,AC=12cm,則△ABO的面積是____
cm2。
6、在直角梯形中,底AD=6
cm,BC=11
cm,腰CD=12
cm,則這個直角梯形的周長為______cm。
7、數(shù)據(jù)11,9,7,10,14,7,6,5的中位數(shù)是______,眾數(shù)是______。
A
D
E
P
B
C
F
圖18、一組數(shù)據(jù)的方差S2=[(x1-2)2+(x2-2)2+…+(x10-2)2],則這組數(shù)據(jù)的平均數(shù)是_______。
9.計算
.
10.如圖1,在等腰梯形中,,.點分別在,上,與相交于,則
.
二、選擇題。
(每小題3分,共24分)9、若=的值為零,則m等于
()
A、a+b
B、a-b
C、(a+b)2
D、(a-b)210、化簡(-)÷的結(jié)果為
()
A、-x-1
B、-x+1
C、-
D、11、反比例函數(shù)的圖象經(jīng)過點M(-2,1),則此反比例函數(shù)為
()
A、y=
B、y=
C、y=
D、y=
12、下列各組中不能作為直角三角形的三邊長的是
()
A、6,8,10
B、7,24,25
C、9,12,15
D、15,20,3013、正方形具備而菱形不具備的性質(zhì)是
()
A、四條邊都相等
B、四個角都是直角
C、對角線互相垂直平分
D、每條對角線平分一組對角
14、等腰梯形的腰長為13cm,兩底差為10cm,則高為
()
A、cm
B、12cm
C、69cm
D、144cm15、數(shù)據(jù)8,10,12,9,11的平均數(shù)和方差分別是
()
A、10和
B、10和2
C、50和
D、50和216、人數(shù)相等的甲、乙兩班學(xué)生參加測驗,兩班的平均分相同,且S2甲=240,S2乙=200,則成績較穩(wěn)定的是
()
A、甲班
B、乙班
C、兩班一樣穩(wěn)定
D、無法確定
三、解答題。
(17每小題5分,18題6分,共16分)17.(1).化簡:
(2).計算:
18.先化簡再求值:
其中a滿足
四、解答題。
(19小題6分,20題6分,共12分)19、A、B兩地相距18千米,甲工程隊要在A、B兩地間鋪設(shè)一條送天然氣管道,乙工程隊要在A、B兩地間鋪設(shè)一條輸油管道。已知乙工程隊的工作效率是甲隊的1.5倍,甲隊提前3周開工,結(jié)果兩隊同時完成任務(wù),求甲、乙兩工隊每周各鋪設(shè)多少千米管道?
20、反比例函數(shù)y=與一次函數(shù)y=kx+b的圖象交于A(3,2)和B(-2,n)兩點,求反比例函數(shù)和一次函數(shù)的解析式。
五、解答題。
(小題各7分,共21分)A21、如圖,在四邊形ABCD中,∠B
=90°,AB=,∠BAC
=30°,CD=2,AD=2,求∠ACD的度數(shù)。
D
B
C22、如圖,四邊形ABCD是矩形,過A作AE∥BD交CB的延長線于點E,猜想△ACE是怎樣的三角形,并證明你的猜想。
D
E
C
B23、兩臺機床同時生產(chǎn)直徑是40mm的零件,為了鑒別機床性能好壞,檢驗產(chǎn)品的質(zhì)量,從產(chǎn)品抽出10件進行測量,結(jié)果如下表(單位:mm)
機床甲
39.8
40.1
40.2
39.9
40.2
39.8
40.2
39.8
機床乙
39.9
39.9
40.2
40.1
39.9
問哪個機床性能更好些?
六、解答題。
(24.25小題各8分,26題11分,共27分)24.如圖,在平行四邊形ABCD中,點E是邊AD的中點,BE的延長線與CD的延長線相交于點F。
(1)求證:△ABE≌△DFE;
(2)試連結(jié)BD、AF,判斷四邊形ABDF的形狀,并證明你的結(jié)論。
25.如圖,已知AD與BC相交于E,∠1=∠2=∠3,BD=CD,∠ADB=90°,CH⊥AB于H,CH交AD于F.(1)求證:CD∥AB;
(2)求證:△BDE≌△ACE;
(3)若O為AB中點,求證:OF=BE.27.A市氣象站測得臺風(fēng)中心在A市正東方向300千米的B處,以10
千米/時的速度向北偏西60°的BF方向移動,距臺風(fēng)中心200千米范圍內(nèi)是受臺風(fēng)影響的區(qū)域.
(1)A市是否會受到臺風(fēng)的影響?寫出你的結(jié)論并給予說明;
(2)如果A市受這次臺風(fēng)影響,那么受臺風(fēng)影響的時間有多長?