專題:均值不等式數(shù)學(xué)競賽
-
高三數(shù)學(xué)均值不等式
3eud教育網(wǎng) http://百萬教學(xué)資源,完全免費,無須注冊,天天更新!3.2 均值不等式 教案教學(xué)目標(biāo):推導(dǎo)并掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)這個重要定理.利用均值定理求
-
2013高考數(shù)學(xué)均值不等式專題
均值不等式歸納總結(jié)ab?(a?b2)?2a?b222(當(dāng)且僅當(dāng)a?b時等號成立)當(dāng)兩個正數(shù)的積為定值時,可以求它們的和的最小值,當(dāng)兩個正數(shù)的和為定值時,可以求它們的積的最小值,正所謂“積定和最
-
均值不等式及其應(yīng)用
教師寄語:一切的方法都要落實到動手實踐中高三一輪復(fù)習(xí)數(shù)學(xué)學(xué)案均值不等式及其應(yīng)用一.考綱要求及重難點要求:1.了解均值不等式的證明過程.2.會用均值不等式解決簡單的最大(小)值
-
均值不等式說課稿
《均值不等式》說課稿山東陵縣一中 燕繼龍李國星尊敬的各位評委、老師們:大家好!我今天說課的題目是 《均值不等式》,下面我從教材分析,教學(xué)目標(biāo),教學(xué)重點、難點,教學(xué)方法,學(xué)生學(xué)法
-
常用均值不等式及證明證明
常用均值不等式及證明證明這四種平均數(shù)滿足Hn?Gn?An?Qn?、ana1、a2、?R?,當(dāng)且僅當(dāng)a1?a2???an時取“=”號僅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2)由以上簡化,有一個簡單結(jié)論,
-
均值不等式證明
均值不等式證明一、已知x,y為正實數(shù),且x+y=1求證xy+1/xy≥17/41=x+y≥2√(xy)得xy≤1/4而xy+1/xy≥2當(dāng)且僅當(dāng)xy=1/xy時取等也就是xy=1時畫出xy+1/xy圖像得01時,單調(diào)增而xy≤1/
-
均值不等式教案★
3.2均值不等式 教案(3)(第三課時)教學(xué)目標(biāo):了解均值不等式在證明不等式中的簡單應(yīng)用教學(xué)重點:了解均值不等式在證明不等式中的簡單應(yīng)用教學(xué)過程例1、已知a、b、c∈R,求證:不等式的左
-
均值不等式應(yīng)用
均值不等式應(yīng)用一.均值不等式22a?b1. (1)若a,b?R,則a?b?2ab(2)若a,b?R,則ab?a?b時取“=”) 2222. (1)若a,b?R*,則a?b?(2)若a,b?R*,則a?b?2ab(當(dāng)且僅當(dāng)a?b時取“=”) 2a?b?(當(dāng)且僅當(dāng)a?b時取“=”(3)若a
-
均值不等式練習(xí)題
均值不等式求最值及不等式證明2013/11/23題型一、均值不等式求最值例題:1、湊系數(shù):當(dāng)0?x?4時,求y?x(8?2x)的最大值。2、湊項:已知x?51,求函數(shù)f(x)?4x?2?的最大值。 44x?5x2?7x?10(x≠?1)的值
-
均值不等式說課稿(匯編)
說課題目:高中數(shù)學(xué)人教B版必修第三章第二節(jié) -------均值不等式(1) 一、 本節(jié)內(nèi)容的地位和作用 均值不等式又叫做基本不等式,選自人教B版(必修5)的第3章的2節(jié)的內(nèi)容,是在上節(jié)不等式
-
均值不等式教案
§3.2 均值不等式 【教學(xué)目標(biāo)】 1.理解均值不等式 2.能利用均值不等式求最值或證明不等式 【教學(xué)重點】 掌握均值不等式 【教學(xué)難點】 利用均值不等式證明不等式或求函數(shù)的
-
不等式證明,均值不等式
1、 設(shè)a,b?R,求證:ab?(ab)?aba?b2?abba2、 已知a,b,c是不全相等的正數(shù),求證:a(b2?c2)?b(c2?a2)?c(a2?b2)>6abc 3、 (a?b?c)(1119??)? a?bb?cc?a24、 設(shè)a,b?R?,且a?b?1,求證:(a?)?(b?)?5、 若a?b?1,求證:asinx?bcosx?1
-
均值不等式教案3(合集)
課題:§3.2.3均值不等式課時:第3課時 授課時間:授課類型:新授課【教學(xué)目標(biāo)】1.知識與技能:了解均值不等式在證明不等式中的簡單應(yīng)用。2.過程與方法:培養(yǎng)學(xué)生的探究能力以及分析問
-
均值不等式及線性規(guī)劃問題
均值不等式及線性規(guī)劃問題學(xué)習(xí)目標(biāo):1.理解均值不等式,能用均值不等式解決簡單的最值問題;2.能運用不等式的性質(zhì)和均值不等式證明簡單的不等式.學(xué)習(xí)重點:均值不等式的理解.學(xué)習(xí)難點:均
-
淺談均值不等式的教學(xué)
數(shù)理淺談均值不等式的教學(xué)岳陽縣第四中學(xué)楊偉均值不等式是高中數(shù)學(xué)新教材第六章教學(xué)的重點,也是難點,它是證明不等式、解決求最值問題的重要工具,它的應(yīng)用范圍幾乎涉及高中數(shù)學(xué)
-
用均值不等式證明不等式[最終定稿]
用均值不等式證明不等式【摘要】:不等式的證明在競賽數(shù)學(xué)中占有重要地位.本文介紹了用均值不等式證明幾個不等式,我們在證明不等式時,常用到均值不等式。要求我們要認(rèn)真分析題目
-
均值不等式教學(xué)設(shè)計
3.2均值不等式 教學(xué)目標(biāo) (一) 知識與技能:明確均值不等式及其使用條件,能用均值不等式解決簡單的最值問題. (二) 過程與方法:通過對問題主動探究,實現(xiàn)定理的發(fā)現(xiàn),體驗知識與規(guī)律的形
-
均值不等式的證明
均值不等式的證明設(shè)a1,a2,a3...an是n個正實數(shù),求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡單的詳細(xì)過程,謝謝!!!!你會用到均值不等式推廣的證明,估計是搞競賽的把對