欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      小學數(shù)學各種公式定理大全資料總結

      時間:2019-05-11 23:09:49下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關的《小學數(shù)學各種公式定理大全資料總結》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《小學數(shù)學各種公式定理大全資料總結》。

      第一篇:小學數(shù)學各種公式定理大全資料總結

      基本概念

      第一章 數(shù)和數(shù)的運算

      概念

      (一)整數(shù)整數(shù)的意義

      自然數(shù)和0都是整數(shù)。

      自然數(shù)

      我們在數(shù)物體的時候,用來表示物體個數(shù)的1,2,3??叫做自然數(shù)。

      一個物體也沒有,用0表示。0也是自然數(shù)。

      3計數(shù)單位

      一(個)、十、百、千、萬、十萬、百萬、千萬、億??都是計數(shù)單位。

      每相鄰兩個計數(shù)單位之間的進率都是10。這樣的計數(shù)法叫做十進制計數(shù)法。

      數(shù)位

      計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。

      5數(shù)的整除

      整數(shù)a除以整數(shù)b(b ≠ 0),除得的商是整數(shù)而沒有余數(shù),我們就說a能被b整除,或者說b能整除a。

      如果數(shù)a能被數(shù)b(b ≠ 0)整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)(或a的因數(shù))。倍數(shù)和約數(shù)是相互依存的。

      因為35能被7整除,所以35是7的倍數(shù),7是35的約數(shù)。

      一個數(shù)的約數(shù)的個數(shù)是有限的,其中最小的約數(shù)是1,最大的 約數(shù)是它本身。例如:10的約數(shù)有1、2、5、10,其中最小的約數(shù)是1,最大的約數(shù)是10。

      一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身。3的倍數(shù)有:3、6、9、12??其中最小的倍數(shù)是3,沒有最大的倍數(shù)。

      個位上是0、2、4、6、8的數(shù),都能被2整除,例如:202、480、304,都能被2整除。

      個位上是0或5的數(shù),都能被5整除,例如:5、30、405都能被5整除。

      一個數(shù)的各位上的數(shù)的和能被3整除,這個數(shù)就能被3整除,例如:12、108、204都能被3整除。

      一個數(shù)各位數(shù)上的和能被9整除,這個數(shù)就能被9整除。

      能被3整除的數(shù)不一定能被9整除,但是能被9整除的數(shù)一定能被3整除。

      一個數(shù)的末兩位數(shù)能被4(或25)整除,這個數(shù)就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。

      一個數(shù)的末三位數(shù)能被8(或125)整除,這個數(shù)就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。

      能被2整除的數(shù)叫做偶數(shù)。

      不能被2整除的數(shù)叫做奇數(shù)。

      0也是偶數(shù)。自然數(shù)按能否被2 整除的特征可分為奇數(shù)和偶數(shù)。

      一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質數(shù)(或素數(shù)),100以內的質數(shù)有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

      一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù),例如 4、6、8、9、12都是合數(shù)。

      1不是質數(shù)也不是合數(shù),自然數(shù)除了1外,不是質數(shù)就是合數(shù)。如果把自然數(shù)按其約數(shù)的個數(shù)的不同分類,可分為質數(shù)、合數(shù)和1。

      每個合數(shù)都可以寫成幾個質數(shù)相乘的形式。其中每個質數(shù)都是這個合數(shù)的因數(shù),叫做這個合數(shù)的質因數(shù),例如15=3×5,3和5 叫做15的質因數(shù)。

      把一個合數(shù)用質因數(shù)相乘的形式表示出來,叫做分解質因數(shù)。

      例如把28分解質因數(shù)

      幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù)。其中最大的一個,叫做這幾個數(shù)的最大公約數(shù),例如12的約數(shù)有1、2、3、4、6、12;18的約數(shù)有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數(shù),6是它們的最大公約數(shù)。

      公約數(shù)只有1的兩個數(shù),叫做互質數(shù),成互質關系的兩個數(shù),有下列幾種情況:

      1和任何自然數(shù)互質。

      相鄰的兩個自然數(shù)互質。

      兩個不同的質數(shù)互質。

      當合數(shù)不是質數(shù)的倍數(shù)時,這個合數(shù)和這個質數(shù)互質。

      兩個合數(shù)的公約數(shù)只有1時,這兩個合數(shù)互質,如果幾個數(shù)中任意兩個都互質,就說這幾個數(shù)兩兩互質。

      如果較小數(shù)是較大數(shù)的約數(shù),那么較小數(shù)就是這兩個數(shù)的最大公約數(shù)。

      如果兩個數(shù)是互質數(shù),它們的最大公約數(shù)就是1。

      幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù),其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù),如2的倍數(shù)有2、4、6、8、10、12、14、16、18 ??

      3的倍數(shù)有3、6、9、12、15、18 ?? 其中6、12、18??是2、3的公倍數(shù),6是它們的最小公倍數(shù)。

      如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個數(shù)的最小公倍數(shù)。如果兩個數(shù)是互質數(shù),那么這兩個數(shù)的積就是它們的最小公倍數(shù)。

      幾個數(shù)的公約數(shù)的個數(shù)是有限的,而幾個數(shù)的公倍數(shù)的個數(shù)是無限的。

      (二)小數(shù)小數(shù)的意義

      把整數(shù)1平均分成10份、100份、1000份?? 得到的十分之幾、百分之幾、千分之幾?? 可以用小數(shù)表示。

      一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾??

      一個小數(shù)由整數(shù)部分、小數(shù)部分和小數(shù)點部分組成。數(shù)中的圓點叫做小數(shù)點,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點右邊的數(shù)叫做小數(shù)部分。

      在小數(shù)里,每相鄰兩個計數(shù)單位之間的進率都是10。小數(shù)部分的最高分數(shù)單位“十分之一”和整數(shù)部分的最低單位“一”之間的進率也是10。

      2小數(shù)的分類

      純小數(shù):整數(shù)部分是零的小數(shù),叫做純小數(shù)。例如: 0.25、0.368 都是純小數(shù)。

      帶小數(shù):整數(shù)部分不是零的小數(shù),叫做帶小數(shù)。例如: 3.25、5.26 都是帶小數(shù)。

      有限小數(shù):小數(shù)部分的數(shù)位是有限的小數(shù),叫做有限小數(shù)。例如: 41.7、25.3、0.23 都是有限小數(shù)。

      無限小數(shù):小數(shù)部分的數(shù)位是無限的小數(shù),叫做無限小數(shù)。例如: 4.33 ?? 3.1415926 ??

      無限不循環(huán)小數(shù):一個數(shù)的小數(shù)部分,數(shù)字排列無規(guī)律且位數(shù)無限,這樣的小數(shù)叫做無限不循環(huán)小數(shù)。例如:∏

      循環(huán)小數(shù):一個數(shù)的小數(shù)部分,有一個數(shù)字或者幾個數(shù)字依次不斷重復出現(xiàn),這個數(shù)叫做循環(huán)小數(shù)。例如: 3.555 ?? 0.0333 ?? 12.109109 ??

      一個循環(huán)小數(shù)的小數(shù)部分,依次不斷重復出現(xiàn)的數(shù)字叫做這個循環(huán)小數(shù)的循環(huán)節(jié)。例如: 3.99 ??的循環(huán)節(jié)是“ 9 ”,0.5454 ??的循環(huán)節(jié)是“ 54 ”。

      純循環(huán)小數(shù):循環(huán)節(jié)從小數(shù)部分第一位開始的,叫做純循環(huán)小數(shù)。例如: 3.111 ?? 0.5656 ??

      混循環(huán)小數(shù):循環(huán)節(jié)不是從小數(shù)部分第一位開始的,叫做混循環(huán)小數(shù)。3.1222 ?? 0.03333 ??

      寫循環(huán)小數(shù)的時候,為了簡便,小數(shù)的循環(huán)部分只需寫出一個循環(huán)節(jié),并在這個循環(huán)節(jié)的首、末位數(shù)字上各點一個圓點。如果循環(huán) 節(jié)只有 一個數(shù)字,就只在它的上面點一個點。例如: 3.777 ?? 簡寫作

      0.5302302 ?? 簡寫作。

      (三)分數(shù)分數(shù)的意義

      把單位“1”平均分成若干份,表示這樣的一份或者幾份的數(shù)叫做分數(shù)。

      在分數(shù)里,中間的橫線叫做分數(shù)線;分數(shù)線下面的數(shù),叫做分母,表示把單位“1”平均分成多少份;分數(shù)線下面的數(shù)叫做分子,表示有這樣的多少份。

      把單位“1”平均分成若干份,表示其中的一份的數(shù),叫做分數(shù)單位。

      分數(shù)的分類

      真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。真分數(shù)小于1。

      假分數(shù):分子比分母大或者分子和分母相等的分數(shù),叫做假分數(shù)。假分數(shù)大于或等于1。

      帶分數(shù):假分數(shù)可以寫成整數(shù)與真分數(shù)合成的數(shù),通常叫做帶分數(shù)。

      約分和通分

      把一個分數(shù)化成同它相等但是分子、分母都比較小的分數(shù),叫做約分。

      分子分母是互質數(shù)的分數(shù),叫做最簡分數(shù)。

      把異分母分數(shù)分別化成和原來分數(shù)相等的同分母分數(shù),叫做通分。

      (四)百分數(shù) 表示一個數(shù)是另一個數(shù)的百分之幾的數(shù) 叫做百分數(shù),也叫做百分率 或百分比。百分數(shù)通常用“%”來表示。百分號是表示百分數(shù)的符號。

      方法

      (一)數(shù)的讀法和寫法

      1.整數(shù)的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的0都不讀出來,其它數(shù)位連續(xù)有幾個0都只讀一個零。

      2.整數(shù)的寫法:從高位到低位,一級一級地寫,哪一個數(shù)位上一個單位也沒有,就在那個數(shù)位上寫0。

      3.小數(shù)的讀法:讀小數(shù)的時候,整數(shù)部分按照整數(shù)的讀法讀,小數(shù)點讀作“點”,小數(shù)部分從左向右順次讀出每一位數(shù)位上的數(shù)字。

      4.小數(shù)的寫法:寫小數(shù)的時候,整數(shù)部分按照整數(shù)的寫法來寫,小數(shù)點寫在個位右下角,小數(shù)部分順次寫出每一個數(shù)位上的數(shù)字。

      5.分數(shù)的讀法:讀分數(shù)時,先讀分母再讀“分之”然后讀分子,分子和分母按照整數(shù)的讀法來讀。

      6.分數(shù)的寫法:先寫分數(shù)線,再寫分母,最后寫分子,按照整數(shù)的寫法來寫。

      7.百分數(shù)的讀法:讀百分數(shù)時,先讀百分之,再讀百分號前面的數(shù),讀數(shù)時按照整數(shù)的讀法來讀。

      8.百分數(shù)的寫法:百分數(shù)通常不寫成分數(shù)形式,而在原來的分子后面加上百分號“%”來表示。

      (二)數(shù)的改寫

      一個較大的多位數(shù),為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數(shù)。有時還可以根據(jù)需要,省略這個數(shù)某一位后面的數(shù),寫成近似數(shù)。

      1.準確數(shù):在實際生活中,為了計數(shù)的簡便,可以把一個較大的數(shù)改寫成以萬或億為單位的數(shù)。改寫后的數(shù)是原數(shù)的準確數(shù)。例如把 1254300000 改寫成以萬做單位的數(shù)是 125430 萬;改寫成 以億做單位 的數(shù) 12.543 億。

      2.近似數(shù):根據(jù)實際需要,我們還可以把一個較大的數(shù),省略某一位后面的尾數(shù),用一個近似數(shù)來表示。例如: 1302490015 省略億后面的尾數(shù)是 13 億。

      3.四舍五入法:要省略的尾數(shù)的最高位上的數(shù)是4 或者比4小,就把尾數(shù)去掉;如果尾數(shù)的最高位上的數(shù)是5或者比5大,就把尾數(shù)舍去,并向它的前一位進1。例如:省略 345900 萬后面的尾數(shù)約是 35 萬。省略 4725097420 億后面的尾數(shù)約是 47 億。

      4.大小比較

      1.比較整數(shù)大小:比較整數(shù)的大小,位數(shù)多的那個數(shù)就大,如果位數(shù)相同,就看最高位,最高位上的數(shù)大,那個數(shù)就大;最高位上的數(shù)相同,就看下一位,哪一位上的數(shù)大那個數(shù)就大。

      2.比較小數(shù)的大小:先看它們的整數(shù)部分,整數(shù)部分大的那個數(shù)就大;整數(shù)部分相同的,十分位上的數(shù)大的那個數(shù)就大;十分位上的數(shù)也相同的,百分位上的數(shù)大的那個數(shù)就大??

      3.比較分數(shù)的大小:分母相同的分數(shù),分子大的分數(shù)比較大;分子相同的數(shù),分母小的分數(shù)大。分數(shù)的分母和分子都不相同的,先通分,再比較兩個數(shù)的大小。

      (三)數(shù)的互化

      1.小數(shù)化成分數(shù):原來有幾位小數(shù),就在1的后面寫幾個零作分母,把原來的小數(shù)去掉小數(shù)點作分子,能約分的要約分。

      2.分數(shù)化成小數(shù):用分母去除分子。能除盡的就化成有限小數(shù),有的不能除盡,不能化成有限小數(shù)的,一般保留三位小數(shù)。

      3.一個最簡分數(shù),如果分母中除了2和5以外,不含有其他的質因數(shù),這個分數(shù)就能化成有限小數(shù);如果分母中含有2和5 以外的質因數(shù),這個分數(shù)就不能化成有限小數(shù)。

      4.小數(shù)化成百分數(shù):只要把小數(shù)點向右移動兩位,同時在后面添上百分號。

      5.百分數(shù)化成小數(shù):把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。

      6.分數(shù)化成百分數(shù):通常先把分數(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分數(shù)。

      7.百分數(shù)化成小數(shù):先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。

      (四)數(shù)的整除

      1.把一個合數(shù)分解質因數(shù),通常用短除法。先用能整除這個合數(shù)的質數(shù)去除,一直除到商是質數(shù)為止,再把除數(shù)和商寫成連乘的形式。

      2.求幾個數(shù)的最大公約數(shù)的方法是:先用這幾個數(shù)的公約數(shù)連續(xù)去除,一直除到所得的商只有公約數(shù)1為止,然后把所有的除數(shù)連乘求積,這個積就是這幾個數(shù)的的最大公約數(shù)。

      3.求幾個數(shù)的最小公倍數(shù)的方法是:先用這幾個數(shù)(或其中的部分數(shù))的公約數(shù)去除,一直除到互質(或兩兩互質)為止,然后把所有的除數(shù)和商連乘求積,這個積就是這幾個數(shù)的最小公倍數(shù)。

      4.成為互質關系的兩個數(shù):1和任何自然數(shù)互質 ; 相鄰的兩個自然數(shù)互質;

      當合數(shù)不是質數(shù)的倍數(shù)時,這個合數(shù)和這個質數(shù)互質; 兩個合數(shù)的公約數(shù)只有1時,這兩個合數(shù)互質。

      (五)約分和通分

      約分的方法:用分子和分母的公約數(shù)(1除外)去除分子、分母;通常要除到得出最簡分數(shù)為止。

      通分的方法:先求出原來的幾個分數(shù)分母的最小公倍數(shù),然后把各分數(shù)化成用這個最小公倍數(shù)作分母的分數(shù)。

      性質和規(guī)律

      (一)商不變的規(guī)律

      商不變的規(guī)律:在除法里,被除數(shù)和除數(shù)同時擴大或者同時縮小相同的倍,商不變。

      (二)小數(shù)的性質

      小數(shù)的性質:在小數(shù)的末尾添上零或者去掉零小數(shù)的大小不變。

      (三)小數(shù)點位置的移動引起小數(shù)大小的變化

      1.小數(shù)點向右移動一位,原來的數(shù)就擴大10倍;小數(shù)點向右移動兩位,原來的數(shù)就擴大100倍;小數(shù)點向右移動三位,原來的數(shù)就擴大1000倍??

      2.小數(shù)點向左移動一位,原來的數(shù)就縮小10倍;小數(shù)點向左移動兩位,原來的數(shù)就縮小100倍;小數(shù)點向左移動三位,原來的數(shù)就縮小1000倍??

      3.小數(shù)點向左移或者向右移位數(shù)不夠時,要用“0"補足位。

      (四)分數(shù)的基本性質

      分數(shù)的基本性質:分數(shù)的分子和分母都乘以或者除以相同的數(shù)(零除外),分數(shù)的大小不變。

      (五)分數(shù)與除法的關系

      1.被除數(shù)÷除數(shù)= 被除數(shù)/除數(shù)

      2.因為零不能作除數(shù),所以分數(shù)的分母不能為零。

      3.被除數(shù) 相當于分子,除數(shù)相當于分母。

      運算的意義

      (一)整數(shù)四則運算

      1整數(shù)加法:

      把兩個數(shù)合并成一個數(shù)的運算叫做加法。

      在加法里,相加的數(shù)叫做加數(shù),加得的數(shù)叫做和。加數(shù)是部分數(shù),和是總數(shù)。

      加數(shù)+加數(shù)=和

      一個加數(shù)=和-另一個加數(shù)

      2整數(shù)減法:

      已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算叫做減法。

      在減法里,已知的和叫做被減數(shù),已知的加數(shù)叫做減數(shù),未知的加數(shù)叫做差。被減數(shù)是總數(shù),減數(shù)和差分別是部分數(shù)。

      加法和減法互為逆運算。

      3整數(shù)乘法:

      求幾個相同加數(shù)的和的簡便運算叫做乘法。

      在乘法里,相同的加數(shù)和相同加數(shù)的個數(shù)都叫做因數(shù)。相同加數(shù)的和叫做積。

      在乘法里,0和任何數(shù)相乘都得0.1和任何數(shù)相乘都的任何數(shù)。

      一個因數(shù)× 一個因數(shù) =積

      一個因數(shù)=積÷另一個因數(shù)

      整數(shù)除法:

      已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算叫做除法。

      在除法里,已知的積叫做被除數(shù),已知的一個因數(shù)叫做除數(shù),所求的因數(shù)叫做商。

      乘法和除法互為逆運算。

      在除法里,0不能做除數(shù)。因為0和任何數(shù)相乘都得0,所以任何一個數(shù)除以0,均得不到一個確定的商。

      被除數(shù)÷除數(shù)=商

      除數(shù)=被除數(shù)÷商

      被除數(shù)=商×除數(shù)

      (二)小數(shù)四則運算

      1.小數(shù)加法:

      小數(shù)加法的意義與整數(shù)加法的意義相同。是把兩個數(shù)合并成一個數(shù)的運算。

      2.小數(shù)減法:

      小數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算.3.小數(shù)乘法:

      小數(shù)乘整數(shù)的意義和整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算;一個數(shù)乘純小數(shù)的意義是求這個數(shù)的十分之幾、百分之幾、千分之幾??是多少。

      4.小數(shù)除法:

      小數(shù)除法的意義與整數(shù)除法的意義相同,就是已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。

      5.乘方:

      求幾個相同因數(shù)的積的運算叫做乘方。例如 3 × 3 =32

      (三)分數(shù)四則運算

      1.分數(shù)加法:

      分數(shù)加法的意義與整數(shù)加法的意義相同。是把兩個數(shù)合并成一個數(shù)的運算。

      2.分數(shù)減法:

      分數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算。

      3.分數(shù)乘法:

      分數(shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算。

      4.乘積是1的兩個數(shù)叫做互為倒數(shù)。

      5.分數(shù)除法:

      分數(shù)除法的意義與整數(shù)除法的意義相同。就是已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。

      (四)運算定律

      1.加法交換律:

      兩個數(shù)相加,交換加數(shù)的位置,它們的和不變,即a+b=b+a。

      2.加法結合律:

      三個數(shù)相加,先把前兩個數(shù)相加,再加上第三個數(shù);或者先把后兩個數(shù)相加,再和第一個數(shù)相加它們的和不變,即(a+b)+c=a+(b+c)。

      3.乘法交換律:

      兩個數(shù)相乘,交換因數(shù)的位置它們的積不變,即a×b=b×a。

      4.乘法結合律:

      三個數(shù)相乘,先把前兩個數(shù)相乘,再乘以第三個數(shù);或者先把后兩個數(shù)相乘,再和第一個數(shù)相乘,它們的積不變,即(a×b)×c=a×(b×c)。5.乘法分配律:

      兩個數(shù)的和與一個數(shù)相乘,可以把兩個加數(shù)分別與這個數(shù)相乘再把兩個積相加,即(a+b)×c=a×c+b×c。

      6.減法的性質:

      從一個數(shù)里連續(xù)減去幾個數(shù),可以從這個數(shù)里減去所有減數(shù)的和,差不變,即a-b-c=a-(b+c)。

      (五)運算法則

      1.整數(shù)加法計算法則:

      相同數(shù)位對齊,從低位加起,哪一位上的數(shù)相加滿十,就向前一位進一。

      2.整數(shù)減法計算法則:

      相同數(shù)位對齊,從低位加起,哪一位上的數(shù)不夠減,就從它的前一位退一作十,和本位上的數(shù)合并在一起,再減。

      3.整數(shù)乘法計算法則:

      先用一個因數(shù)每一位上的數(shù)分別去乘另一個因數(shù)各個數(shù)位上的數(shù),用因數(shù)哪一位上的數(shù)去乘,乘得的數(shù)的末尾就對齊哪一位,然后把各次乘得的數(shù)加起來。

      4.整數(shù)除法計算法則:

      先從被除數(shù)的高位除起,除數(shù)是幾位數(shù),就看被除數(shù)的前幾位; 如果不夠除,就多看一位,除到被除數(shù)的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補“0”占位。每次除得的余數(shù)要小于除數(shù)。

      5.小數(shù)乘法法則:

      先按照整數(shù)乘法的計算法則算出積,再看因數(shù)中共有幾位小數(shù),就從積的右邊起數(shù)出幾位,點上小數(shù)點;如果位數(shù)不夠,就用“0”補足。

      6.除數(shù)是整數(shù)的小數(shù)除法計算法則:

      先按照整數(shù)除法的法則去除,商的小數(shù)點要和被除數(shù)的小數(shù)點對齊;如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添“0”,再繼續(xù)除。

      7.除數(shù)是小數(shù)的除法計算法則:

      先移動除數(shù)的小數(shù)點,使它變成整數(shù),除數(shù)的小數(shù)點也向右移動幾位(位數(shù)不夠的補“0”),然后按照除數(shù)是整數(shù)的除法法則進行計算。

      8.同分母分數(shù)加減法計算方法: 同分母分數(shù)相加減,只把分子相加減,分母不變。

      9.異分母分數(shù)加減法計算方法: 先通分,然后按照同分母分數(shù)加減法的的法則進行計算。

      10.帶分數(shù)加減法的計算方法: 整數(shù)部分和分數(shù)部分分別相加減,再把所得的數(shù)合并起來。

      11.分數(shù)乘法的計算法則: 分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。

      12.分數(shù)除法的計算法則: 甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。

      (六)運算順序

      1.小數(shù)四則運算的運算順序和整數(shù)四則運算順序相同。

      2.分數(shù)四則運算的運算順序和整數(shù)四則運算順序相同。

      3.沒有括號的混合運算: 同級運算從左往右依次運算;兩級運算 先算乘、除法,后算加減法。

      4.有括號的混合運算: 先算小括號里面的,再算中括號里面的,最后算括號外面的。

      5.第一級運算:

      加法和減法叫做第一級運算。

      6.第二級運算:

      乘法和除法叫做第二級運算。

      應用

      (一)整數(shù)和小數(shù)的應用簡單應用題

      (1)簡單應用題:只含有一種基本數(shù)量關系,或用一步運算解答的應用題,通常叫做簡單應用題。

      (2)解題步驟:

      a 審題理解題意:了解應用題的內容,知道應用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復述條件和問題,幫助理解題意。

      b選擇算法和列式計算:這是解答應用題的中心工作。從題目中告訴什么,要求什么著手,逐步根據(jù)所給的條件和問題,聯(lián)系四則運算的含義,分析數(shù)量關系,確定算法,進行解答并標明正確的單位名稱。

      C檢驗:就是根據(jù)應用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發(fā)現(xiàn)錯誤,馬上改正。復合應用題

      (1)有兩個或兩個以上的基本數(shù)量關系組成的,用兩步或兩步以上運算解答的應用題,通常叫做復合應用題。

      (2)含有三個已知條件的兩步計算的應用題。

      求比兩個數(shù)的和多(少)幾個數(shù)的應用題。

      比較兩數(shù)差與倍數(shù)關系的應用題。

      (3)含有兩個已知條件的兩步計算的應用題。

      已知兩數(shù)相差多少(或倍數(shù)關系)與其中一個數(shù),求兩個數(shù)的和(或差)。

      已知兩數(shù)之和與其中一個數(shù),求兩個數(shù)相差多少(或倍數(shù)關系)。

      (4)解答連乘連除應用題。

      (5)解答三步計算的應用題。

      (6)解答小數(shù)計算的應用題:小數(shù)計算的加法、減法、乘法和除法的應用題,他們的數(shù)量關系、結構、和解題方式都與正式應用題基本相同,只是在已知數(shù)或未知數(shù)中間含有小數(shù)。d答案:根據(jù)計算的結果,先口答,逐步過渡到筆答。

      (3)解答加法應用題:

      a求總數(shù)的應用題:已知甲數(shù)是多少,乙數(shù)是多少,求甲乙兩數(shù)的和是多少。

      b求比一個數(shù)多幾的數(shù)應用題:已知甲數(shù)是多少和乙數(shù)比甲數(shù)多多少,求乙數(shù)是多少。

      (4)解答減法應用題:

      a求剩余的應用題:從已知數(shù)中去掉一部分,求剩下的部分。

      -b求兩個數(shù)相差的多少的應用題:已知甲乙兩數(shù)各是多少,求甲數(shù)比乙數(shù)多多少,或乙數(shù)比甲數(shù)少多少。

      c求比一個數(shù)少幾的數(shù)的應用題:已知甲數(shù)是多少,乙數(shù)比甲數(shù)少多少,求乙數(shù)是多少。

      (5)解答乘法應用題:

      a求相同加數(shù)和的應用題:已知相同的加數(shù)和相同加數(shù)的個數(shù),求總數(shù)。

      b求一個數(shù)的幾倍是多少的應用題:已知一個數(shù)是多少,另一個數(shù)是它的幾倍,求另一個數(shù)是多少。

      (6)解答除法應用題:

      a把一個數(shù)平均分成幾份,求每一份是多少的應用題:已知一個數(shù)和把這個數(shù)平均分成幾份的,求每一份是多少。

      b求一個數(shù)里包含幾個另一個數(shù)的應用題:已知一個數(shù)和每份是多少,求可以分成幾份。

      C 求一個數(shù)是另一個數(shù)的的幾倍的應用題:已知甲數(shù)乙數(shù)各是多少,求較大數(shù)是較小數(shù)的幾倍。

      d已知一個數(shù)的幾倍是多少,求這個數(shù)的應用題。

      (7)常見的數(shù)量關系:

      總價= 單價×數(shù)量

      路程= 速度×時間

      工作總量=工作時間×工效

      總產量=單產量×數(shù)量

      3典型應用題

      具有獨特的結構特征的和特定的解題規(guī)律的復合應用題,通常叫做典型應用題。

      (1)平均數(shù)問題:平均數(shù)是等分除法的發(fā)展。

      解題關鍵:在于確定總數(shù)量和與之相對應的總份數(shù)。

      算術平均數(shù):已知幾個不相等的同類量和與之相對應的份數(shù),求平均每份是多少。數(shù)量關系式:數(shù)量之和÷數(shù)量的個數(shù)=算術平均數(shù)。

      加權平均數(shù):已知兩個以上若干份的平均數(shù),求總平均數(shù)是多少。

      數(shù)量關系式(部分平均數(shù)×權數(shù))的總和÷(權數(shù)的和)=加權平均數(shù)。

      差額平均數(shù):是把各個大于或小于標準數(shù)的部分之和被總份數(shù)均分,求的是標準數(shù)與各數(shù)相差之和的平均數(shù)。

      數(shù)量關系式:(大數(shù)-小數(shù))÷2=小數(shù)應得數(shù)

      最大數(shù)與各數(shù)之差的和÷總份數(shù)=最大數(shù)應給數(shù)

      最大數(shù)與個數(shù)之差的和÷總份數(shù)=最小數(shù)應得數(shù)。

      例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。

      分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設為“ 1 ”,則汽車行駛的總路程為“ 2 ”,從甲地到乙地的速度為 100,所用的時間為,汽車從乙地到甲地速度為 60 千米,所用的時間是,汽車共行的時間為

      + = , 汽車的平均速度為 2 ÷

      =75(千米)

      (2)歸一問題:已知相互關聯(lián)的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。

      根據(jù)求“單一量”的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。

      根據(jù)球癡單一量之后,解題采用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。

      一次歸一問題,用一步運算就能求出“單一量”的歸一問題。又稱“單歸一?!?/p>

      兩次歸一問題,用兩步運算就能求出“單一量”的歸一問題。又稱“雙歸一?!?/p>

      正歸一問題:用等分除法求出“單一量”之后,再用乘法計算結果的歸一問題。

      反歸一問題:用等分除法求出“單一量”之后,再用除法計算結果的歸一問題。

      解題關鍵:從已知的一組對應量中用等分除法求出一份的數(shù)量(單一量),然后以它為標準,根據(jù)題目的要求算出結果。

      數(shù)量關系式:單一量×份數(shù)=總數(shù)量(正歸一)

      總數(shù)量÷單一量=份數(shù)(反歸一)

      例 一個織布工人,在七月份織布 4774 米,照這樣計算,織布 6930 米,需要多少天?

      分析:必須先求出平均每天織布多少米,就是單一量。693 0 ÷(477 4 ÷ 31)=45(天)

      (3)歸總問題:是已知單位數(shù)量和計量單位數(shù)量的個數(shù),以及不同的單位數(shù)量(或單位數(shù)量的個數(shù)),通過求總數(shù)量求得單位數(shù)量的個數(shù)(或單位數(shù)量)。

      特點:兩種相關聯(lián)的量,其中一種量變化,另一種量也跟著變化,不過變化的規(guī)律相反,和反比例算法彼此相通。

      數(shù)量關系式:單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量 = 另一個單位數(shù)量

      單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量= 另一個單位數(shù)量。

      例 修一條水渠,原計劃每天修 800 米,6 天修完。實際 4 天修完,每天修了多少米?

      分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應用題叫做“歸總問題”。不同之處是“歸一”先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。80 0 × 6 ÷ 4=1200(米)

      (4)和差問題:已知大小兩個數(shù)的和,以及他們的差,求這兩個數(shù)各是多少的應用題叫做和差問題。

      解題關鍵:是把大小兩個數(shù)的和轉化成兩個大數(shù)的和(或兩個小數(shù)的和),然后再求另一個數(shù)。

      解題規(guī)律:(和+差)÷2 = 大數(shù)

      大數(shù)-差=小數(shù)

      (和-差)÷2=小數(shù)

      和-小數(shù)= 大數(shù)

      例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時從乙班調 46 人到甲班工作,這時乙班比甲班人數(shù)少 12 人,求原來甲班和乙班各有多少人?

      分析:從乙班調 46 人到甲班,對于總數(shù)沒有變化,現(xiàn)在把乙數(shù)轉化成 2 個乙班,即 9 4 - 12,由此得到現(xiàn)在的乙班是(9 4 - 12)÷ 2=41(人),乙班在調出 46 人之前應該為 41+46=87(人),甲班為 9 4 - 87=7(人)

      (5)和倍問題:已知兩個數(shù)的和及它們之間的倍數(shù) 關系,求兩個數(shù)各是多少的應用題,叫做和倍問題。

      解題關鍵:找準標準數(shù)(即1倍數(shù))一般說來,題中說是“誰”的幾倍,把誰就確定為標準數(shù)。求出倍數(shù)和之后,再求出標準的數(shù)量是多少。根據(jù)另一個數(shù)(也可能是幾個數(shù))與標準數(shù)的倍數(shù)關系,再去求另一個數(shù)(或幾個數(shù))的數(shù)量。

      解題規(guī)律:和÷倍數(shù)和=標準數(shù)

      標準數(shù)×倍數(shù)=另一個數(shù)

      例:汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有大貨車和小汽車各有多少輛?

      分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數(shù) 115 輛內,為了使總數(shù)與(5+1)倍對應,總車輛數(shù)應(115-7)輛。

      列式為(115-7)÷(5+1)=18(輛),18 × 5+7=97(輛)

      (6)差倍問題:已知兩個數(shù)的差,及兩個數(shù)的倍數(shù)關系,求兩個數(shù)各是多少的應用題。

      解題規(guī)律:兩個數(shù)的差÷(倍數(shù)-1)= 標準數(shù)

      標準數(shù)×倍數(shù)=另一個數(shù)。

      例 甲乙兩根繩子,甲繩長 63 米,乙繩長 29 米,兩根繩剪去同樣的長度,結果甲所剩的長度是乙繩 長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米?

      分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的 3 倍,實比乙繩多(3-1)倍,以乙繩的長度為標準數(shù)。列式(63-29)÷(3-1)=17(米)?乙繩剩下的長度,17 × 3=51(米)?甲繩剩下的長度,29-17=12(米)?剪去的長度。

      (7)行程問題:關于走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、杜速度和、速度差等概念,了解他們之間的關系,再根據(jù)這類問題的規(guī)律解答。

      解題關鍵及規(guī)律:

      同時同地相背而行:路程=速度和×時間。

      同時相向而行:相遇時間=速度和×時間

      同時同向而行(速度慢的在前,快的在后):追及時間=路程速度差。同時同地同向而行(速度慢的在后,快的在前):路程=速度差×時間。

      例 甲在乙的后面 28 千米,兩人同時同向而行,甲每小時行 16 千米,乙每小時行 9 千米,甲幾小時追上乙?

      分析:甲每小時比乙多行(16-9)千米,也就是甲每小時可以追近乙(16-9)千米,這是速度差。

      已知甲在乙的后面 28 千米(追擊路程),28 千米 里包含著幾個(16-9)千米,也就是追擊所需要的時間。列式 2 8 ÷(16-9)=4(小時)

      (8)流水問題:一般是研究船在“流水”中航行的問題。它是行程問題中比較特殊的一種類型,它也是一種和差問題。它的特點主要是考慮水速在逆行和順行中的不同作用。

      船速:船在靜水中航行的速度。

      水速:水流動的速度。

      順水速度:船順流航行的速度。

      逆水速度:船逆流航行的速度。

      順速=船速+水速

      逆速=船速-水速

      解題關鍵:因為順流速度是船速與水速的和,逆流速度是船速與水速的差,所以流水問題當作和差問題解答。解題時要以水流為線索。

      解題規(guī)律:船行速度=(順水速度+ 逆流速度)÷2 流水速度=(順流速度逆流速度)÷2 路程=順流速度× 順流航行所需時間

      路程=逆流速度×逆流航行所需時間

      例 一只輪船從甲地開往乙地順水而行,每小時行 28 千米,到乙地后,又逆水 航行,回到甲地。逆水比順水多行 2 小時,已知水速每小時 4 千米。求甲乙兩地相距多少千米?

      分析:此題必須先知道順水的速度和順水所需要的時間,或者逆水速度和逆水的時間。已知順水速度和水流 速度,因此不難算出逆水的速度,但順水所用的時間,逆水所用的時間不知道,只知道順水比逆水少用 2 小時,抓住這一點,就可以就能算出順水從甲地到乙地的所用的時間,這樣就能算出甲乙兩地的路程。列式為 284 × 2=20(千米)2 0 × 2 =40(千米)40 ÷(4 × 2)=5(小時)28 × 5=140(千米)。

      (9)還原問題:已知某未知數(shù),經過一定的四則運算后所得的結果,求這個未知數(shù)的應用題,我們叫做還原問題。

      解題關鍵:要弄清每一步變化與未知數(shù)的關系。

      解題規(guī)律:從最后結果 出發(fā),采用與原題中相反的運算(逆運算)方法,逐步推導出原數(shù)。

      根據(jù)原題的運算順序列出數(shù)量關系,然后采用逆運算的方法計算推導出原數(shù)。

      解答還原問題時注意觀察運算的順序。若需要先算加減法,后算乘除法時別忘記寫括號。

      例 某小學三年級四個班共有學生 168 人,如果四班調 3 人到三班,三班調 6 人到二班,二班調 6 人到一班,一班調 2 人到四班,則四個班的人數(shù)相等,四個班原有學生多少人?

      分析:當四個班人數(shù)相等時,應為 168 ÷ 4,以四班為例,它調給三班 3 人,又從一班調入 2 人,所以四班原有的人數(shù)減去 3 再加上 2 等于平均數(shù)。四班原有人數(shù)列式為 168 ÷ 4-2+3=43(人)

      一班原有人數(shù)列式為 168 ÷ 4-6+2=38(人);二班原有人數(shù)列式為 168 ÷ 4-6+6=42(人)三班原有人數(shù)列式為 168 ÷ 4-3+6=45(人)。

      (10)植樹問題:這類應用題是以“植樹”為內容。凡是研究總路程、株距、段數(shù)、棵樹四種數(shù)量關系的應用題,叫做植樹問題。

      解題關鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然后按基本公式進行計算。

      解題規(guī)律:沿線段植樹

      棵樹=段數(shù)+1

      棵樹=總路程÷株距+1

      株距=總路程÷(棵樹-1)

      總路程=株距×(棵樹-1)

      沿周長植樹

      棵樹=總路程÷株距

      株距=總路程÷棵樹

      總路程=株距×棵樹

      例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米。后來全部改裝,只埋了201 根。求改裝后每相鄰兩根的間距。

      分析:本題是沿線段埋電線桿,要把電線桿的根數(shù)減掉一。列式為 50 ×(301-1)÷(201-1)=75(米)

      (11)盈虧問題:是在等分除法的基礎上發(fā)展起來的。他的特點是把一定數(shù)量的物品,平均分配給一定數(shù)量的人,在兩次分配中,一次有余,一次不足(或兩次都有余),或兩次都不足),已知所余和不足的數(shù)量,求物品適量和參加分配人數(shù)的問題,叫做盈虧問題。

      解題關鍵:盈虧問題的解法要點是先求兩次分配中分配者沒份所得物品數(shù)量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個差去除后一個差,就得到分配者的數(shù),進而再求得物品數(shù)。

      解題規(guī)律:總差額÷每人差額=人數(shù)

      總差額的求法可以分為以下四種情況:

      第一次多余,第二次不足,總差額=多余+ 不足

      第一次正好,第二次多余或不足,總差額=多余或不足

      第一次多余,第二次也多余,總差額=大多余-小多余

      第一次不足,第二次也不足,總差額= 大不足-小不足

      例 參加美術小組的同學,每個人分的相同的支數(shù)的色筆,如果小組 10 人,則多 25 支,如果小組有 12 人,色筆多余 5 支。求每人 分得幾支?共有多少支色鉛筆?

      分析:每個同學分到的色筆相等。這個活動小組有 12 人,比 10 人多 2 人,而色筆多出了(25-5)=20 支,2 個人多出 20 支,一個人分得 10 支。列式為(25-5)÷(12-10)=10(支)10 × 12+5=125(支)。

      (12)年齡問題:將差為一定值的兩個數(shù)作為題中的一個條件,這種應用題被稱為“年齡問題”。

      解題關鍵:年齡問題與和差、和倍、差倍問題類似,主要特點是隨著時間的變化,年歲不斷增長,但大小兩個不同年齡的差是不會改變的,因此,年齡問題是一種“差不變”的問題,解題時,要善于利用差不變的特點。

      例 父親 48 歲,兒子 21 歲。問幾年前父親的年齡是兒子的 4 倍?

      分析:父子的年齡差為 48-21=27(歲)。由于幾年前父親年齡是兒子的 4 倍,可知父子年齡的倍數(shù)差是(4-1)倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的 4 倍。列式為: 21(48-21)÷(4-1)=12(年)

      (13)雞兔問題:已知“雞兔”的總頭數(shù)和總腿數(shù)。求“雞”和“兔”各多少只的一類應用題。通常稱為“雞兔問題”又稱雞兔同籠問題

      解題關鍵:解答雞兔問題一般采用假設法,假設全是一種動物(如全是“雞”或全是“兔”,然后根據(jù)出現(xiàn)的腿數(shù)差,可推算出某一種的頭數(shù)。

      解題規(guī)律:(總腿數(shù)-雞腿數(shù)×總頭數(shù))÷一只雞兔腿數(shù)的差=兔子只數(shù)

      兔子只數(shù)=(總腿數(shù)-2×總頭數(shù))÷2

      如果假設全是兔子,可以有下面的式子:

      雞的只數(shù)=(4×總頭數(shù)-總腿數(shù))÷2 兔的頭數(shù)=總頭數(shù)-雞的只數(shù)

      例 雞兔同籠共 50 個頭,170 條腿。問雞兔各有多少只?

      兔子只數(shù)(170-2 × 50)÷ 2 =35(只)

      雞的只數(shù) 50-35=15(只)

      第三章 代數(shù)初步知識

      一、用字母表示數(shù) 用字母表示數(shù)的意義和作用

      * 用字母表示數(shù),可以把數(shù)量關系簡明的表達出來,同時也可以表示運算的結果。

      2用字母表示常見的數(shù)量關系、運算定律和性質、幾何形體的計算公式

      (1)常見的數(shù)量關系

      路程用s表示,速度v用表示,時間用t表示,三者之間的關系:

      s=vt

      v=s/t t=s/v

      總價用a表示,單價用b表示,數(shù)量用c表示,三者之間的關系: a=bc b=a/c c=a/b

      (2)運算定律和性質

      加法交換律:a+b=b+a 加法結合律:(a+b)+c=a+(b+c)乘法交換律:ab=ba 乘法結合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc 減法的性質:a-(b+c)=a-b-c

      (3)用字母表示幾何形體的公式

      長方形的長用a表示,寬用b表示,周長用c表示,面積用s表示。

      c=2(a+b)s=ab

      正方形的邊長a用表示,周長用c表示,面積用s表示。

      c=4a s=a2

      平行四邊形的底a用表示,高用h表示,面積用s表示。

      s=ah

      三角形的底用a表示,高用h表示,面積用s表示。

      s=ah/2

      梯形的上底用a表示,下底b用表示,高用h表示,中位線用m表示,面積用s表示。

      s=(a+b)h/2 s=mh

      圓的半徑用r表示,直徑用d表示,周長用c表示,面積用s表示。

      c=∏d=2∏r s=∏ r2

      扇形的半徑用r表示,n表示圓心角的度數(shù),面積用s表示。

      s=∏ nr2/360

      長方體的長用a表示,寬用b表示,高用h表示,表面積用s表示,體積用v表示。

      v=sh

      s=2(ab+ah+bh)v=abh

      正方體的棱長用a表示,底面周長c用表示,底面積用s表示,體積用v表示.s=6a2

      v=a3

      圓柱的高用h表示,底面周長用c表示,底面積用s表示,體積用v表示.s側=ch

      s表=s側+2s底

      v=sh

      圓錐的高用h表示,底面積用s表示,體積用v表示.v=sh/3 用字母表示數(shù)的寫法

      數(shù)字和字母、字母和字母相乘時,乘號可以記作“.”,或者省略不寫,數(shù)字要寫在字母的前面。

      當“1”與任何字母相乘時,“1”省略不寫。

      在一個問題中,同一個字母表示同一個量,不同的量用不同的字母表示。

      用含有字母的式子表示問題的答案時,除數(shù)一般寫成分母,如果式子中有加號或者減號,要先用括號把含字母的式子括起來,再在括號后面寫上單位的名稱。

      4將數(shù)值代入式子求值

      * 把具體的數(shù)代入式子求值時,要注意書寫格式:先寫出字母等于幾,然后寫出原式,再把數(shù)代入式子求值。字母表示的是數(shù),后面不寫單位名稱。

      * 同一個式子,式子中所含字母取不同的數(shù)值,那么所求出的式子的值也不相同。

      二、簡易方程

      (一)方程和方程的解

      1方程:含有未知數(shù)的等式叫做方程。

      注意方程是等式,又含有未知數(shù),兩者缺一不可。

      方程和算術式不同。算術式是一個式子,它由運算符號和已知數(shù)組成,它表示未知數(shù)。方程是一個等式,在方程里的未知數(shù)可以參加運算,并且只有當未知數(shù)為特定的數(shù)值時,方程才成立。方程的解:使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。

      三、解方程

      解方程,求方程的解的過程叫做解方程。

      四、列方程解應用題列方程解應用題的意義

      * 用方程式去解答應用題求得應用題的未知量的方法。

      列方程解答應用題的步驟

      * 弄清題意,確定未知數(shù)并用x表示;

      * 找出題中的數(shù)量之間的相等關系;

      * 列方程,解方程;

      * 檢查或驗算,寫出答案。

      3列方程解應用題的方法

      * 綜合法:先把應用題中已知數(shù)(量)和所設未知數(shù)(量)列成有關的代數(shù)式,再找出它們之間的等量關系,進而列出方程。這是從部分到整體的一種 思維過程,其思考方向是從已知到未知。

      * 分析法:先找出等量關系,再根據(jù)具體建立等量關系的需要,把應用題中已知數(shù)(量)和所設的未知數(shù)(量)列成有關的代數(shù)式進而列出方程。這是從整體到部分的一種思維過程,其思考方向是從未知到已知。

      4列方程解應用題的范圍

      小學范圍內常用方程解的應用題:

      a一般應用題;

      b和倍、差倍問題;

      c幾何形體的周長、面積、體積計算; d 分數(shù)、百分數(shù)應用題;

      e 比和比例應用題。

      比和比例

      1比的意義和性質

      (1)比的意義

      兩個數(shù)相除又叫做兩個數(shù)的比。

      “:”是比號,讀作“比”。比號前面的數(shù)叫做比的前項,比號后面的數(shù)叫做比的后項。比的前項除以后項所得的商,叫做比值。

      同除法比較,比的前項相當于被除數(shù),后項相當于除數(shù),比值相當于商。

      比值通常用分數(shù)表示,也可以用小數(shù)表示,有時也可能是整數(shù)。

      比的后項不能是零。

      根據(jù)分數(shù)與除法的關系,可知比的前項相當于分子,后項相當于分母,比值相當于分數(shù)值。

      (2)比的性質

      比的前項和后項同時乘上或者除以相同的數(shù)(0除外),比值不變,這叫做比的基本性質。

      (3)

      求比值和化簡比

      求比值的方法:用比的前項除以后項,它的結果是一個數(shù)值可以是整數(shù),也可以是小數(shù)或分數(shù)。

      根據(jù)比的基本性質可以把比化成最簡單的整數(shù)比。它的結果必須是一個最簡比,即前、后項是互質的數(shù)。

      (4)比例尺

      圖上距離:實際距離=比例尺

      要求會求比例尺;已知圖上距離和比例尺求實際距離;已知實際距離和比例尺求圖上距離。

      線段比例尺:在圖上附有一條注有數(shù)目的線段,用來表示和地面上相對應的實際距離。

      (5)按比例分配

      在農業(yè)生產和日常生活中,常常需要把一個數(shù)量按照一定的比來進行分配。這種分配的方法通常叫做按比例分配。

      方法:首先求出各部分占總量的幾分之幾,然后求出總數(shù)的幾分之幾是多少。

      比例的意義和性質

      (1)比例的意義

      表示兩個比相等的式子叫做比例。

      組成比例的四個數(shù),叫做比例的項。

      兩端的兩項叫做外項,中間的兩項叫做內項。

      (2)比例的性質

      在比例里,兩個外項的積等于兩個兩個內向的積。這叫做比例的基本性質。

      (3)解比例

      根據(jù)比例的基本性質,如果已知比例中的任何三項,就可以求出這個數(shù)比例中的另外一個未知項。求比例中的未知項,叫做解比例。

      正比例和反比例

      (1)成正比例的量

      兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關系叫做正比例關系。

      用字母表示y/x=k(一定)

      (2)成反比例的量

      兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,他們的關系叫做反比例關系。

      用字母表示x×y=k(一定)

      第四章 幾何的初步知識

      一 線和角

      (1)線

      * 直線

      直線沒有端點;長度無限;過一點可以畫無數(shù)條,過兩點只能畫一條直線。

      * 射線

      射線只有一個端點;長度無限。

      * 線段

      線段有兩個端點,它是直線的一部分;長度有限;兩點的連線中,線段為最短。

      *平行線

      在同一平面內,不相交的兩條直線叫做平行線。

      兩條平行線之間的垂線長度都相等。

      * 垂線

      兩條直線相交成直角時,這兩條直線叫做互相垂直,其中一條直線叫做另一條直線的垂線,相交的點叫做垂足。

      從直線外一點到這條直線所畫的垂線的長叫做這點到直線的距離。

      (2)角

      (1)從一點引出兩條射線,所組成的圖形叫做角。這個點叫做角的頂點,這兩條射線叫做角的邊。

      (2)角的分類

      銳角:小于90°的角叫做銳角。

      直角:等于90°的角叫做直角。

      鈍角:大于90°而小于180°的角叫做鈍角。

      平角:角的兩邊成一條直線,這時所組成的角叫做平角。平角180°。

      周角:角的一邊旋轉一周,與另一邊重合。周角是360°。

      二平面圖形

      1長方形

      (1)特征

      對邊相等,4個角都是直角的四邊形。有兩條對稱軸。

      (2)計算公式

      c=2(a+b)s=ab 2正方形

      (1)特征:

      四條邊都相等,四個角都是直角的四邊形。有4條對稱軸。(2)計算公式

      c=4a s=a2

      3三角形

      (1)特征

      由三條線段圍成的圖形。內角和是180度。三角形具有穩(wěn)定性。三角形有三條高。

      (2)計算公式

      s=ah/2

      (3)分類

      按角分

      銳角三角形 :三個角都是銳角。

      直角三角形 :有一個角是直角。等腰三角形的兩個銳角各為45度,它有一條對稱軸。

      鈍角三角形:有一個角是鈍角。

      按邊分

      不等邊三角形:三條邊長度不相等。

      等腰三角形:有兩條邊長度相等;兩個底角相等;有一條對稱軸。

      等邊三角形:三條邊長度都相等;三個內角都是60度;有三條對稱軸。

      4平行四邊形

      (1)

      特征

      兩組對邊分別平行的四邊形。

      相對的邊平行且相等。對角相等,相鄰的兩個角的度數(shù)之和為180度。平行四邊形容易變形。

      (2)計算公式

      s=ah 5 梯形

      (1)特征

      只有一組對邊平行的四邊形。

      中位線等于上下底和的一半。

      等腰梯形有一條對稱軸。

      (2)公式

      s=(a+b)h/2=mh 6 圓

      (1)圓的認識

      平面上的一種曲線圖形。

      圓中心的一點叫做圓心。一般用字母o表示。

      半徑:連接圓心和圓上任意一點的線段叫做半徑。一般用r表示。

      在同一個圓里,有無數(shù)條半徑,每條半徑的長度都相等。

      通過圓心并且兩端都在圓上的線段叫做直徑。一般用d表示。

      同一個圓里有無數(shù)條直徑,所有的直徑都相等。

      同一個圓里,直徑等于兩個半徑的長度,即d=2r。

      圓的大小由半徑決定。圓有無數(shù)條對稱軸。

      (2)圓的畫法

      把圓規(guī)的兩腳分開,定好兩腳間的距離(即半徑);

      把有針尖的一只腳固定在一點(即圓心)上;

      把裝有鉛筆尖的一只腳旋轉一周,就畫出一個圓。

      (3)圓的周長

      圍成圓的曲線的長叫做圓的周長。

      把圓的周長和直徑的比值叫做圓周率。用字母∏表示。

      (4)圓的面積

      圓所占平面的大小叫做圓的面積。

      (5)計算公式

      d=2r r=d/2 c=∏d c=2∏r

      s=∏r2

      7扇形

      (1)

      扇形的認識

      一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。

      圓上AB兩點之間的部分叫做弧,讀作“弧AB”。

      頂點在圓心的角叫做圓心角。

      在同一個圓中,扇形的大小與這個扇形的圓心角的大小有關。

      扇形有一條對稱軸。

      (2)計算公式

      s=n∏r2/360 8環(huán)形

      (1)特征

      由兩個半徑不相等的同心圓相減而成,有無數(shù)條對稱軸。

      (2)計算公式

      s=∏(R2-r2)

      9軸對稱圖形

      (1)特征

      如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。

      正方形有4條對稱軸,長方形有2條對稱軸。

      等腰三角形有2條對稱軸,等邊三角形有3條對稱軸。

      等腰梯形有一條對稱軸,圓有無數(shù)條對稱軸。

      菱形有4條對稱軸,扇形有一條對稱軸。

      三 立體圖形

      (一)長方體

      特征

      六個面都是長方形(有時有兩個相對的面是正方形)。

      相對的面面積相等,12條棱相對的4條棱長度相等。

      有8個頂點。

      相交于一個頂點的三條棱的長度分別叫做長、寬、高。

      兩個面相交的邊叫做棱。

      三條棱相交的點叫做頂點。

      把長方體放在桌面上,最多只能看到三個面。

      長方體或者正方體6個面的總面積,叫做它的表面積。計算公式

      s=2(ab+ah+bh)V=sh V=abh

      (二)正方體

      特征

      六個面都是正方形

      六個面的面積相等

      12條棱,棱長都相等

      有8個頂點

      正方體可以看作特殊的長方體

      計算公式

      S表=6a2

      v=a3

      (三)圓柱

      1圓柱的認識

      圓柱的上下兩個面叫做底面。

      圓柱有一個曲面叫做側面。

      圓柱兩個底面之間的距離叫做高。

      進一法:實際中,使用的材料都要比計算的結果多一些,因此,要保留數(shù)的時候,省略的位上的是4或者比4小,都要向前一位進1。這種取近似值的方法叫做進一法。2計算公式

      s側=ch

      s表=s側+s底×2 v=sh/3

      (四)圓錐

      圓錐的認識

      圓錐的底面是個圓,圓錐的側面是個曲面。

      從圓錐的頂點到底面圓心的距離是圓錐的高。

      測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離。

      把圓錐的側面展開得到一個扇形。2計算公式

      v= sh/3

      (五)球

      認識

      球的表面是一個曲面,這個曲面叫做球面。

      球和圓類似,也有一個球心,用O表示。

      從球心到球面上任意一點的線段叫做球的半徑,用r表示,每條半徑都相等。

      通過球心并且兩端都在球面上的線段,叫做球的直徑,用d表示,每條直徑都相等,直徑的長度等于半徑的2倍,即d=2r。

      計算公式

      -第五章 簡單的統(tǒng)計

      統(tǒng)計表

      (一)意義

      * 把統(tǒng)計數(shù)據(jù)填寫在一定格式的表格內,用來反映情況、說明問題,這樣的表格就叫做統(tǒng)計表。

      (二)組成部分

      * 一般分為表格外和表格內兩部分。表格外部分包括標的名稱,單位說明和制表日期;表格內部包括表頭、橫標目、縱標目和數(shù)據(jù)四個方面。

      (三)種類

      * 單式統(tǒng)計表:只含有一個項目的統(tǒng)計表。

      * 復式統(tǒng)計表:含有兩個或兩個以上統(tǒng)計項目的統(tǒng)計表。

      * 百分數(shù)統(tǒng)計表:不僅表明各統(tǒng)計項目的具體數(shù)量,而且表明比較量相當于標準量的百分比的統(tǒng)計表。

      (四)制作步驟

      1搜集數(shù)據(jù)

      2整理數(shù)據(jù):

      要根據(jù)制表的目的和統(tǒng)計的內容,對數(shù)據(jù)進行分類。

      3設計草表:

      要根據(jù)統(tǒng)計的目的和內容設計分欄格內容、分欄格畫法,規(guī)定橫欄、豎欄各需幾格,每格長度。正式制表:

      把核對過的數(shù)據(jù)填入表中,并根據(jù)制表要求,用簡單、明確的語言寫上統(tǒng)計表的名稱和制表日期。

      統(tǒng)計圖

      (一)意義

      * 用點線面積等來表示相關的量之間的數(shù)量關系的圖形叫做統(tǒng)計圖。

      (二)分類條形統(tǒng)計圖

      用一個單位長度表示一定的數(shù)量,根據(jù)數(shù)量的多少畫成長短不同的直條,然后把這些直線按照一定的順序排列起來。

      優(yōu)點:很容易看出各種數(shù)量的多少。

      注意:畫條形統(tǒng)計圖時,直條的寬窄必須相同。

      取一個單位長度表示數(shù)量的多少要根據(jù)具體情況而確定;

      復式條形統(tǒng)計圖中表示不同項目的直條,要用不同的線條或顏色區(qū)別開,并在制圖日期下面注明圖例。

      制作條形統(tǒng)計圖的一般步驟:

      (1)根據(jù)圖紙的大小,畫出兩條互相垂直的射線。

      (2)在水平射線上,適當分配條形的位置,確定直線的寬度和間隔。

      (3)在與水平射線垂直的深線上根據(jù)數(shù)據(jù)大小的具體情況,確定單位長度表示多少。

      (4)按照數(shù)據(jù)的大小畫出長短不同的直條,并注明數(shù)量。

      折線統(tǒng)計圖

      用一個單位長度表示一定的數(shù)量,根據(jù)數(shù)量的多少描出各點,然后把各點用線段順次連接起來。

      優(yōu)點:不但可以表示數(shù)量的多少,而且能夠清楚地表示出數(shù)量增減變化的情況。

      注意:折線統(tǒng)計圖的橫軸表示不同的年份、月份等時間時,不同時間之間的距離要根據(jù)年份或月份的間隔來確定。

      制作折線統(tǒng)計圖的一般步驟:

      (1)根據(jù)圖紙的大小,畫出兩條互相垂直的射線。

      (2)在水平射線上,適當分配折線的位置,確定直線的寬度和間隔。

      (3)在與水平射線垂直的深線上根據(jù)數(shù)據(jù)大小的具體情況,確定單位長度表示多少。

      (4)按照數(shù)據(jù)的大小描出各點,再用線段順次連接起來,并注明數(shù)量。

      3扇形統(tǒng)計圖

      用整個圓的面積表示總數(shù),用扇形面積表示各部分所占總數(shù)的百分數(shù)。

      優(yōu)點:很清楚地表示出各部分同總數(shù)之間的關系。

      制扇形統(tǒng)計圖的一般步驟:

      (1)先算出各部分數(shù)量占總量的百分之幾。

      (2)再算出表示各部分數(shù)量的扇形的圓心角度數(shù)。

      (3)取適當?shù)陌霃疆嬕粋€圓,并按照上面算出的圓心角的度數(shù),在圓里畫出各個扇形。

      (4)在每個扇形中標明所表示的各部分數(shù)量名稱和所占的百分數(shù),并用不同顏色或條紋把各個扇形區(qū)別開。

      第二篇:高中數(shù)學公式及定理總結

      乘法與因式分解

      a^2-b^2=(a+b)(a-b)

      a^3+b^3=(a+b)(a^2-ab+b^2)?

      a^3-b^3=(a-b(a^2+ab+b^2)

      三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a|

      一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根與系數(shù)的關系 X1+X2=-b/a X1*X2=c/a 注:韋達定理 判別式

      b^2-4ac=0 注:方程有兩個相等的實根

      b^2-4ac>0 注:方程有兩個不等的實根 

      b^2-4ac<0 注:方程沒有實根,有共軛復數(shù)根

      三角函數(shù)公式

      兩角和公式

      sin(A+B)=sinAcosB+cosAsinB

      sin(A-B)=sinAcosB-sinBcosA 

      cos(A+B)=cosAcosB-sinAsinB

      cos(A-B)=cosAcosB+sinAsinB

      tan(A+B)=(tanA+tanB)/(1-tanAtanB)

      tan(A-B)=(tanA-tanB)/(1+tanAtanB)

      cot(A+B)=(cotAcotB-1)/(cotB+cotA)

      cot(A-B)=(cotAcotB+1)/(cotB-cotA)

      倍角公式

      tan2A=2tanA/[1-(tanA)^2]

      cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^

      2半角公式

      sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

      cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

      tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA))和差化積

      2sinAcosB=sin(A+B)+sin(A-B)

      2cosAsinB=sin(A+B)-sin(A-B))

      2cosAcosB=cos(A+B)-sin(A-B)

      -2sinAsinB=cos(A+B)-cos(A-B)

      sinA+sinB=2sin((A+B)/2)cos((A-B)/2

      cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

      tanA+tanB=sin(A+B)/cosAcosB

      某些數(shù)列前n項和

      1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

      1+3+5+7+9+11+13+15+…+(2n-1)=n2-

      2+4+6+8+10+12+14+…+(2n)=n(n+1)

      51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

      1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/

      41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/

      3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圓半徑

      余弦定理 b^2=a^2+c^2-2accosB 注:角B是邊a和邊c的夾角

      圓的標準方程(x-a)^2+(y-b)^2=^r2 注:(a,b)是圓心坐標

      圓的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0

      拋物線標準方程 y^2=2px y^2=-2px x^2=2py x^2=-2py

      直棱柱側面積 S=c*h 斜棱柱側面積 S=c'*h

      正棱錐側面積 S=1/2c*h' 正棱臺側面積 S=1/2(c+c')h'

      圓臺側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2

      圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l

      弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r

      錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h 

      斜棱柱體積 V=S'L 注:其中,S'是直截面面積,L是側棱長

      柱體體積公式 V=s*h 圓柱體 V=pi*r2h

      定理

      平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 線段成比例87 推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

      定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊

      平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

      定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

      相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)

      直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

      判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)

      判定定理3 三邊對應成比例,兩三角形相似(SSS)

      定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似

      性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比

      性質定理2 相似三角形周長的比等于相似比

      性質定理3 相似三角形面積的比等于相似比的平方

      任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值

      100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 于它的余角的正切值

      101圓是定點的距離等于定長的點的**

      102圓的內部可以看作是圓心的距離小于半徑的點的**

      103圓的外部可以看作是圓心的距離大于半徑的點的**

      104同圓或等圓的半徑相等

      105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半 徑的圓

      106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

      108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 離相等的一條直線

      109定理 不在同一直線上的三點確定一個圓。

      110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

      111推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧

      ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2 圓的兩條平行弦所夾的弧相等

      113圓是以圓心為對稱中心的中心對稱圖形

      114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

      115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

      116定理 一條弧所對的圓周角等于它所對的圓心角的一半

      117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

      118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑

      119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

      120定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它 的內對角121①直線L和⊙O相交 d<r

      ②直線L和⊙O相切 d=r

      ③直線L和⊙O相離 d>r

      第三篇:高一數(shù)學公式定理

      一、公式S 圓柱表面積?2?r?2?rl?2?r(r?l)

      ??(r??r?r?l?rl)222 S圓臺表面積

      S圓錐表面積??r(r?l)S圓柱側=2πrl S圓臺側=πl(wèi)(r+r)S圓錐側=πrl

      S球=4πr2S直棱柱側=ch(c為底面周長,h為高)S正棱錐側=ch(c為底面周長,h為側面等腰三角形底邊上的高)S棱臺側=(c+c)h(c、c 為上下底面周長,h 為側面等腰梯形的高)

      V錐?13?R3V球?

      V臺?1

      323?R3S?S?S)h 3V柱??R

      二、定理(S?? A?l?

      ?B?l??l??① 如果一條直線上的兩點在一個平面內,那么這條直線在此平面內。A???

      ?

      B???② 過不在一條直線上的三點,有且只有一個平面。?

      1)過一條直線和直線外的一點,有且只有一個平面。

      2)過兩條相交/平行直線有且只有一個平面。

      ③如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。

      P??,且P???????l,且P?l

      ④空間中如果兩個角的兩邊分別對應平行,那么這兩個角相等或互補。

      ⑤平面外的一條直線與此平面內的一條直線平行,則該直線與此平面平行。(線線平行→線面平行)⑥一個平面內的兩條相交直線與另一個平面平行,則這兩個平面平行。

      ⑦如果一個平面內有兩條相交直線分別平行于另一個平面內兩條直線,則面面平行。

      ⑧一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。(線面平行→線線平行)

      ⑨如果兩個平行平面同時和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)

      ⑩一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直。(線線垂直→線面垂直)?一個平面過另一個平面的垂線,則這兩個平面垂直。(線面垂直→面面垂直)

      ?垂直于同一個平面的兩條直線平行。

      ?兩個平面垂直,則一個平面內垂直于交線的直線與另一個平面垂直。(面面垂直→線面垂直)

      第四篇:高中數(shù)學公式和定理

      高中數(shù)學公式和定理

      數(shù)學公式和定理揭示了數(shù)學知識的基本規(guī)律,具有一定的形式符號化的抽象性和概括性的特征,是學生數(shù)學認知水平發(fā)展的重要學習載體.要學好數(shù)學,必須對公式和定理有十分正確透徹的理解,也就是說,牢固掌握并能靈活運用數(shù)學公式和定理是提高數(shù)學能力的重要前提.在教學過程中我積累了一些經驗,下面我就數(shù)學公式和定理的教學談談我的一些體會.

      在數(shù)學公式和定理的學習中,需要學生具備多方面的能力,如對新舊知識聯(lián)系的理解能力,對數(shù)學規(guī)律的歸納與探究能力,對公式與定理的推理與演繹能力,對知識的存儲、記憶與應用能力等.

      數(shù)學公式和定理教學容易產生“一背二套”、“公式加例題”的形式,這種形式的教學往往使學生頭腦里只留下公式、定理的外殼,忽視它們的來龍去脈,不明確它們運用的條件和范圍.事實上在公式與定理的教學中一般應有如下五個環(huán)節(jié):引入,推導,條件和特例,應用,最后把它們納入學生的知識體系.因此,教師在教學中注意創(chuàng)設情景、激發(fā)興趣,充分發(fā)揮學生在學習中的主體作用,就能避免學生的死記硬背,生搬硬套,做到“活學活用”.

      一、知識引入多樣化,激發(fā)學生求知欲

      公式、定理的引入是發(fā)展學生思維、培養(yǎng)探索能力的首要環(huán)節(jié).一開始的引入如能把學生吸引住,將大大激發(fā)學生的求知欲,使他們的思維處于最亢奮的狀態(tài).在平時的教學中,我發(fā)現(xiàn),“開門見山”式的引入雖然省時省力,但學生學習缺乏興趣,只等著老師講.而針對不同的公式與定理,采用多樣化的引入,能很好地吸引學生,激發(fā)他們的探究欲望.在教學實踐中,我常常采用以下幾種引入的方法:

      1、實踐引入:

      教師要善于搜集與公式和定理相關的、有趣味的模型,使學生在接觸課題時,就產生強烈的探求欲望.例如在引入線面垂直的判定定理時,先讓學生自己動手做一個實驗:如圖,拿一張矩形紙片,對折后略為展開,使矩形被折的一邊緊貼在桌面上,教師告訴學生,折痕和桌面是垂直的,這是為什么呢?學生一下子被吸引住了,急切地想知道這是為什么.

      2、類比引入:

      數(shù)學具有系統(tǒng)性,因此新公式、新定理可以由舊公式、舊定理通過類比遷移而來. 例如在引入余

      選校網專業(yè)大全 歷年分數(shù)線 上萬張大學圖片 大學視頻 院校庫

      弦定理時,先給出三角形的三邊a、b、c,其中c為最大邊.討論c2與a2?b2的關系.同學們已經學過勾股定理,?C?900時有c2?a2?b2.教師向學生提出這樣的問題,在斜三角形中a2?b2與c2有什么關系?學生通過探究發(fā)現(xiàn),當?C?900時有c2?a2?b2;當?C?900時有c2?a2?b2.通過對三種三角形的類比,學生會有很大的興趣去討論它們之間存在怎樣的一種關系式.此時教師引導學生歸納出在△ABC中,三邊a、b、c有這樣一種關系:c2?a2?b2?m.進而得出m的符號與?C的關系.這種引入方法,使學生對新公式、新定理不感到突然,而是舊公式、舊定理的延伸與擴展.

      3、發(fā)現(xiàn)法引入:

      由于公式是對客觀實踐的抽象,為了完成這一過程,我?guī)ьI學生重涉前人探索之路去發(fā)現(xiàn)公式.這種發(fā)現(xiàn)式的引入,對培養(yǎng)學生觀察與探究能力有重要作用.在應用這種引入方法時,關鍵是創(chuàng)設使學生感興趣的情景.例如在學習等差數(shù)列求和公式時,我給同學們講了他們都知道的高斯小時候求1?2???100的故事,并加上了故事的尾巴:“在高斯說出了他的方法后,老師又提出了新的問題,請學生計算1?4?7???98”,大家想一想,該如何計算?更一般的等差數(shù)列前n項a1?a2???an的計算公式我們能推導出來嗎?同學們興致盎然,通過獨立探究與合作討論,很快就得出了等差數(shù)列前n項和的公式.

      二、重視推導和證明,弄清來龍去脈

      公式的推導和定理的證明是教學的核心.由于第一環(huán)節(jié)恰當?shù)匾?,學生的心理狀態(tài)是“興趣被激發(fā),對證明、推導有迫切感”,因此我抓住機會給予證明.如果在教學中不重視推導,學生對它們的來龍去脈就會很模糊.在推導過程的教學中,我盡量發(fā)揮學生的主體作用,能讓學生推導的就讓學生推導,并注意指出學生推導中的錯誤.有些推導過程繁瑣的公式與定理,教師注重分析,講清為什么用這樣的方法.如果公式和定理有幾種推導方法,教學中不是面面俱到,而是讓學生課后思考不同的推導方法,在下一節(jié)課上進行交流.

      三、強調條件和特例

      公式成立是要有一定條件的.學生學習公式的最大弱點是把公式作為“萬能公式”亂用亂套.因此教學中要強調公式成立的條件.如含有正切的三角公式的角的范圍是有限制的.在公式推導完成后,我常常讓學生做一個小練習,從中發(fā)現(xiàn)他們忽略條件而產生的錯誤,讓學生討論公式應用中要注意公式成立的條件.

      另外,公式雖具有一定的普遍意義,但對一些具有特殊條件的情形要給予注意,這就是公式的特例.如三角誘導公式及倍角公式是兩角和與差公式的特例.而一般結論往往是特例的發(fā)展與完善.如正弦定理是三角形面積公式的發(fā)展與推廣.

      四、注重靈活應用,提高學生學習能力數(shù)學教學的目的在于應用,因此,在公式和定理的教學中,必須使學生靈活巧妙地應用公式和定理,提高、培養(yǎng)學生實際運用的能力.在此教學環(huán)節(jié)中要注意引導學生靈活應用公式.

      每個公式本身均可作各種變化,為了在更廣闊的背景中運用公式,就需要對公式本身進各種變形.這一層次的思維量大,可很好地培養(yǎng)學生思維的靈活性.例如:ai(i?1,2,?,n)為正數(shù),求證

      222a12?a2?a2???an?a12?2(a1?a2???an),可把基本不等式a2?b2?2ab變形為

      a2?b2?a?b

      2來用.再如求tg200?tg400?tg200tg400的值,是將tg(???)的公式變形使用.

      五、把公式和定理納入學生的知識體系

      數(shù)學知識系統(tǒng)性強.學生學習數(shù)學知識后,可以形成相應的認知結構.認知結構的發(fā)展,是“同化”與“順應”調節(jié)的辨證統(tǒng)一.“同化”指的是新知識與舊知識相一致時,新知識被納入原有認知結構中;“順應”指的是新知識與舊知識不一致時,對原有的認知結構進行調節(jié),以適應新的知識結構.如在復數(shù)的教學中,判別式小于零的實系數(shù)一元兩次方程的根與系數(shù)的關系可同化到學生已有的知識結構中;而|z|2?z?z,就要學生將舊知識“順應”到新的知識機構中去.因此,在教學中我們要注意把新知識納入學生的認知結構中.為此,我在教學中充分注意以下幾點:

      1、注意公式推導過程中包含的數(shù)學思想方法.

      在公式與定理的推導過程中,常常要用到數(shù)形結合,從特殊到一般,分類討論等數(shù)學思想方法.在推導過程中,教師常從特殊的情景出發(fā)進行分析.例如,在推導sinx?a(|a|?1)解集時,從a的特殊值開始進行分析.在推導等比數(shù)列前n項和公式時,要分q?1與q?1兩種情況討論.在教學中要充分挖掘公式與定理推導中的數(shù)學思想方法,可以有效地培養(yǎng)學生的思維的嚴密性與靈活性.

      2、公式和定理的推廣及引申

      由于學生學習的階段性和教材要求等原因,中學數(shù)學有許多公式和定理是可以推廣的,教會學生推廣,讓學生看清知識的內部聯(lián)系,是把知識納入學生認知結構的有效途徑.例如三角形面積公式S?11absinC中bsinC就是a邊上的高,它其實就是初中所學的公式S?ah的另一種新的形式.再如學2

      2習了祖暅原理后,讓學生把它引申到平面幾何的相應命題.

      3、比較與鑒別

      比較與鑒別是把公式和定理納入學生認知結構的必由之路.在教學的后階段,一般是應用所學新知識來解題.如果僅僅盯住新公式,學生就失去一次獨立選擇公式的機會,這無助于學生認知結構的發(fā)展.特別是公式較多時,學生一旦面臨復雜的問題,他們會無所適從.因此在教學中用注意公式的比較

      與鑒別,選擇合適的公式解題,使學生的解題能力得到發(fā)展.例如有這樣一道題:在△ABC中,已知a?3,b?1,?B?300 ,求c邊的長.如果用正弦定理來解,要分兩步而且面臨∠A是一解還是兩解的選擇,而直接用余弦定理就可一步到位.在數(shù)學公式和定理的教學中,教師必須使學生到達以下目標:一是要用準確的數(shù)學語言表述公式與定理的內容;二是要學會分析其條件與結論間的內在關系;三是要正確地掌握其證明及推導方法;四是要明確其使用的條件和適用的范圍及應用的規(guī)律;五是要考慮對一些重要的公式和定理能否作適當?shù)囊昱c推廣.我們在教學中,必須以適當?shù)姆绞綄⒐胶投ɡ淼陌l(fā)生發(fā)展過程展示給學生,讓學生通過自主學習獲取知識,并領悟公式和定理所包含的教學思想方法,靈活地掌握知識,應用知識,達到提高分析問題,解決問題的能力.

      參考資料:

      李果民《中學數(shù)學教學建?!?廣西教育出版社2003年

      選校網高考頻道 專業(yè)大全 歷年分數(shù)線 上萬張大學圖片 大學視頻 院校庫(按ctrl 點擊打開)

      選校網()是為高三同學和家長提 供高考選校信息的一個網站。國內目前有2000多所高校,高考過后留給考生和家長選校的時間緊、高校多、專業(yè)數(shù)量更是龐大,高考選校信息紛繁、復雜,高三 同學在面對高考選校時會不知所措。選校網就是為考生整理高考信息,這里有1517專業(yè)介紹,近2000所高校簡介、圖片、視頻信息。選校網,力致成為您最 強有力的選校工具!

      產品介紹:

      1.大學搜索:介紹近2000所高校最詳細的大學信息,包括招生簡章,以及考生最需要的學校招生辦公室聯(lián)系方式及學校地址等.2.高校專業(yè)搜索:這里包含了中國1517個專業(yè)介紹,考生查詢專業(yè)一目了然,同時包含了專業(yè)就業(yè)信息,給考生報考以就業(yè)參考。

      3.圖片搜索:這里有11萬張全國高校清晰圖片,考生查詢學校環(huán)境、校園風景可以一覽無余。4視頻搜索:視頻搜索包含了6162個視頻信息,大學視頻、城市視頻、訪談視頻都會在考生選校時給考生很大幫助。

      5.問答:對于高考選校信息或者院校還有其他疑問將自己的問題寫在這里,你會得到詳盡解答。6新聞:高考新聞、大學新聞、報考信息等欄目都是為考生和家長量身定做,和同類新聞網站相比更有針對性。

      7.千校榜:把高校分成各類,讓考生選校時根據(jù)類別加以區(qū)分,根據(jù)排名選擇自己喜歡的高校。8選校課堂:這里全部的信息都是以考生選校、選校技巧、經驗為核心,讓專家為您解答高考選校的經驗和技巧。

      9.陽光大廳:考生經過一年緊張的學習生活心理壓力有待緩解和釋放,陽光大廳給家長以心靈啟示,給考生心里以陽光。

      10.港澳直通:很多考生都夢想去香港澳門讀大學,港澳直通,給考生的夢想一個放飛的地方,港澳直通囊括了港澳大學的所有信息,將一切更直觀的呈現(xiàn)給考生。

      11.選校社區(qū):注冊您真是的信息,在這里可以和大家分享您所在城市的到校信息,讀到好的選校文章也可以拿到這里,讓大家共同品嘗,您還可以加入到不同的大學、專業(yè)、城市群組,和大家一起討論這些話題分享信息。

      選校網,為你整合眾多高考選校信息,只為考生、家長能夠從中受益。讓我們共同為考生的未來,努力!我們在不斷完善,以更加符合家長和同學們的需求。

      陸續(xù)我們將推出城市印象頻道,讓大家了解學校所在城市的詳細情況;預報名系統(tǒng)(yubaoming.com),為您更加準確地根據(jù)高考分數(shù)填報志愿提供利器.......一切,貴在真實。

      第五篇:人教版五年級數(shù)學公式定理

      數(shù)學圖形計算公式

      1、正方形:C周長 S面積 a邊長

      周長=邊長×4C=4a

      面積=邊長×邊長S=a×a2、正方體:V:體積 a:棱長

      表面積=棱長×棱長×6S=a×a×6

      體積=棱長×棱長×棱長V=a×a×a3、長方形: C周長 S面積 a邊長

      周長=(長+寬)×2C=2(a+b)

      面積=長×寬S=ab4、長方體

      V:體積 s:面積 a:長 b: 寬 h:高

      (1)表面積(長×寬+長×高+寬×高)×2S=2(ab+ah+bh)

      (2)體積=長×寬×高V=abh5、三角形s面積 a底 h高

      面積=底×高÷2s=ah÷2

      三角形高=面積 ×2÷底

      三角形底=面積 ×2÷高

      6、平行四邊形:s面積 a底 h高面積=底×高s=ah7、梯形:s面積 a上底 b下底 h高面積=(上底+下底)×高÷2 s=(a+b)×h÷2

      分數(shù)部分

      1、分數(shù):把單位“1”平均分成若干份,表示這樣的一份或幾分的數(shù),叫做分數(shù)。

      2、分數(shù)的加減法則:同分母的分數(shù)相加減,只把分子相加減,分母不變。異分母的分數(shù)相加減,先通分,然后再加減。

      3、分數(shù)大小的比較:同分母的分數(shù)相比較,分子大的大,分子小的小。

      4、異分母的分數(shù)相比較,先通分然后再比較;若分子相同,分母大的反而小。

      5、分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變。

      6、分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作為分母。

      7、分數(shù)除以整數(shù)(0除外),等于分數(shù)乘以這個整數(shù)的倒數(shù)。

      8、真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。

      9、假分數(shù):分子比分母大或者分子和分母相等的分數(shù)叫做假分數(shù)。假分數(shù)大于或等于1。

      10、帶分數(shù):把假分數(shù)寫成整數(shù)和真分數(shù)的形式,叫做帶分數(shù)。

      11、分數(shù)的基本性質:分數(shù)的分子和分母同時乘以或除以同一個數(shù)(0除外),分數(shù)的大小不變。

      12、一個數(shù)除以分數(shù),等于這個數(shù)乘以分數(shù)的倒數(shù)。

      13、甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘以乙數(shù)的倒數(shù)。

      偶數(shù)和奇數(shù):能被2整除的數(shù)叫做偶數(shù)。不能被2整除的數(shù)叫做奇數(shù)。

      質數(shù)(素數(shù)):只有1和它本身兩個因數(shù)的數(shù)叫做質數(shù)(或素數(shù))。

      合數(shù):一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù)。1不是質數(shù),也不是合數(shù)。

      下載小學數(shù)學各種公式定理大全資料總結word格式文檔
      下載小學數(shù)學各種公式定理大全資料總結.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內容由互聯(lián)網用戶自發(fā)貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發(fā)現(xiàn)有涉嫌版權的內容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關證據(jù),工作人員會在5個工作日內聯(lián)系你,一經查實,本站將立刻刪除涉嫌侵權內容。

      相關范文推薦

        高中的數(shù)學公式定理大集中總結(精選)

        高中的數(shù)學公式定理大集中 三角函數(shù)公式表 同角三角函數(shù)的基本關系式 倒數(shù)關系: 商的關系:平方關系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα......

        總結小學數(shù)學公式大全

        小學數(shù)學公式大全 1、長方形的周長=(長+寬)×2 C=(a+b)×2 2、正方形的周長=邊長×4 C=4a 3、長方形的面積=長×寬 S=ab 4、正方形的面積=邊長×邊長 S=a.a= a 5、三角形的面......

        高中數(shù)學公式定理記憶口訣匯總

        高中數(shù)學公式定理記憶口訣匯總高中數(shù)學公式定理記憶口訣之集合與函數(shù) 《集合與函數(shù)》內容子交并補集,還有冪指對函數(shù)。性質奇偶與增減,觀察圖象最明顯。復合函數(shù)式出現(xiàn),性質乘......

        小學數(shù)學公式

        小學數(shù)學必背公式大全?長方形的周長=(長+寬)×2C=(a+b)×2?長方形的面積=長×寬S=ab?正方形的周長=邊長×4C=4a?正方形的面積=邊長×邊長S=a×a=a2?三角形的面積=底×高......

        小學數(shù)學公式大全

        演講稿 工作總結 調研報告 講話稿 事跡材料 心得體會 策劃方案 小學數(shù)學公式大全 工具箱 (多種工具共用一個快捷鍵的可同時按【Shift】加此快捷鍵選取) 矩形、橢圓選框工......

        高中的數(shù)學公式定理大集中[五篇范文]

        高中的數(shù)學公式定理大集中 三角函數(shù)公式表 同角三角函數(shù)的基本關系式 倒數(shù)關系: 商的關系:平方關系:tanα ·cotα=1sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cs......

        最全小學數(shù)學公式

        最全小學數(shù)學公式大全一、小學數(shù)學幾何形體周長面積體積計算公式:長方形的周長=(長+寬)×2C=(a+b)×2正方形的周長=邊長×4C=4a長方形的面積=長×寬S=ab正方形的面積=邊長×邊......

        小學詩詞及數(shù)學公式

        江南漢樂府 江南可采蓮,蓮葉何田田。魚戲蓮葉東,魚戲蓮葉西,魚戲蓮葉南,魚戲蓮葉北。 詠鵝駱賓王 鵝,鵝,鵝,曲項向天歌,白毛浮綠水,紅掌撥清波。 詠柳賀知章 碧玉妝成一樹高,萬......