欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      6.3 《三角形的中位線》說(shuō)課

      時(shí)間:2019-05-12 17:01:36下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫寫幫文庫(kù)小編為你整理了多篇相關(guān)的《6.3 《三角形的中位線》說(shuō)課》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫(kù)還可以找到更多《6.3 《三角形的中位線》說(shuō)課》。

      第一篇:6.3 《三角形的中位線》說(shuō)課

      6.3 《三角形的中位線》說(shuō)課

      今天我說(shuō)課的題目是“三角形的中位線”。本節(jié)課選自北師大版八年級(jí)下冊(cè)。下面我就從以下四個(gè)方面——教材分析、教材處理、教學(xué)方法和教學(xué)手段、教學(xué)過(guò)程的設(shè)計(jì)向大家介紹一下我對(duì)本節(jié)課的理解與設(shè)計(jì)。

      一、教材分析

      分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學(xué)大綱的基礎(chǔ)上確定本節(jié)課的教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)。首先來(lái)看一下本節(jié)課在教材中的地位和作用。

      1、“三角形的中位線”,是初中幾何的一個(gè)非常重要的知識(shí)點(diǎn),它具有計(jì)算和證明等多種靈活的運(yùn)用;它是繼四邊形,尤其是前一階段剛學(xué)的特殊四邊形(平行四邊形、矩形、菱形、正方形、等腰梯形等)之后的又一個(gè)非常重要的幾何知識(shí)。初中階段要培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實(shí)模型,把它轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí),增強(qiáng)學(xué)生對(duì)數(shù)學(xué)的理解和解決實(shí)際問(wèn)題的能力。邏輯思維能力的培養(yǎng)主要是在初二階段完成的。“三角形的中位線”作為幾何計(jì)算和推理論證的重要一環(huán),是初中幾何的一個(gè)基礎(chǔ)環(huán)節(jié),它直接關(guān)系到學(xué)生對(duì)幾何計(jì)算、幾何論證等內(nèi)容的進(jìn)一步學(xué)習(xí)。

      2、“三角形的中位線”是本章的一個(gè)重點(diǎn)。因?yàn)樵谌切沃谢蚨噙呅沃?,?dāng)證明的某一命題的題設(shè)中出現(xiàn)兩條線段的中點(diǎn)時(shí),總要想到是否應(yīng)用三角形中位線定理來(lái)試一試。

      從以上兩點(diǎn)不難看出它的地位和作用都是很重要的。接下來(lái),介紹本節(jié)課的教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)。

      教學(xué)大綱是我們確定教學(xué)目標(biāo),重點(diǎn)和難點(diǎn)的依據(jù)。因此根據(jù)教學(xué)大綱的要求,確定了本節(jié)課的教學(xué)目標(biāo)。(1)掌握三角形中位線的概念及性質(zhì)定理,能進(jìn)行有關(guān)的計(jì)算與證明。(2)通過(guò)分析連接各種四邊形各邊中點(diǎn)所得到的四邊形,歸納其中的規(guī)律,提高學(xué)生分析歸納數(shù)學(xué)問(wèn)題的能力。(3)滲透由特殊到一般的辯證唯物主義思想:培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S品質(zhì)。重點(diǎn)難點(diǎn):分析歸納連接各種四邊形各邊中點(diǎn)所得到的四邊形的規(guī)律。

      二、教材處理

      本節(jié)課是在前面學(xué)習(xí)了平行四邊形的基礎(chǔ)上進(jìn)行的,學(xué)生已經(jīng)比較牢固地掌握了平行四邊形的性質(zhì)和判定,因此我沒(méi)有把時(shí)間過(guò)多地放在復(fù)習(xí)這些舊知識(shí)上,而是利用學(xué)生的觀察和操作,讓學(xué)生先得出三角形中位線的結(jié)論,再引到學(xué)生利用來(lái)證明三角形中位線定理。通過(guò)例題讓學(xué)生自己探究連結(jié)各種四邊形各邊中點(diǎn)所得到的四邊形的規(guī)律。達(dá)到培養(yǎng)學(xué)生分析歸納數(shù)學(xué)問(wèn)題的能力的目的。這些我將在教學(xué)過(guò)程的設(shè)計(jì)中具體體現(xiàn)。而且在探究過(guò)程中讓學(xué)生互相合作,使課堂在學(xué)生的參與下積極有序的進(jìn)行。

      三、教學(xué)方法和教學(xué)手段

      在教學(xué)過(guò)程中,我注重體現(xiàn)教師的導(dǎo)向作用和學(xué)生的主體地位,。本節(jié)是新課內(nèi)容的學(xué)習(xí),。教學(xué)過(guò)程中盡力引導(dǎo)學(xué)生成為知識(shí)的發(fā)現(xiàn)者,把教師的點(diǎn)撥和學(xué)生解決問(wèn)題結(jié)合起來(lái),不斷激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣,使學(xué)生輕松愉快地學(xué)習(xí)不斷克服學(xué)生學(xué)習(xí)中的被動(dòng)情況,使其在教學(xué)過(guò)程中在掌握知識(shí)同時(shí)、發(fā)展智力、受到教育。

      四、教學(xué)過(guò)程的設(shè)計(jì)

      1、復(fù)習(xí)提問(wèn):平行四邊形的判定,注重新舊知識(shí)的互補(bǔ)和融合。

      2、新課引入:已知:△ABC的周長(zhǎng)等于20cm,D、E、F分別是AB、AC、BC邊上的中點(diǎn)。求:△DEF的周長(zhǎng)。

      (學(xué)生進(jìn)行猜測(cè),動(dòng)手測(cè)量,得出結(jié)論)

      1)請(qǐng)敘述三角形中位線定義:連結(jié)三角形兩邊中點(diǎn)的線段叫做三角形的中位線。

      2)證明猜測(cè)的結(jié)論,得到三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。

      3、講解例題:已知:四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn)。求證:四邊形EFGH是平行四邊形。

      證明:{ 分析輔助線添法,板書證明過(guò)程(略)} ** 得出結(jié)論:連結(jié)任意四邊形各邊中點(diǎn)所得到的四邊形一定是平行四邊形。

      4、探究連結(jié)各種四邊形各邊中點(diǎn)所得到的四邊形的規(guī)律。

      (發(fā)下印有各種四邊形的練習(xí)紙,連結(jié)各邊中點(diǎn),以小組為單位進(jìn)行討論并探究其中的規(guī)律,師生共同歸納)

      (在探究歸納過(guò)程中,對(duì)于由特殊四邊形:如矩形、菱形、等腰梯形、正方形等,連結(jié)各邊中點(diǎn)得到特殊的平行四邊形,進(jìn)行簡(jiǎn)單的口頭證明)

      5、小結(jié):

      1)這節(jié)課我們主要學(xué)習(xí)了三角形的中位線,知道了它的定義和定理。

      2)運(yùn)用三角形中位線定理,我們探究了連結(jié)任意四邊形各邊中點(diǎn)所得四邊形的規(guī)律,即: ①連結(jié)任意四邊形各邊中點(diǎn)所得到的四邊形一定是平行四邊形; ②連結(jié)對(duì)角線相等的四邊形各邊中點(diǎn)所得到的四邊形是菱形; ③連結(jié)對(duì)角線互相垂直的四邊形各邊中點(diǎn)所得到的四邊形是矩形;

      ④連結(jié)對(duì)角線既相等又互相垂直的四邊形各邊中點(diǎn)所得到的四邊形 是正方形。

      6、鞏固練習(xí)(附練習(xí)紙)

      7、布置回家作業(yè)

      以上是我對(duì)本節(jié)課的理解和設(shè)計(jì)。希望各位老師批評(píng)指正,以達(dá)到提高個(gè)人教學(xué)能力的目的。

      第二篇:三角形中位線定理說(shuō)課教案

      《三角形中位線定理》說(shuō)課稿

      我今天說(shuō)課的題目是人教版九年義務(wù)教育七年級(jí)下冊(cè)第七章第三節(jié)的《三角形中位線定理》

      一、教材分析

      本節(jié)在教材中的地位和作用。

      三角形中位線是三角形中重要的線段,三角形中位線定理是一個(gè)重要性質(zhì)定理,它是前面已學(xué)過(guò)的平行線、全等三角形、平行四邊形等知識(shí)內(nèi)容的應(yīng)用和深化,在三角形中位線定理的證明及應(yīng)用中,處處滲透了化歸思想,它對(duì)拓展學(xué)生的思維有著積極的意義。

      2、教學(xué)目標(biāo)

      (一)知識(shí)目標(biāo)

      (1)理解三角形中位線的定義;

      (2)掌握三角形中位線定理及其應(yīng)用。

      (二)能力目標(biāo)

      通過(guò)對(duì)三角形中位線定理的猜想及證明,提高了同學(xué)們提出問(wèn)題,分析問(wèn)題及解決問(wèn)題的能力。

      (三)情感目標(biāo)

      進(jìn)一步培養(yǎng)學(xué)生合作、交流的能力和團(tuán)隊(duì)精神,培養(yǎng)學(xué)生實(shí)事求是、善于觀察、勇于探索、嚴(yán)密細(xì)致的科學(xué)態(tài)度;同時(shí)滲透歸納、類比、轉(zhuǎn)化等數(shù)學(xué)思想方法。

      3、重點(diǎn)與難點(diǎn)

      重點(diǎn):理解并應(yīng)用三角形中位線定理。

      難點(diǎn):三角形中位線定理的運(yùn)用。

      二、教法分析

      為了充分調(diào)動(dòng)學(xué)生的積極性,使學(xué)生變被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),我采用了“引導(dǎo)探究”式的教學(xué)模式,在課堂教學(xué),我始終貫徹“教師為主導(dǎo),學(xué)生為主體,探究為主線”的教學(xué)思想,通過(guò)引導(dǎo)學(xué)生實(shí)驗(yàn)、觀察、比較、分析和總結(jié),使學(xué)生充分地動(dòng)手、動(dòng)口、動(dòng)腦,參與教學(xué)全過(guò)程。

      三、學(xué)法分析

      本節(jié)課在實(shí)驗(yàn)操作的基礎(chǔ)上,以問(wèn)題為核心,創(chuàng)設(shè)情景,通過(guò)教師的適時(shí)引導(dǎo),學(xué)生 間、師生間的交流互動(dòng),啟迪學(xué)生的思維,讓學(xué)生掌握實(shí)驗(yàn)與觀察、分析與比較、討論與釋疑、概括與歸納、鞏固與提高等科學(xué)的學(xué)習(xí)方法;學(xué)會(huì)舉一反三,靈活轉(zhuǎn)換的學(xué)習(xí)方法,學(xué)會(huì)運(yùn)用化歸思想去解決問(wèn)題。

      四、教學(xué)過(guò)程設(shè)計(jì)

      (一)回顧三角形中線概念,導(dǎo)入新課;

      (二)寫出三角形中位線概念,定理;

      (三)板書一種證明方法;

      (四)出兩個(gè)應(yīng)用定理的例題,板書一題具體步驟;

      (五)請(qǐng)一位同學(xué)演板寫書另一題具體步驟;

      (六)總結(jié)學(xué)的內(nèi)容并布置作。

      五、板書設(shè)計(jì)

      第一板放三角形中位線定義,定理;第二板放定理證明,第三板放例1,第四板放例2.

      第三篇:《三角形中位線》教案

      《三角形中位線》教案 教學(xué)目的:

      1、.理解三角形中位線的概念,掌握它的性質(zhì)定理。2.初步運(yùn)用三角形的中位線定理進(jìn)行求解與推理。

      3、經(jīng)歷探索、猜想、證明過(guò)程,發(fā)展推理論證能力。培養(yǎng)分析問(wèn)題和解決問(wèn)題的能力以及思維的靈活性。

      4、通過(guò)自主探究、猜想、驗(yàn)證,獲得親自參與研究的情感體驗(yàn),增強(qiáng)學(xué)習(xí)熱情。

      重點(diǎn):三角形中位線性質(zhì)定理;

      難點(diǎn):定理證明中添加輔助線的思想方法。教學(xué)方式:?jiǎn)l(fā)、引導(dǎo)、探究 教學(xué)過(guò)程:

      一、情景引入

      生活實(shí)例。如圖:A,B兩地被池塘隔開(kāi),在沒(méi)有任何測(cè)量工具的情況下,小明通過(guò)下面的方法估測(cè)出了A,B間的距離:先在A,B外選了一點(diǎn)C,然后步測(cè)出AC,BC的中點(diǎn)M,N,并測(cè)出MN的長(zhǎng),由此他就知道了A,B間的距離。誰(shuí)能說(shuō)出其中的道理嗎?我們就能解開(kāi)這個(gè)疑團(tuán)。大家有沒(méi)有信心?

      畫一畫,觀察與思考:

      1.畫△ABC邊AC上的中線BE,取邊AB上的中點(diǎn)D,連結(jié)DE,線段DE是中線嗎?

      2.嘗試定義

      以上線段DE叫做△ABC的中位線,請(qǐng)同學(xué)們嘗試定義什么叫做三角形的中位線?并比較三角形的中位線和中線的區(qū)別。

      三角形的中位線:連結(jié)三角形兩邊中點(diǎn)的線段。問(wèn)題:(1)三角形有幾條中位線?

      (2)三角形的中位線與中線有什么區(qū)別? 啟發(fā)學(xué)生得出:三角形的中位線的兩端點(diǎn)都是三角形邊的中點(diǎn),而三角形的中線只有一個(gè)端點(diǎn)是邊的中點(diǎn),另一個(gè)端點(diǎn)是三角形的一個(gè)頂點(diǎn)。

      3.實(shí)踐與猜想

      度量DE和BC的長(zhǎng)度。猜想:DE和BC的關(guān)系 通過(guò)實(shí)踐體會(huì)和感知出:DE∥BC,DE= BC。問(wèn)題:你憑什么猜出:DE∥BC?(看出來(lái)的)

      二、自主探究:

      1.你能猜出三角形的中位線與第三邊有怎樣的關(guān)系嗎?試證明你的猜想引導(dǎo)學(xué)生寫出已知、求證。

      (已知:△ABC中,D、E分別是AB、AC的中點(diǎn)。求證:DE∥BC;DE= BC)

      啟發(fā)1:證明直線平行的方法有那些?

      啟發(fā)學(xué)生聯(lián)想由角的相等或互補(bǔ)得出平行、由平行四邊形得出平行等。

      啟發(fā)2:證明線段倍分的方法有那些?(截長(zhǎng)補(bǔ)短)學(xué)生分小組討論,教師巡回指導(dǎo),經(jīng)過(guò)分析后,師生共同完成推理過(guò)程,板書證明過(guò)程。強(qiáng)調(diào)還有其他證法。

      證明:延長(zhǎng)中位線DE到F,使EF=DE,連結(jié)CF。易證△ADE≌△CFE(或證四邊形ADCF為平行四邊)得AD∥ FC,又∵AD=DB,∴DB∥FC,∴四邊形DBCF是平行四邊形,DF∥BC。∵DE= DF,∴DE ∥ BC

      2.啟發(fā)學(xué)生歸納定理,并用文字語(yǔ)言表述: 中位線平行于第三邊且等于第三邊的一半。

      【點(diǎn)評(píng)】上述教學(xué)過(guò)程通過(guò)學(xué)生親自動(dòng)手畫、量,猜想發(fā)現(xiàn)了三角形中位線定理,教師引導(dǎo),啟發(fā)學(xué)生思維,討論找到了證明中位線定理的方法。并由學(xué)生自己完成了證明過(guò)程,充

      分發(fā)揮了學(xué)生主動(dòng)學(xué)習(xí),合作學(xué)習(xí)和探究性學(xué)習(xí)的功能,培養(yǎng)了學(xué)生發(fā)現(xiàn)問(wèn)題、探究問(wèn)題的能力,以及用數(shù)學(xué)語(yǔ)言表述數(shù)學(xué)問(wèn)題的能力等良好的數(shù)學(xué)品質(zhì)。

      三、合作交流: 2.做一做

      求證:順次連結(jié)任意四邊形中點(diǎn)所得的四邊形是平行四邊形。

      已知:在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn)。

      求證:四邊形EFGH是平行四邊形。

      你能證明它是平行四邊形嗎?當(dāng)學(xué)生不會(huì)添輔助線時(shí),教師再作啟發(fā),這么多的中點(diǎn)我們會(huì)想到什么呢?四邊形的問(wèn)題又可以轉(zhuǎn)化成什么圖形的問(wèn)題呢?使學(xué)生能夠連結(jié)對(duì)角線。

      學(xué)生議論后口述證明,教師板書證題過(guò)程(估計(jì)學(xué)生可能添兩條對(duì)角線或一條對(duì)角線來(lái)證明)。

      證明:連結(jié)BD。

      ∵E、F分別為AB、DA的中點(diǎn),∴EF∥BD同理 GH∥BD

      ∴EF∥GH∴四邊形EFGH是平行四邊形。變式:順次連結(jié)上題中,所得到的四邊形EFGH四邊的中點(diǎn)得到一個(gè)四邊形,繼續(xù)作下去,所得到的四邊形依次是什么特殊四邊形,請(qǐng)?zhí)羁眨纱说玫降慕Y(jié)論是。

      要求學(xué)生動(dòng)手畫圖,猜想結(jié)論,再在小組內(nèi)相互討論、交流。

      【點(diǎn)評(píng)】通過(guò)例2變式題的形容討論不僅培養(yǎng)了學(xué)生應(yīng)用數(shù)學(xué)知識(shí),解決數(shù)學(xué)問(wèn)題的能力,而且還培養(yǎng)了學(xué)生的歸納推理,猜測(cè)論證能力,(循環(huán)重復(fù)上述四種特殊四邊形),親身體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性、創(chuàng)造性和趣味性。

      四、鞏固拓展: 1.練一練:

      已知三角形三邊長(zhǎng)分別為6,8,10,順次連結(jié)各邊中點(diǎn)所得的三角形周長(zhǎng)是多少?由本題的圖形你能否聯(lián)想到一般性的結(jié)論?(如果△ABC的三邊的長(zhǎng)分別為a、b、c,那么△DGE的周長(zhǎng)是多少?)

      已知:△ABC中,D、F是AB邊的三等分點(diǎn),E、G是AC邊的三等分點(diǎn),是否能夠求證出:DE∥BC,且DE=1/3BC

      【點(diǎn)評(píng)】該問(wèn)題的設(shè)置具有一定的挑戰(zhàn)性,有助于學(xué)生利用已有知識(shí)經(jīng)驗(yàn)指導(dǎo)解決新問(wèn)題。對(duì)發(fā)展學(xué)生的想象能力,推理猜測(cè)能力有所脾益。

      五、檢測(cè)小結(jié) 1.基礎(chǔ)知識(shí):⑴三角線的中位線、以及它與三角形中線的區(qū)別;⑵三角線中位線的性質(zhì)及其應(yīng)用;

      2.基本技能:

      證明 “中點(diǎn)四邊形”的輔助線的方法,連結(jié)對(duì)角線。

      六、作業(yè)布置: P93習(xí)題2,3; 試一試1(學(xué)有余力的同學(xué)課后思考)教師反思:

      該節(jié)課的學(xué)習(xí),貫徹了“數(shù)學(xué)課程標(biāo)準(zhǔn)”中的思想。對(duì)學(xué)生要掌握的知識(shí)與技能,學(xué)習(xí)思考、解決問(wèn)題,情感與態(tài)度四大目標(biāo)有較好的體現(xiàn),有一定的推廣意義。

      第四篇:三角形中位線反思

      《三角形中位線》教學(xué)反思

      李紅梅

      課改下新課標(biāo)的實(shí)施,不但要求每個(gè)教師在課堂教學(xué)設(shè)計(jì)上、對(duì)學(xué)生評(píng)價(jià)問(wèn)題上、學(xué)生學(xué)習(xí)方式上等方方面面都要有一個(gè)全新的認(rèn)識(shí)和改變。更是要求教與學(xué)后教師與教師之間、教師與學(xué)生之間有所溝通、有所總結(jié)、有所思進(jìn)。就這些方面下面就是我對(duì)“三角形中位線”的課后反思。

      在《三角形中位線》的教學(xué)中,在《三角形中位線》的教學(xué)中,新課程在教材上緊緊圍繞著三個(gè)目標(biāo)設(shè)計(jì)的。這節(jié)課的教學(xué)目標(biāo)有以下三點(diǎn):1.經(jīng)歷概念的發(fā)生過(guò)程,提高分析能力,理解三角形的中位線概念,知道三角形的中線和中位線的區(qū)別。2.經(jīng)歷三角形中位線性質(zhì)的探索過(guò)程,進(jìn)一步提高和發(fā)展邏輯思維能力和推理論證的表達(dá)能力;體會(huì)轉(zhuǎn)化的思想方法,進(jìn)一步感受圖形的運(yùn)動(dòng)對(duì)構(gòu)造圖形的作用。3.掌握三角形中位線的性質(zhì)定理,能運(yùn)用三角形中位線定理進(jìn)行計(jì)算和論證,解決簡(jiǎn)單的現(xiàn)實(shí)生活的問(wèn)題,增強(qiáng)應(yīng)用能力和創(chuàng)新意識(shí)。本節(jié)的教學(xué)重點(diǎn)和難點(diǎn)有以下兩點(diǎn):

      1、本節(jié)教學(xué)的重點(diǎn)是三角形的中位線定理。

      2、三角形的中位線定理的證明、運(yùn)用有較高的難度,是本節(jié)教學(xué)的難點(diǎn)。

      在課堂導(dǎo)入中,我以創(chuàng)設(shè)問(wèn)題情景的形式,激起學(xué)生探索的欲望,激發(fā)學(xué)習(xí)的興趣。問(wèn)題是:探索如何測(cè)量一個(gè)池塘的邊上AB兩點(diǎn)之間的寬度?辦法是只要在池塘外取一點(diǎn)C,取 CA的中點(diǎn)D,在取CB的中點(diǎn)E,此時(shí)只需求的DE的長(zhǎng)度,就可知AB的長(zhǎng)度,這是為什么呢?此時(shí)教材體現(xiàn)的是人人是在學(xué)習(xí)有用的數(shù)學(xué)。對(duì)于導(dǎo)入中設(shè)計(jì)的這個(gè)問(wèn)題,班級(jí)里即使是基礎(chǔ)非常差的學(xué)生也被吸引到思考的隊(duì)伍中。引入恰到好處,體現(xiàn)了數(shù)學(xué)的實(shí)用性,數(shù)學(xué)來(lái)源于生活,同時(shí)充分激發(fā)了學(xué)生的學(xué)習(xí)興趣。

      帶著強(qiáng)烈的學(xué)習(xí)動(dòng)機(jī),學(xué)生們進(jìn)行合作學(xué)習(xí),內(nèi)容如下:剪一刀,將一張三角形紙片剪成一張三角形和一張?zhí)菪渭埰?)如果要求剪得的兩張紙片能拼成平行四邊形,剪痕的位置有什么要求?(2)要把所剪得的兩個(gè)圖形拼成一個(gè)平行四邊形,可將其中的三角形作怎樣的圖形變換?這樣安排的目的一是能出現(xiàn)三角形中位線,引出本節(jié)學(xué)習(xí)的課題;二是為證明三角形中位線的定理埋下伏筆,也是有助于用運(yùn)動(dòng)的思想來(lái)思考數(shù)學(xué)問(wèn)題。此時(shí)教學(xué)體現(xiàn)的是人人都能獲得必需的數(shù)學(xué)。探究新知識(shí)時(shí),采用猜想—驗(yàn)證—?dú)w納—應(yīng)用的教學(xué)步驟,使學(xué)生的思維一直處于興奮狀態(tài)。特別在討論后的交流這個(gè)環(huán)節(jié)中,讓學(xué)生發(fā)揮自己的主觀能動(dòng)性。三角形的中位線的性質(zhì)定理的簡(jiǎn)單應(yīng)用,學(xué)生們也都能掌握,這個(gè)定理在實(shí)際生活中的應(yīng)用事非常廣泛的,這一安排體現(xiàn)了標(biāo)準(zhǔn)中的一、二。但是三角形中位線的證明并不是很多學(xué)生能想到的,教師的分析不管如何精彩,輔助線的添法不管如何巧妙,學(xué)生能否在證明中提高能力,這是個(gè)長(zhǎng)久的過(guò)程,所以此時(shí)教學(xué)體現(xiàn)的是不同的人在數(shù)學(xué)上有不同的發(fā)展。

      鞏固新知時(shí)的練習(xí)設(shè)計(jì),對(duì)不斷變化的圖形的中點(diǎn)四邊形進(jìn)行探索,能使學(xué)生從中總結(jié)方法,發(fā)現(xiàn)規(guī)律,提高能力。

      不足之處:

      課前應(yīng)讓學(xué)生做好預(yù)習(xí),以便課堂上有更多的時(shí)間獨(dú)立思考定理的其他證法,在開(kāi)課的時(shí)候介紹中位線的時(shí)候,老師的速度偏慢,而且沒(méi)有讓學(xué)生對(duì)于性質(zhì)的證明給予具體的操作。

      課件的練習(xí)題有幾個(gè)沒(méi)有把答案打到上面,學(xué)生沒(méi)有看到。

      課后對(duì)所得、所失、不足,只有常思才能不斷更新自我,才能使新課標(biāo)的要求不只是一句空話。我相信教學(xué)反思應(yīng)該讓每個(gè)人都能從中學(xué)到一些有益的東西。

      第五篇:三角形中位線論文

      三角形中位線的前因后果

      三角形的中位線平行于第三邊,并且等于第三邊的一半。已知:如圖

      (一),△ABC中,M,N分別是AB,AC兩邊中點(diǎn)。求證:MN平行于BC且等于BC/2.A

      圖二

      MN

      CB 圖一 圖三

      BMANCCNAMADNBMAMBNCB圖四

      C前因:1.,當(dāng)點(diǎn)A運(yùn)動(dòng)到線段BC上(如圖

      (二)),其他條件不變時(shí),易證:MN=BC/2.2.當(dāng)點(diǎn)A運(yùn)動(dòng)到線段BC的延長(zhǎng)線上或反向延長(zhǎng)線上(如圖

      (三)),其他條件不變時(shí),易證:MN=BC/2.后果:梯形的中位線平行于兩底,并且等于兩底和的一半。

      已知:如圖

      (四),梯形ABCD中,M為AB的中點(diǎn),N為CD的中點(diǎn),連接MN,DFA求證:MN平行兩底且等于兩底和的一半。

      DA

      MFN MN

      BECCB圖五

      圖六

      1.如圖

      (五)當(dāng)△ABC的邊AB固定,邊AC平移到DE處,從而得到梯形ABED,AC的中點(diǎn)N平移到DE的中點(diǎn)F點(diǎn)處,所以線段MF就是梯形ABED的中位線,因?yàn)镸N∥BC,NF∥BC,這樣,M、N、F三點(diǎn)共線,即梯形ABED的中位線MF∥BC∥AD,∵AD=DF=CE

      ∴MFMN+NF=BC/2+(AD+CE)/2=(BC+CE)/2+AD/2=(BE+AD)/2 這樣就證明了梯形中位線定理.2.△ABC可以看成梯形ABCD的兩個(gè)端點(diǎn)D與A重合的特殊情形,那么,如圖(五),當(dāng)點(diǎn)D從A點(diǎn)出發(fā),沿與BC平行的射線AF運(yùn)動(dòng)時(shí),得到梯形ABCD,此時(shí)線段MN就是梯形ABCD的中位線,∵∴

      2.MADDANMNBC圖七

      B圖八

      C想的“做”數(shù)學(xué)的環(huán)境,可以讓學(xué)生從“聽(tīng)”數(shù)學(xué)轉(zhuǎn)變到“做”數(shù)學(xué),以研究者的方式,參與包括發(fā)現(xiàn)、探索在內(nèi)的獲得知識(shí)的全過(guò)程,是一個(gè)開(kāi)展“數(shù)學(xué)實(shí)驗(yàn)”的好“實(shí)驗(yàn)室”。

      一、用《幾何畫板》,讓學(xué)生體驗(yàn)數(shù)學(xué)家的感受

      提起數(shù)學(xué)實(shí)驗(yàn),人們都會(huì)本能地想到物理實(shí)驗(yàn)、化學(xué)實(shí)驗(yàn)和生物實(shí)驗(yàn)。在日常教學(xué)過(guò)程中,為了讓學(xué)生獲得知識(shí),物理、化學(xué)、生物都需要做實(shí)驗(yàn),而在數(shù)學(xué)教學(xué)中,卻幾乎沒(méi)有實(shí)驗(yàn)。很多數(shù)學(xué)學(xué)習(xí)困難的學(xué)生認(rèn)為數(shù)學(xué)枯燥乏味,就是因?yàn)閿?shù)學(xué)太抽象,不象理化那樣經(jīng)常做實(shí)驗(yàn),看得見(jiàn)。于是,只有數(shù)學(xué)家是在“做”數(shù)學(xué),而學(xué)生卻在被動(dòng)地“聽(tīng)”數(shù)學(xué)。他們聽(tīng)來(lái)的多半是缺少發(fā)現(xiàn)過(guò)程的結(jié)論,而且缺乏他們自己對(duì)所講內(nèi)容的“操作”。這就大大脫離了學(xué)生自己的經(jīng)驗(yàn)體系,致使學(xué)生不能很好的獲取知識(shí)。《幾何數(shù)學(xué)教師要利用計(jì)算機(jī)進(jìn)行輔助教學(xué) ,離不開(kāi)作圖 ,特別是在幾何教學(xué)中。過(guò)去本人使用《WORD97》深感在作圖時(shí)有諸多不便。如果將《幾何畫板》與《WORD97》結(jié)合使用 ,既能充分利用《WORD97》在數(shù)學(xué)符號(hào)輸入、數(shù)學(xué)公式編輯和文字排版上的強(qiáng)大功能 ,又能發(fā)揮《幾何畫板》在制作幾何圖形時(shí)簡(jiǎn)單、美觀、準(zhǔn)確、快捷的優(yōu)勢(shì)。同時(shí)《幾何畫板》在教學(xué)中不僅是優(yōu)秀的演示工具 ,而且是學(xué)生在學(xué)習(xí)中有力的探索工具。筆者曾成功地將《幾何畫板》應(yīng)用于《三角形中位線》一課的教學(xué)中(該課參加全國(guó)第二屆初中青年數(shù)學(xué)教師優(yōu)秀課評(píng)比獲一等獎(jiǎng))。下面就以該課為例談?wù)劸唧w應(yīng)用時(shí)的幾點(diǎn)體會(huì)。1 變被動(dòng)接受為主動(dòng)探索建構(gòu)主義理論[1 ] 認(rèn)為 :知識(shí)不是被動(dòng)接受的 ,而是由認(rèn)知主體建構(gòu)的。數(shù)學(xué)學(xué)習(xí)是學(xué)生在已有數(shù)學(xué)認(rèn)知結(jié)構(gòu)的基礎(chǔ)上的建構(gòu)活動(dòng) ,而不是對(duì)數(shù)學(xué)知識(shí)的直接翻版。這就要求我們?cè)诮虒W(xué)中 ,不能只重結(jié)果而偏廢過(guò)程 ,讓學(xué)生被動(dòng)地把結(jié)論機(jī)械地識(shí)記下來(lái) ,這樣獲取的是死知識(shí)。應(yīng)遵循讓學(xué)生觀察理解 ,探索研究 ,發(fā)現(xiàn)問(wèn)題的規(guī)律 ,給學(xué)生一個(gè)建構(gòu)的過(guò)程 ,一個(gè)思維活動(dòng)的學(xué)生參與包括發(fā)現(xiàn)、隨著素質(zhì)教育的全面推進(jìn),用數(shù)學(xué)開(kāi)放題培創(chuàng)新意識(shí)和能力,已經(jīng)成了教改的熱點(diǎn).特別是培養(yǎng)學(xué)生能用運(yùn)觀點(diǎn)去分析問(wèn)題、解決問(wèn)題,也是中考命題的熱點(diǎn).需要教師深入挖掘教材的隱含內(nèi)容 ,設(shè)計(jì)巧妙的問(wèn)題情境 ,激

      發(fā)學(xué)生主空間 ,讓養(yǎng)學(xué)生的動(dòng)、變化的近年來(lái),我區(qū)大力推行主動(dòng)參與教學(xué)模式。初探這一模式,很多教師頗感困難。例如,在畫板》被譽(yù)為“21世界的動(dòng)態(tài)幾何”,它就提供了一個(gè)十分理講授三角形中位線的性質(zhì)一節(jié)課時(shí),傳統(tǒng)的教學(xué)方法是把“三角形的中位線平行于第三邊并且等于第三邊的一半”這一性質(zhì)告訴學(xué)生,然后再加以證明。有了《幾何畫板》,可以通過(guò)《幾何畫板》畫一個(gè)△ABC,并畫出它的一條中位線DE,度量三角形各邊的長(zhǎng)度及DE的長(zhǎng)度,顯示它們大小的數(shù)值就展現(xiàn)在屏幕上(如圖)。教師設(shè)計(jì)以下問(wèn)題,讓學(xué)生自己探索、實(shí)驗(yàn)。請(qǐng)你拖動(dòng)三角形的任意一個(gè)頂點(diǎn),通過(guò)觀察回答下列問(wèn)題:(1)

      中位線DE與三角形各邊有什么樣的位置關(guān)系?(2)

      中位線DE與三角形各邊的長(zhǎng)度有什么相等關(guān)系?(3)

      猜想三角形的中位線有什么性質(zhì)?請(qǐng)你用一句話來(lái)概括。(4)

      你能證明這一猜想嗎?

      動(dòng)探究問(wèn)題的熱情 ,培養(yǎng)學(xué)生的探究能力和強(qiáng)化生物學(xué)思維能力 ,在良好的師生互動(dòng)交流中 ,點(diǎn)化引玉 ,引導(dǎo)學(xué)生突破知識(shí)難點(diǎn)。

      隨著學(xué)生拖動(dòng)三角形的任意一個(gè)頂點(diǎn),中位線的位置在屏幕上動(dòng)態(tài)地改變著,并且顯示三角形的三條邊和中位線的長(zhǎng)度的數(shù)據(jù)也在屏幕上跟著改變。這個(gè)演示過(guò)程充分體現(xiàn)了三角形的任意性,并引導(dǎo)學(xué)生關(guān)注變化過(guò)程中的不變關(guān)系、不變量。學(xué)生經(jīng)過(guò)自己的實(shí)際操作,從動(dòng)態(tài)中去觀察、探索、歸納出三角形的中位線的性質(zhì)。對(duì)自己的任何發(fā)現(xiàn),都可以得到及時(shí)地驗(yàn)證。這時(shí)教師的角色不再是學(xué)生的保姆,學(xué)生不再是盛受知識(shí)的容器,也不再是目睹教師口干舌燥的“觀眾”,而是積極參與探索的“主角”,經(jīng)過(guò)自己親身的實(shí)踐活動(dòng),感受、理解知識(shí)產(chǎn)生和發(fā)展的過(guò)程,形成自己的經(jīng)驗(yàn),發(fā)揮了學(xué)生的能動(dòng)性和創(chuàng)造能力,達(dá)到讓學(xué)生“做”數(shù)學(xué)的目的。三角形中位線的幾種變化

      動(dòng)點(diǎn)問(wèn)題是最近幾年中考數(shù)學(xué)的熱點(diǎn)題型,這類試題信息量大,對(duì)同學(xué)們獲取和處理信息的能力要求較高,解題時(shí)需要用運(yùn)動(dòng)和變化的眼光去觀察和探究問(wèn)題,挖掘運(yùn)動(dòng)和變化的全過(guò)程,這就要求同學(xué)們具有扎實(shí)的基礎(chǔ)知識(shí)、較強(qiáng)的閱讀理解能力及數(shù)學(xué)的建模能力,動(dòng)點(diǎn)問(wèn)題是近年來(lái)中考中的一個(gè)熱點(diǎn)題型,也是教學(xué)中的一個(gè)難點(diǎn),這類題綜合性強(qiáng)、開(kāi)放度高,要求學(xué)生能從“運(yùn)動(dòng)、變化”的角度去思考問(wèn)題.解答這類題目除了要牢固掌握相關(guān)的數(shù)學(xué)知識(shí)外,還要綜合運(yùn)用數(shù)形結(jié)合、分類討論、方程、函數(shù)、轉(zhuǎn)化等數(shù)學(xué)思想方法去探索解題的思路;它考查面廣,涉及的知識(shí)點(diǎn)眾多,留給學(xué)生很大的思維空間和思維量,需要我們?cè)谶\(yùn)動(dòng)中分析,在變化中求解.本文以2011年全國(guó)各地的中考動(dòng)點(diǎn)類問(wèn)題為例進(jìn)行分析,以供參考.正近幾年,動(dòng)點(diǎn)問(wèn)題成為中考的必考內(nèi)容,這類問(wèn)題無(wú)論對(duì)學(xué)生的知識(shí)基礎(chǔ)水平,還是對(duì)學(xué)生的思維能力、解題能力都是極大的考驗(yàn).如何有效的解決動(dòng)點(diǎn)問(wèn)題是數(shù)學(xué)教學(xué)中值得探索的問(wèn)題.構(gòu)造思想方法是初中數(shù)學(xué)極為重要的數(shù)學(xué)思想,更是一種體現(xiàn)創(chuàng)新思維的思想方法.點(diǎn)動(dòng)、線動(dòng)、形動(dòng)構(gòu)成的問(wèn)題稱之為動(dòng)態(tài)幾何問(wèn)題.它主要以幾何圖形為載體,運(yùn)動(dòng)變化為主線,集多個(gè)知識(shí)點(diǎn)為一體,集多種解題思想于一題.這類題綜合性強(qiáng),能力要求高,它能全面的考查學(xué)生的實(shí)踐操作能力,空間想象能力以及分析問(wèn)題和解決問(wèn)題的能力.其中以靈活多變而著稱的雙動(dòng)點(diǎn)問(wèn)題更成為今年中考試題的熱點(diǎn),現(xiàn)采擷幾例加以分類淺析,逆定理一:在三角形內(nèi),與三角形的兩邊相交,平行且等于三角形第三邊一半的線段是三角形的中位線。

      如圖DE//BC,DE=BC/2,則D是AB的中點(diǎn),E是AC的中點(diǎn)。

      逆定理二:在三角形內(nèi),經(jīng)過(guò)三角形一邊的中點(diǎn),且與另一邊平行的線段,是三角形的中位線。

      如圖D是AB的中點(diǎn),DE//BC,則E是AC的中點(diǎn),DE=BC/

      2二、合作交流

      ADMNBC

      操作:1.剪一個(gè)三角形,記為ΔABC

      2.分別取AB、AC的中點(diǎn)D、E,并連接DE 3.沿DE將ΔABC剪成兩部分,并將ΔADE繞點(diǎn)E旋轉(zhuǎn)180°得四邊形DBCF ADADBECBECF

      思考:四邊形DBCF是什么特殊的四邊形

      1.三角形中位線的概念

      想一想:三角形的中線與三角形的中位線的區(qū)別,并畫圖說(shuō)明

      三角形中線是一條連接 與 的線段 ⑴ 順次連接任意四邊形四邊中點(diǎn)所得的四邊形是 ⑵ 順次連接矩形的四邊中點(diǎn)所得的四邊形是 ⑶ 順次連接菱形的四邊中點(diǎn)所得的四邊形是

      ⑷ 順次連接對(duì)角線相等的四邊形四邊中點(diǎn)所得的四邊形是 ⑸ 順次連接對(duì)角線垂直的四邊形四邊中點(diǎn)所得的四邊形是 ⑹ 順次連接對(duì)角線相等且垂直的四邊形四邊中點(diǎn)所得的四邊形是

      四、反饋練習(xí)

      1.ΔABC中,AB=6㎝,AC=8㎝,BC=10㎝,D﹑E﹑F分別是AB、AC、BC的中點(diǎn)

      則ΔDEF的周長(zhǎng)是____,面積是____。

      2.ΔABC中,DE是中位線,AF是中線,則DE與AF的關(guān)系是____ 3.若順次連接四邊形四邊中點(diǎn)所得的四邊形是菱形,則原四邊形()

      (A)一定是矩形(B)一定是菱形(C)對(duì)角線一定互相垂直(D)對(duì)角線一定相等

      4.如圖,A、B兩地被建筑物阻隔,為測(cè)量A、B兩地 的距離,在地面上選一點(diǎn)C,連接CA、CB,分別 取CA、CB的中點(diǎn)D、E.(1)若DE的長(zhǎng)度為36米,求A、B兩地之間的距離; A

      D(2)如果D、E兩點(diǎn)之間還有阻隔,你有什么方法解 E F

      B

      G

      C 怎樣將一張?zhí)菪斡布埰舫蓛刹糠?,使分成的兩部分能拼成一個(gè)三角形? 操作:

      (1)剪一個(gè)梯形,記為梯形ABCD;(2)分別取AB、CD的中點(diǎn)M、N,連接MN;(3)沿AN將梯形剪成兩部分,并將△ADN繞點(diǎn)N按順180°到△ECN的位置,得△ABE,如右圖。

      討論:在上圖中,MN與BE有怎樣的位置關(guān)系和數(shù)量關(guān)

      二、合作交流

      1.梯形中位線定義:

      2.現(xiàn)在我們來(lái)研究梯形中位線有什么性質(zhì).時(shí)針?lè)较蛐D(zhuǎn)

      系?為什么? 如右圖所示:MN是梯形 ABCD的中位線,引導(dǎo)學(xué)生回答下列問(wèn)題:

      MN與梯形的兩底邊AD、BC有怎樣的位置關(guān)系和數(shù)量關(guān)系?為什么?

      ①一個(gè)梯形的上底長(zhǎng)4 cm,下底長(zhǎng)6 cm,則其中位線長(zhǎng)為 ; ②一個(gè)梯形的上底長(zhǎng)10 cm,中位線長(zhǎng)16 cm,則其下底長(zhǎng)為 ; ③已知梯形的中位線長(zhǎng)為6 cm,高為8 cm,則該梯形的面積為_(kāi)_______ ; ④已知等腰梯形的周長(zhǎng)為80 cm,中位線與腰長(zhǎng)相等,則它的中位線長(zhǎng).例2:已知:如圖在梯形ABCD中,AD∥BC,AB=AD+BC,P為CD的中點(diǎn),求證:AP⊥BP

      四、拓展練習(xí)

      1.已知,在梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD,且AC =12,BD=9,則此梯形的中位線長(zhǎng)是 ?(A.10 B.

      C.

      D.12 2.已知,等腰梯形ABCD中,兩條對(duì)角線AC、BD互相垂直,中位線EF長(zhǎng)為8cm,求它的高CH.D C O E A H B)

      下載6.3 《三角形的中位線》說(shuō)課word格式文檔
      下載6.3 《三角形的中位線》說(shuō)課.doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        三角形的中位線

        《三角形的中位線》 一、設(shè)計(jì)理念: 義務(wù)教育階段的數(shù)學(xué)應(yīng)體現(xiàn)基礎(chǔ)性、普及性和發(fā)展性,所以我的設(shè)計(jì)理念是引導(dǎo)學(xué)生進(jìn)行探究式的學(xué)習(xí)活動(dòng),通過(guò)動(dòng)手操作,發(fā)現(xiàn)規(guī)律,把自主探索作為......

        三角形的中位線觀課報(bào)告

        《三角形的中位線》觀課報(bào)告 張老師這節(jié)課通過(guò)生活中的情境問(wèn)題——平分蛋糕入手創(chuàng)設(shè)了一個(gè)現(xiàn)實(shí)情景,讓學(xué)生根據(jù)生活經(jīng)驗(yàn)思考,帶著問(wèn)題去學(xué)習(xí),將生活問(wèn)題數(shù)學(xué)化,激發(fā)了學(xué)生的探......

        《三角形中位線》教學(xué)設(shè)計(jì)

        《三角形中位線》教學(xué)設(shè)計(jì) 一、 教學(xué)目標(biāo): 1. 使學(xué)生掌握三角形中位線概念,理解中位線定理,會(huì)運(yùn)用它進(jìn)行有關(guān)論證和計(jì)算. 2. 掌握添加輔助線解題的技巧. 3. 提高學(xué)生分析......

        三角形的中位線說(shuō)課稿5則范文

        三角形的中位線定理是三角形的一個(gè)重要性質(zhì),在今后的學(xué)習(xí)中經(jīng)常要用這個(gè)定理解決有關(guān)直線平行和線段的相等和倍分等問(wèn)題。下面是小編為你整理了“三角形的中位線說(shuō)課稿”,希望......

        《三角形的中位線》說(shuō)課稿(5篇模版)

        《三角形的中位線》說(shuō)課稿 旭陽(yáng)中學(xué) 張國(guó)林 尊敬的各評(píng)委、同仁大家好: 我是來(lái)自旭陽(yáng)中學(xué)的張國(guó)林,今天我說(shuō)課的內(nèi)容是《三角形的中位線 》,下面我將從教材分析 、學(xué)情分析、教......

        《6.4 三角形的中位線》學(xué)案

        6.4三角形的中位線定理導(dǎo)學(xué)案一、學(xué)習(xí)目標(biāo)1.理解三角形中位線的概念,掌握它的性質(zhì);2.能較熟練地應(yīng)用三角形中位線性質(zhì)進(jìn)行有關(guān)的證明和計(jì)算.二、合作探究怎樣將一張三角形紙片剪......

        微課堂教學(xué)設(shè)計(jì)——三角形中位線

        初三上冊(cè)第五章第三節(jié)《三角形的中位線》 《三角形中位線性質(zhì)定理的探索與證明》微課堂教學(xué)設(shè)計(jì) 一、目標(biāo)設(shè)計(jì): (一)知識(shí)目標(biāo) : 1.了解三角形中位線的概念。 2.掌握三角形中......

        三角形的中位線》教學(xué)設(shè)計(jì)

        《三角形的中位線》教學(xué)設(shè)計(jì) 儀征市金升外國(guó)語(yǔ)實(shí)驗(yàn)學(xué)校 蔣月蘭 教學(xué)目標(biāo): ① 知識(shí)與能力 1. 探索并掌握三角形的中位線的概念、性質(zhì) 2. 會(huì)利用三角形中位線的性質(zhì)解決有關(guān)問(wèn)題......