第一篇:大一高數(shù)學(xué)習(xí)總結(jié)
大一高數(shù)學(xué)習(xí)總結(jié)
——姓名:劉禹堯
學(xué)號(hào):13145222
轉(zhuǎn)眼之間大一已經(jīng)過去了一半,高數(shù)的學(xué)習(xí)也有了一學(xué)期,仔細(xì)一想,高數(shù)也不是傳說中的那么可怕,當(dāng)然也沒有那么容易,前提是自己真的用心了。
有人戲稱高數(shù)是一棵高樹,很多人就掛在了上面。但是,只要努力,就能爬上那棵高樹,憑借它的高度,便能看到更遠(yuǎn)的風(fēng)景。
首先,不能有畏難情緒。一進(jìn)大學(xué),就聽到很多師兄師姐甚至是老師說高數(shù)非常難學(xué),有很多人掛科了,這基本上是事實(shí),但是或多或少有些夸張了吧。事實(shí)上,當(dāng)我們拋掉那些畏難的情緒,心無旁騖地去學(xué)習(xí)高數(shù)時(shí),它并不是那么難,至少不是那種難到學(xué)不下去的。所以,我們要有信心去學(xué)好它時(shí),就走好了第一步。
其次,課前預(yù)習(xí)很重要。每個(gè)人的學(xué)習(xí)習(xí)慣可能不同,有些人習(xí)慣預(yù)習(xí),有些人覺得預(yù)習(xí)不適合自己。每次上新課前,把課本上的內(nèi)容仔細(xì)地預(yù)習(xí)一下,或者說先自學(xué)一下,把知識(shí)點(diǎn)先過一遍,能理解的先自己理解好,到課堂上時(shí)就會(huì)覺得有方向感,不會(huì)覺得茫然,并且自己預(yù)習(xí)時(shí)沒有理解的地方在課堂上聽老師講后就能解決了,比較有針對(duì)性。
然后,要把握課堂。課堂上老師講的每一句話都有可能是很有用的,如果錯(cuò)過了就可能會(huì)使自己以后做某些題時(shí)要走很多彎路,甚至是死路。我們主要應(yīng)該在課堂上認(rèn)真聽講,理解解題方法,我們現(xiàn)在所需要的是方法,是思維,而不僅僅是例題本身的答案,我們學(xué)習(xí)高數(shù)不是為了將來能計(jì)算算術(shù),而是為了獲得一種思想,為了提高我們的思維能力,為了能夠用于解決現(xiàn)實(shí)問題。此外,要以教材為中心。雖然說“盡信書不如無書”,但是,就算教材不是完美的,但是教材上包含了我們所要掌握的知識(shí)點(diǎn),而那些知識(shí)點(diǎn)是便是我們解題的基礎(chǔ)。書上的一些基本公式、定理,是我們必須掌握的。
最后,堅(jiān)持做好習(xí)題。做題是必要的,但像高中那樣搞題海戰(zhàn)術(shù)就不必要了。做好教材上的課后題和習(xí)題冊(cè)就足夠了,當(dāng)然,前提是認(rèn)真地做好了。對(duì)于每一道題,有疑問的地方就要解決,不能不求甚解,盡量把每一個(gè)細(xì)節(jié)都理解好,這樣的話做好一道題就能解決很多同類型的題了。
下面是我對(duì)這學(xué)期學(xué)習(xí)重點(diǎn)的一些總結(jié):
1、判斷兩個(gè)函數(shù)是否相同
一個(gè)函數(shù)的確定取決于其定義域和對(duì)應(yīng)關(guān)系的確定,因此判斷兩個(gè)函數(shù)是否相同必須判斷其定義域是否相同,且要判斷函數(shù)表達(dá)式是否統(tǒng)一即可。
2、判斷函數(shù)奇偶性
判斷函數(shù)的奇偶性,主要的方法就是利用定義,其次是利用奇偶的性質(zhì),即奇(偶)函數(shù)之和仍是奇(偶)函數(shù);兩個(gè)奇函數(shù)之積是偶函數(shù);兩個(gè)偶函數(shù)之積仍是偶函數(shù);一奇一偶之積是奇函數(shù)。
3、數(shù)列極限的求法
利用數(shù)列極限的四則運(yùn)算法則、性質(zhì)以及已知極限求極限。(1)若數(shù)列分子分母同時(shí)含n,則同除n的最高次項(xiàng)。
(2)若通項(xiàng)中含有根式,一般采用先分子或分母有理化,再求極限的方法。(3)所求數(shù)列是無窮項(xiàng)和,通常先用等差或等比數(shù)列前n項(xiàng)求和公式求出,再求極限。(4)利用兩邊夾逼定理求數(shù)列極限,方法是將極限式中的每一項(xiàng)放大或縮小,并使放大、縮小后的數(shù)列具有相同的極限。通式為形如1的無窮次方的不定式,一般采用兩個(gè)重要極限中等于e的那個(gè)式子求解。
4、函數(shù)極限的求法(1)用數(shù)列求極限方法,(2)在一點(diǎn)處連續(xù),則在此處極限等于此處函數(shù)值,(3)分段函數(shù),在某點(diǎn)極限存在,則此處左右極限都存在且相等。
(4)利用無窮小量的特性以及無窮小量與無窮大量的關(guān)系求極限。即無窮小量與有界變量之積仍是無窮小量;有限個(gè)無窮小量之積仍是無窮小量;有限個(gè)無窮小量之代數(shù)和仍為無窮小量等。無窮小量與無窮大量的關(guān)系是互為倒數(shù)。
5、判斷函數(shù)連續(xù)性
利用函數(shù)連續(xù)性的等價(jià)定義,對(duì)于分段函數(shù)在分界點(diǎn)的連續(xù)性,可用函數(shù)在某點(diǎn)連續(xù)的充要條件以及初等函數(shù)在其定義域內(nèi)是連續(xù)函數(shù)的結(jié)論等來討論函數(shù)的連續(xù)性。兩個(gè)重要函數(shù)
第二篇:大一高數(shù)總結(jié)
大一高數(shù)總結(jié)
---姓名:孫功武 學(xué)號(hào):1506011012 轉(zhuǎn)眼間,大一已經(jīng)過去一半了,高數(shù)學(xué)習(xí)也有了一個(gè)學(xué)期了,仔細(xì)一想高數(shù)也不是傳說的那么可怕,當(dāng)然也沒有那么容易。
有人說,高數(shù)是一棵高數(shù),很多人掛在了上面。但是,只要努力,就能爬上這棵高樹,憑借它的高度,便能看到更遠(yuǎn)的風(fēng)景。
首先,不能有畏難情緒。一進(jìn)大學(xué),就聽到很多師兄師姐甚至老師說高數(shù)很難學(xué),有很多人掛科了。這基本上是事實(shí),但是或多或少夸張了點(diǎn)吧。事實(shí)上,當(dāng)我們拋掉那些畏難情緒,心無旁騖的學(xué)習(xí)高數(shù)時(shí),他并不是那么難,至少不是那種難到學(xué)不下去的。所以我們要有信心去學(xué)好它,有好大學(xué)的第一步。
其次,課前預(yù)習(xí)很重要。每個(gè)人學(xué)習(xí)習(xí)慣不同,有些人習(xí)慣預(yù)習(xí),有些人覺得預(yù)習(xí)不適合自己。每次上課前,把課本上的內(nèi)容仔細(xì)地預(yù)習(xí)一下,或者說先自學(xué)一下,把知識(shí)點(diǎn)先過一遍,能理解的自己先理解好,到課堂上時(shí)就會(huì)覺得有方向感,不會(huì)覺得茫然,并且自己預(yù)習(xí)時(shí)沒有理解的地方在課堂上聽老師講后就能解決了,比較有針對(duì)性。
然后,要把握課堂。課堂上老師講的每一句話都是有可能是很有用的,如果錯(cuò)過了就可能會(huì)使自己以后做某些習(xí)題時(shí)要走很多彎路,甚至是死路。我們主要應(yīng)該在課堂上認(rèn)真聽講,理解解題方法,我們現(xiàn)在需要的是方法,是思維,而不是僅僅是例題本身的答案。我們學(xué)習(xí)高數(shù)不是為了將來能計(jì)算算數(shù),而是為了獲得一種思想,為了提高我們的思維能力,為了能夠用于解決現(xiàn)實(shí)問題。此外,要以教材為中心。雖說“盡信書,不如無書”,但是,就算教材不是完美的,但是教材上包含了我們所要掌握的知識(shí)點(diǎn),而那些知識(shí)點(diǎn),便是我們解題的基礎(chǔ)。書上的一些基本公式、定理,是我們必須掌握的。
最后,堅(jiān)持做好習(xí)題。做題是必要的,但像高中那樣搞題海戰(zhàn)術(shù)就不必要了。做好教材上的課后習(xí)題和習(xí)題冊(cè)就足夠了,當(dāng)然,前提是認(rèn)真地做好了。對(duì)于每一道題,有疑問的地方就要解決,不能不求甚解,盡量把每一個(gè)細(xì)節(jié)都理解好,這樣的話,做好一題,就能解決很多類型的題了。
下面是我對(duì)這學(xué)期的學(xué)習(xí)重點(diǎn)的一些總結(jié):
一、函數(shù)
1.判斷兩個(gè)函數(shù)是否相同
一個(gè)函數(shù)相同的確定取決于其定義域和對(duì)應(yīng)關(guān)系的確定,因此判斷兩個(gè)函數(shù)是否相同必須判斷其定義域是否相同,且要判斷表達(dá)式是否同意即可。2.判斷函數(shù)奇偶性
判斷函數(shù)的奇偶性,主要的方法就是利用定義,其次是利用奇偶的性質(zhì),即奇(偶)函數(shù)之和還是奇(偶)函數(shù);兩個(gè)奇函數(shù)積是偶函數(shù);兩個(gè)偶函數(shù)之積仍是偶函數(shù);一積一偶之積是奇函數(shù)。
3.求極限的方法 利用極限的四則運(yùn)算法則、性質(zhì)以及已知的極限求極限。①
??lim f(x)(1)lim?f(x)?g(x)?lim g(x)?A?B;(2)lim f(x)g(x)?lim f(x)lim g(x)?AB;(3)當(dāng)B?0時(shí),limf(x)lim f(x)A??;g(x)lim g(x)B(4)lim kf(x)?klim f(x)?kA;(k為常數(shù))
???lim f(x)??An;(k為常數(shù))(5)lim?f(x)nn(6)limnf(x)?nlim f(x)?nA;(f(x)?0)(n為正整數(shù))。②
sinx?1;x?0x 1n(2)lim(1?)?e。x?0n(1)lim4.判斷函數(shù)的連續(xù)性
函數(shù)股連續(xù)的定義:設(shè)函數(shù)y=f(x)在點(diǎn)x0的某個(gè)臨域內(nèi)有意義,如果當(dāng)自變量的增量?x?x-x0趨于0時(shí),對(duì)應(yīng)的函數(shù)的?f(x0??x)??0。那么就稱增量?y?f(x0??x)?f(x0)也趨向0,即limx?0函數(shù)y=f(x)在點(diǎn)x0出連續(xù)。
二、導(dǎo)數(shù) 1.求顯函數(shù)導(dǎo)數(shù); 2.求隱函數(shù)導(dǎo)數(shù); 3.“取對(duì)數(shù)求導(dǎo)法”;
4.求由參數(shù)方程所表達(dá)的函數(shù)的導(dǎo)數(shù); 5.求函數(shù)微分;
三、基本初等函數(shù)求導(dǎo)公式 ??0 ???x??1(1)(C)(2)(x?)??axlna ??ex(3)(ax)(4)(ex)11??? ?(5)(logax)(6)(lnx)xlnax??cosx ???sinx(7)(sinx)(8)(cosx)??sec2x ???csc2x(9)(tanx)(10)(cotx)??tan xsec??cot xcsc(11)(secx)x(12)(cscx)x
(13)(arcsinx)??1(1-x2)(15)(arctanx)??11?x2
四、基本積分公式
(1)?0dx?C;z ?x??1(3)?xdx???1?C;(5)?11?x2dx?arctanx?C;(7)?cosxdx?sinx?C;(9)?dxcos2x??sec2xdx?tanx?C;((11)?sec xtan xdx?secx?C;(13)?exdx?ex?C;(15)?shxdx?chx?C;
五、常用積分公式
(14)(arccosx)???1(1-x2)(16)(arccotx)???11?x2 2)?kdx?kx?C(k為常數(shù));(4)?dxx?ln|x|?C;(6)?11?x2dx?arcsinx?C;(8)?cosxdx?sinx?C;
10)?dxsin2x??csc2xdx??cotx?C;12)?cscxcotxdx??cscx?C;xdx?ax14)?alna?C;(16)?chxdx?shx?C。((((1)?tanxdx??ln|cosx|?C;(2)?cotxdx?ln|sinx|?C;(3)?secxdx?ln|secx?tanx|?C;(4)?cscxdx?ln|cscx?cotx|?C;11xdx?arctan?C;a2?x2aa11x?a(6)?2dx?ln||?C;x?a22ax?a1x(7)?dx?arcsin?C;aa2?x2(5)?(8)?(9)?1a2?x21x2?a2dx?ln(x?x2?a2)?C;dx?ln|x?x2?a2|?C.五、常微分方程
第三篇:大一高數(shù)一知識(shí)點(diǎn)總結(jié)
大一高數(shù)一知識(shí)點(diǎn)總結(jié)有哪些呢?我們一起來看看吧!以下是小編為大家搜集整理提供到的大一高數(shù)一知識(shí)點(diǎn)總結(jié),希望對(duì)您有所幫助。歡迎閱讀參考學(xué)習(xí)!
一、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A
2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”
即:①任何一個(gè)集合是它本身的子集。AA
②真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 AB, BC ,那么 AC
④如果AB 同時(shí) BA 那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集
二、集合及其表示
1、集合的含義:
“集合”這個(gè)詞首先讓我們想到的是上體育課或者開會(huì)時(shí)老師經(jīng)常喊的“全體集合”。數(shù)學(xué)上的“集合”和這個(gè)意思是一樣的,只不過一個(gè)是動(dòng)詞一個(gè)是名詞而已。
所以集合的含義是:某些指定的對(duì)象集在一起就成為一個(gè)集合,簡(jiǎn)稱集,其中每一個(gè)對(duì)象叫元素。比如高一二班集合,那么所有高一二班的同學(xué)就構(gòu)成了一個(gè)集合,每一個(gè)同學(xué)就稱為這個(gè)集合的元素。
2、集合的表示
通常用大寫字母表示集合,用小寫字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,記作 a∈A,相反,d不屬于集合A,記作 dA。
有一些特殊的集合需要記憶:
非負(fù)整數(shù)集(即自然數(shù)集)N 正整數(shù)集 N*或 N+
整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R
集合的表示方法:列舉法與描述法。
①列舉法:{a,b,c……}
②描述法:將集合中的元素的公共屬性描述出來。如{xR| x-3>2} ,{x| x-3>2},{(x,y)|y=x2+1}
③語(yǔ)言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{xR|x-3>2}或{x|x-3>2}
強(qiáng)調(diào):描述法表示集合應(yīng)注意集合的代表元素
A={(x,y)|y= x2+3x+2}與 B={y|y= x2+3x+2}不同。集合A中是數(shù)組元素(x,y),集合B中只有元素y。
3、集合的三個(gè)特性
(1)無序性
指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。
例題:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B
注意:該題有兩組解。
(2)互異性
指集合中的元素不能重復(fù),A={2,2}只能表示為{2}
(3)確定性
集合的確定性是指組成集合的元素的性質(zhì)必須明確,不允許有模棱兩可、含混不清的情況。
三、集合間的基本關(guān)系
1.子集,A包含于B,記為:,有兩種可能
(1)A是B的一部分,(2)A與B是同一集合,A=B,A、B兩集合中元素都相同。
反之: 集合A不包含于集合B,記作。
如:集合A={1,2,3 },B={1,2,3,4},C={1,2,3,4},三個(gè)集合的關(guān)系可以表示為,B=C。A是C的子集,同時(shí)A也是C的真子集。
2.真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)
3、不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。
4、有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-2個(gè)非空真子集。如A={1,2,3,4,5},則集合A有25=32個(gè)子集,25-1=31個(gè)真子集,25-2=30個(gè)非空真子集。
例:集合 共有 個(gè)子集。(13年高考第4題,簡(jiǎn)單)
練習(xí):A={1,2,3},B={1,2,3,4},請(qǐng)問A集合有多少個(gè)子集,并寫出子集,B集合有多少個(gè)非空真子集,并將其寫出來。
解析:
集合A有3個(gè)元素,所以有23=8個(gè)子集。分別為:①不含任何元素的子集Φ;②含有1個(gè)元素的子集{1}{2}{3};③含有兩個(gè)元素的子集{1,2}{1,3}{2,3};④含有三個(gè)元素的子集{1,2,3}。
集合B有4個(gè)元素,所以有24-2=14個(gè)非空真子集。具體的子集自己寫出來。
第四篇:大一高數(shù)學(xué)習(xí)方法2
如何學(xué)好高等數(shù)學(xué)——致大一新生
新生剛剛從中學(xué)跨入大學(xué)的校門,不了解《高等數(shù)學(xué)》課程的特點(diǎn)和重要性,難于掌握一套科學(xué)的學(xué)習(xí)方法,以及對(duì)高等數(shù)學(xué)課程學(xué)習(xí)的重要性沒有足夠的認(rèn)識(shí),而導(dǎo)致某些同學(xué)沒能學(xué)好這門課。
高等數(shù)學(xué)是理工科大一新生必修的一門理論基礎(chǔ)課程。它對(duì)于各專業(yè)后繼課程的學(xué)習(xí),以及大學(xué)畢業(yè)后這類工程技術(shù)人員的工作狀況,高等數(shù)學(xué)課程都起著奠基的作用。如在校繼續(xù)學(xué)習(xí)中只有掌握好高等數(shù)學(xué)的知識(shí)后,才能比較順利地學(xué)習(xí)其他專業(yè)課程。如物理,控制科學(xué)、計(jì)算機(jī)科學(xué)、工程力學(xué)、電工電子學(xué)、通信工程、信息科學(xué)?等等,也才能學(xué)好自己的專業(yè)課程。又如當(dāng)畢業(yè)走向工作崗位后,要很好地解決工程技術(shù)中的問題,勢(shì)必要經(jīng)常應(yīng)用到數(shù)學(xué)知識(shí)。因?yàn)樵诳茖W(xué)技術(shù)不斷發(fā)展的今天,數(shù)學(xué)方法已廣泛滲透到科學(xué)技術(shù)的各個(gè)領(lǐng)域之中。因此,工科類大學(xué)生在學(xué)習(xí)上一個(gè)很明確的任務(wù)是要學(xué)好高等數(shù)學(xué)這門課程,為以后的學(xué)習(xí)和工作打下良好的基礎(chǔ)。
那么,大一新生怎樣才能學(xué)好高等數(shù)學(xué)呢?以下幾點(diǎn)看法,僅供同學(xué)們參考。
一、摒棄中學(xué)的學(xué)習(xí)方法,盡快適應(yīng)環(huán)境
一個(gè)高中生升入大學(xué)學(xué)習(xí)后,不僅要在環(huán)境上、心理上適應(yīng)新的學(xué)習(xí)生活,同時(shí)學(xué)習(xí)方法的改變也是一個(gè)不容忽視的方面。
從中學(xué)升入大學(xué)學(xué)習(xí)后,在學(xué)習(xí)方法上將會(huì)遇到一個(gè)比較大的轉(zhuǎn)折。首先是對(duì)大學(xué)的教學(xué)方式和方法會(huì)感到很不適應(yīng)。這在高等數(shù)學(xué)課程的教學(xué)中反應(yīng)特別明顯,因?yàn)樗且婚T對(duì)大一新生首當(dāng)其沖的理論性較強(qiáng)的基礎(chǔ)理論課程。而學(xué)生正是習(xí)慣于模仿性和單一性的學(xué)習(xí)方法。這是從小學(xué)到中學(xué)的教育中長(zhǎng)期養(yǎng)成的,一時(shí)還難以改變。
中學(xué)的教學(xué)方式和方法與大學(xué)有質(zhì)的差別,中學(xué)的學(xué)習(xí)學(xué)生是在教師的直接指導(dǎo)下進(jìn)行模仿和單一性的學(xué)習(xí),大學(xué)則是在教師的指導(dǎo)下進(jìn)行創(chuàng)造性的學(xué)習(xí)?!纠?,中學(xué)的數(shù)學(xué)課教學(xué)完全是按教材的內(nèi)容進(jìn)行的,老師在課堂上講,學(xué)生聽,不要求學(xué)生記筆記。教師授課慢,講得細(xì),計(jì)算方法舉例多,課后只要求學(xué)生能模仿課堂上所講的內(nèi)容解決課后習(xí)題就可以了,沒有必要去鉆研教材和其他參考書(為了高考增強(qiáng)學(xué)生的解題能力而選擇一些參考書,僅是為了訓(xùn)練學(xué)生的解題能力的需要)】。而大學(xué)高等數(shù)學(xué)課程的學(xué)習(xí),教材僅是作為一種主要的參考書,要求學(xué)生以課堂上老師所講的重點(diǎn)和難點(diǎn)為線索,課后去鉆研教材和閱讀大量的同類參考書,然后去完成課后習(xí)題。就這樣反復(fù)地進(jìn)行創(chuàng)造性學(xué)習(xí)。這是一種艱苦的腦力勞動(dòng),需要學(xué)生能反復(fù)地、自覺地進(jìn)行學(xué)習(xí)。還要在松散的環(huán)境中能約束自己,大學(xué)生活是人生的一大轉(zhuǎn)折點(diǎn)。大學(xué)時(shí)期注重于培養(yǎng)同學(xué)們的獨(dú)立生活、獨(dú)立思考、獨(dú)立分析問題和解決問題的能力,而不像中學(xué)那樣有一個(gè)依賴的環(huán)境。高等數(shù)學(xué)與高中數(shù)學(xué)相比有很大的不同,內(nèi)容上主要是引進(jìn)了一些全新的數(shù)學(xué)思想,特別是無限分割逐步逼近,極限等;從形式上講,學(xué)習(xí)方式也很不一樣,特別是一般都是大班授課,進(jìn)度快,老師很難個(gè)別輔導(dǎo),故對(duì)自學(xué)能力的要求很高。中學(xué)時(shí)期主要是老師領(lǐng)著學(xué),學(xué)生只需要跟著老師的指揮棒走就可以了,而在大學(xué)時(shí)主要靠自學(xué),教師只起一個(gè)引導(dǎo)的作用。新同學(xué)應(yīng)盡快適應(yīng)大學(xué)生活,形成一個(gè)良好的開端,這對(duì)四年的大學(xué)生涯是有益的。
二.注意中學(xué)數(shù)學(xué)和《高等數(shù)學(xué)》的區(qū)別與聯(lián)系
中學(xué)數(shù)學(xué)課程的中心是從具體數(shù)學(xué)到概念化數(shù)學(xué)的轉(zhuǎn)變。中學(xué)數(shù)學(xué)課程的宗旨是為大學(xué)微積分作準(zhǔn)備。學(xué)習(xí)數(shù)學(xué)總要經(jīng)歷由具體到抽象、由特殊到一般的漸進(jìn)過程。由數(shù)引導(dǎo)到符號(hào),即變量的名稱;由符號(hào)間的關(guān)系引導(dǎo)到函數(shù),即符號(hào)所代表的對(duì)象之間的關(guān)系。高等數(shù)學(xué)首先要做的是幫助學(xué)生發(fā)展函數(shù)概念——變量間關(guān)系的表述方式。這就把同學(xué)們的理解力從常量推進(jìn)到變量、從描述推進(jìn)到證明、從具體情形推進(jìn)到一般方程,開始領(lǐng)會(huì)到數(shù)學(xué)符號(hào)的威力。但《高等數(shù)學(xué)》的主要內(nèi)容是微積分,它繼承了中學(xué)的訓(xùn)練,它們之間有千絲萬縷的聯(lián)系。
三.盡快適應(yīng)《高等數(shù)學(xué)》課程的教學(xué)特點(diǎn)
為了適應(yīng)21世紀(jì)高等數(shù)學(xué)課程的教學(xué)改革,高等數(shù)學(xué)課程的教學(xué)也發(fā)生了很大的變化,在傳統(tǒng)的教學(xué)手段的基礎(chǔ)上,采用了更加具體化、形象化的現(xiàn)代教育技術(shù),這也是一般中學(xué)所沒有的,因此,同學(xué)們?cè)谶M(jìn)入大學(xué)以后,不僅要注意高等數(shù)學(xué)課程的內(nèi)容與中學(xué)數(shù)學(xué)的區(qū)別與聯(lián)系,還要盡快適應(yīng)高等數(shù)學(xué)課程的新的教學(xué)特點(diǎn)。認(rèn)真上好第一節(jié)高等數(shù)學(xué)課,嚴(yán)格按照任課老師的要求去做。若能堅(jiān)持做到,課前預(yù)習(xí),課上聽講,課后復(fù)習(xí),認(rèn)真完成作業(yè),課后對(duì)所學(xué)的知識(shí)進(jìn)行歸納總結(jié),加深對(duì)所學(xué)內(nèi)容的理解,從而也就掌握了所學(xué)的知識(shí),就不難學(xué)好高等數(shù)學(xué)這門課。有些同學(xué)就是沒有把握好自己,一看高等數(shù)學(xué)一開始的內(nèi)容和中學(xué)所學(xué)內(nèi)容極其相似,就掉以輕心,認(rèn)為自己看看就會(huì)了,要么不聽課,要么不完成作業(yè),結(jié)果導(dǎo)致后面的章節(jié)聽不懂,跟不上,甚至有的同學(xué)就一直跟不上,學(xué)期末成績(jī)不理想,甚至不及格。
四.掌握正確的學(xué)習(xí)方法
由于《高等數(shù)學(xué)》自身的特點(diǎn),不可能老師一教,學(xué)生就全部領(lǐng)會(huì)掌握。一些內(nèi)容如函數(shù)的連續(xù)與間斷,積分的換元法、分步積分法等一時(shí)很難掌握,這需要每個(gè)同學(xué)反復(fù)琢磨,反復(fù)思考,反復(fù)訓(xùn)練,鍥而不舍。通過正反例子比較,從中悟出一些道理,才能從不懂到一知半解到基本掌握。這里僅結(jié)合一般學(xué)習(xí)方法,談一點(diǎn)學(xué)習(xí)《高等數(shù)學(xué)》的方法,供參考。
第一,要勤學(xué)、善思、多練。所謂學(xué),包括學(xué)和問兩方面,即向教師,向同學(xué),向自己學(xué)和問。惟有在“學(xué)中問”和“問中學(xué)”,才能消化數(shù)學(xué)的概念、理論、方法;所謂思,就是將所學(xué)內(nèi)容,經(jīng)過思考加工去粗取精,抓本質(zhì)和精華。華羅庚“抓住要點(diǎn)”使“書本變薄”的這種勤于思考、善于思考、從厚到薄的學(xué)習(xí)數(shù)學(xué)的方法,值得我們借鑒;所謂習(xí),就《高等數(shù)學(xué)》而言,就是做練習(xí),這是數(shù)學(xué)自身的特點(diǎn)。練習(xí)一般分為兩類,一是基礎(chǔ)訓(xùn)練練習(xí),經(jīng)常附在每章每節(jié)之后,這類問題相對(duì)來說比較簡(jiǎn)單,無大難度,但很重要,是打基礎(chǔ)部分。二是提高訓(xùn)練練習(xí),知識(shí)面廣些,不局限于本章本節(jié),在解決的方法上要用到多種數(shù)學(xué)工具。數(shù)學(xué)的練習(xí)是消化鞏固知識(shí)極重要的一個(gè)環(huán)節(jié),舍此達(dá)不到目的。
第二,狠抓基礎(chǔ),循序漸進(jìn)。任何學(xué)科,基礎(chǔ)內(nèi)容常常是最重要的部分,它關(guān)系到學(xué)習(xí)的成敗與否?!陡叩葦?shù)學(xué)》本身就是數(shù)學(xué)和其他學(xué)科的基礎(chǔ),而《高等數(shù)學(xué)》又有一些重要的基礎(chǔ)內(nèi)容,它關(guān)系到整個(gè)知識(shí)結(jié)構(gòu)的全局。以微積分部分為例,極限貫穿著整個(gè)微積分,函數(shù)的連續(xù)性及性質(zhì)貫穿著后面一系列定理結(jié)論,初等函數(shù)求導(dǎo)法及積分法關(guān)系到今后各個(gè)學(xué)科。因此,一開始就要下狠功夫,牢牢掌握這些基礎(chǔ)內(nèi)容。在學(xué)習(xí)《高等數(shù)學(xué)》時(shí)要一步一個(gè)腳印,扎扎實(shí)實(shí)地學(xué)和練。
第三,歸類小結(jié),從厚到薄。記憶總的原則是抓綱,在用中記。歸類小結(jié)是一個(gè)重要方法?!陡叩葦?shù)學(xué)》歸類方法可按內(nèi)容和方法兩部分小結(jié),以代表性問題為例輔以說明。在歸類小節(jié)時(shí),要特別注意有基礎(chǔ)內(nèi)容派生出來的一些結(jié)論,即所謂一些中間結(jié)果,這些結(jié)果常常在一些典型例題和習(xí)題上出現(xiàn),如果你能多掌握一些中間結(jié)果,則解決一般問題和綜合訓(xùn)練題就會(huì)感到輕松。
第四,精讀一本參考書。實(shí)踐證明,在教師指導(dǎo)下,抓準(zhǔn)一本參考書,精讀到底,如果你能熟讀了一本有代表性的參考書,再看其它參考書就會(huì)迎刃而解了。
第五,注意學(xué)習(xí)效率。數(shù)學(xué)的方法和理論的掌握,常常需要做到熟能生巧、觸類旁通。人不可能通過一次學(xué)習(xí)就掌握所學(xué)的知識(shí),需要有幾個(gè)反復(fù)。所謂“學(xué)而時(shí)習(xí)之”、“溫故而知新”都是指學(xué)習(xí)要經(jīng)過反復(fù)多次。《高等數(shù)學(xué)》的記憶,必須建立在理解和熟練做題的基礎(chǔ)上,死記硬背無濟(jì)于事。
第六,掌握學(xué)習(xí)規(guī)律
1.書:課本+習(xí)題集(必備),因?yàn)閷W(xué)好數(shù)學(xué)絕對(duì)離不開多做題,建議習(xí)題集最好有本跟考研有關(guān)的,這樣也有利于你做好將來的考研準(zhǔn)備。
2.筆記:盡量有,我說的筆記不是指原封不動(dòng)的抄板書,那樣沒意思,而且不必非單獨(dú)用個(gè)小本,可記在書上。關(guān)鍵是在筆記上一定要有自己對(duì)每一章知識(shí)的總結(jié),類似于一個(gè)提綱,(有時(shí)老師或參考書上有,可以參考),最好還有各種題型+方法+易錯(cuò)點(diǎn)。
3.上課:建議最好預(yù)習(xí)后聽,聽不懂不要緊,很多大學(xué)的課程都是靠課下結(jié)合老師的筆記自己重新看。但是記?。焊邤?shù)千萬別搞考前突擊,絕對(duì)行不通,所以平時(shí)你就要跟上,步步盡量別斷層。
4.學(xué)好高數(shù)=基本概念透+基本定理牢+基本網(wǎng)絡(luò)有+基本常識(shí)記+基本題型熟。數(shù)學(xué)就是一個(gè)概念+定理體系(還有推理),對(duì)概念的理解至關(guān)重要,比如說極限、導(dǎo)數(shù)等,你既要有形象的對(duì)它們的理解,也要熟記它們的數(shù)學(xué)描述,不用硬背,可以自己對(duì)著書舉例子,畫個(gè)圖看看(形象理解其實(shí)很重要),然后多做題,做題中體會(huì)。建議你用一只彩筆專門把所有的概念標(biāo)出來,這樣看書時(shí)一目了然(定理用方框框起來)。基本網(wǎng)絡(luò)就是上面說的筆記上的總結(jié)的知識(shí)提綱,也要重視?;境WR(shí)就是高中時(shí)老師常說的“準(zhǔn)定理”,就是書上沒有,在習(xí)題中我們總結(jié)的可以當(dāng)定理或推論用的東西,還有一些自己小小的經(jīng)驗(yàn)。這些東西不正式但很有用的,比如各種極限的求法。
這些都做到了,高等數(shù)學(xué)應(yīng)該學(xué)得不會(huì)差了,至少應(yīng)付考試沒問題。如果你想提高些,可以做些考研的數(shù)學(xué)題,體會(huì)一下,其實(shí)也不過如此,并不象你想象的那么難。還可以看些關(guān)于高數(shù)應(yīng)用的書,其實(shí)數(shù)學(xué)本來就是從應(yīng)用中來的,你會(huì)知道高等數(shù)學(xué)真的很有用。
總之,大學(xué)學(xué)習(xí)是人生中最后一個(gè)系統(tǒng)學(xué)習(xí)的過程。它不僅要傳授給我們一個(gè)比較完整的專業(yè)知識(shí),還要培養(yǎng)學(xué)生走向社會(huì)的工作能力和社會(huì)知識(shí)。就高等數(shù)學(xué)課程而言,這就要培養(yǎng)我們學(xué)生的觀察判斷能力,邏輯思維能力,自學(xué)能力以及動(dòng)手解題能力,而這幾種能力結(jié)合起來,就可以構(gòu)成獨(dú)立分析問題的能力和解決問題的能力。在此,期望大家高度重視高等數(shù)學(xué)的學(xué)習(xí),探索出一套對(duì)自己行之有效的學(xué)習(xí)方法
第五篇:大一高數(shù)考試試題
:《大一高數(shù)考試試題》
《大一高數(shù)考試試題》
一、單項(xiàng)選擇題(本大題共5小題,每小題2分,共10分)
在每小題列出的四個(gè)備選項(xiàng)中只有一個(gè)是符合題目要求的,請(qǐng)將其代碼填寫在題后的括號(hào)內(nèi)。錯(cuò)選、多選或未選均無分。
1.若f(x)為奇函數(shù),且對(duì)任意實(shí)數(shù)x恒有f(x+3)-f(x-1)=0,則f(2)=()
A.-1 B.0 C.1 D.2 2.極限 =()
A.e-3 B.e-2 C.e-1 D.e3 3.若曲線y=f(x)在x=x0處有切線,則導(dǎo)數(shù)f'(x0)()
A.等于0 B.存在C.不存在 D.不一定存在4.設(shè)函數(shù)y=(sinx4)2,則導(dǎo)數(shù) =()
A.4x3cos(2x4)B.4x3sin(2x4)
C.2x3cos(2x4)D.2x3sin(2x4)
5.若f'(x2)=(x>0),則f(x)=()
A.2x+C B.+C C.2 +C D.x2+C
二、填空題(本大題共10小題,每小題3分,共30分)請(qǐng)?jiān)诿啃☆}的空格中填上正確答案。錯(cuò)填、不填均無分。
6.若f(x+1)=x2-3x+2,則f()=_________.7.無窮級(jí)數(shù) 的和為_________.8.已知函數(shù)f(x)=,f(x0)=1,則導(dǎo)數(shù)f'(x0)=_________.9.若導(dǎo)數(shù)f'(x0)=10,則極限 _________.10.函數(shù)f(x)= 的單調(diào)減少區(qū)間為_________.11.函數(shù)f(x)=x4-4x+3在區(qū)間[0,2]上的最小值為_________.12.微分方程y〃+x(y')3+sin y=0的階數(shù)為_________.13.定積分 _________.14.導(dǎo)數(shù) _________.15.設(shè)函數(shù)z=,則偏導(dǎo)數(shù) _________.三、計(jì)算題
(一)(本大題共5小題,每小題5分,共25分)
16.設(shè)y=y(x)是由方程ex-ey=sin(xy)所確定的隱函數(shù),求微分dy.17.求極限.18.求曲線y=x2ln x的凹凸區(qū)間及拐點(diǎn)。
19.計(jì)算無窮限反常積分.20.設(shè)函數(shù)z=,求二階偏導(dǎo)數(shù),.四、計(jì)算題
(二)(本大題共3小題,每小題7分,共21分)
21.設(shè)f(x)的一個(gè)原函數(shù)為,求不定積分xf'(x)dx.22.求曲線y=ln x及其在點(diǎn)(e,1)的切線與x軸所圍成的平面圖形的面積A.23.計(jì)算二重積分,其中D是由曲線y=x2-1及直線y=0,x=2所圍成的區(qū)域。
五、應(yīng)用題(本大題9分)
24.設(shè)某廠生產(chǎn)q噸產(chǎn)品的成本函數(shù)為C(q)=4q2-12q+100,該產(chǎn)品的需求函數(shù)為q=30-.5p,其中p為產(chǎn)品的價(jià)格。
(1)求該產(chǎn)品的收益函數(shù)R(q);(2)求該產(chǎn)品的利潤(rùn)函數(shù)L(q);(3)問生產(chǎn)多少噸該產(chǎn)品時(shí),可獲最大利潤(rùn)?最大利潤(rùn)是多少?
六、證明題(本大題5分)
25.證明方程x3-4x2+1=0在區(qū)間(0,1)內(nèi)至少有一個(gè)實(shí)根。