第一篇:七年級上數(shù)學(xué)有理數(shù)的加減法教案
第一章 有理數(shù)加減及其混合運(yùn)算
2011級1、2班 2011年9月15日 備課人:周小玲
【知識梳理】
1、有理數(shù)的加法法則:
同號兩數(shù)相加,取相同的符號,并把絕對值相加.
異號兩數(shù)相加,絕對值相等時和為0(即互為相反數(shù)的兩數(shù)相加得0); 絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值.
一個數(shù)同0相加,仍得這個數(shù).
加法的法則指出,兩個有理數(shù)相加的結(jié)果由兩部分構(gòu)成:
先確定和的符號,再確定兩數(shù)的絕對值相加或相減,以得到和的絕對值. 在加法運(yùn)算中,最容易錯的就是符號問題,運(yùn)算時要特別注意符號問題. 【重點(diǎn)難點(diǎn)】
重點(diǎn):有理數(shù)的加法法則和相關(guān)的運(yùn)算律。
難點(diǎn):運(yùn)用有理數(shù)加法法則和運(yùn)算律進(jìn)行簡化運(yùn)算?!镜淅馕觥?/p>
例
1、數(shù)軸上的一點(diǎn)由原點(diǎn)出發(fā),向左移動2個單位長度后又向左移動了4個單位,兩次共向左移動了幾個單位?
解:(-2)+(-4)=-6。答:這個點(diǎn)共向左移動6個單位。例
2、計算:(1)(?3)?(?2)
44?1?(2)??1.2????1?
?5?1325(3)?(?)
(4)(3)?(?2);
34771313解 :(1)(?3)?(?2)??(3?2)??6;
4444
?1?
(2)??1.2????1??(?1.2)?(?1.2)?0;
?5?1331
5(3)?(?)??(?)??;
34431225254(4)3?(?2)??(3?2)??。
77777說明 嚴(yán)格按法則去做,對異號兩數(shù)相加,關(guān)鍵是判斷出兩數(shù)的絕對值哪一個大,從而確定和的符號以及哪個數(shù)的絕對值減去哪個數(shù)的絕對值.
例
3、計算(1)(?15)?(?20)?(?8)?(?6)?(?2)
251219(?)?(?)?(?)?(?2.5)?(?0.125)?(?)278(27
說明:把同分母的分?jǐn)?shù),互為相反數(shù)的數(shù)分別結(jié)合相加,計算起來就比較方便
【牛刀小試】
1、計算:
?1??1?(1)???????;
?2??3?
(2)(—2.2)+3.8;
1)+0; 611(3)4+(—5);
361(5)(+2)+(—2.2);
5(4)(—
5(6)(—
2)+(+0.8); 15(7)(—6)+8+(—4)+12;
4?1?31(8)1???2???
7?3?732、用簡便方法計算下列各題(1)0.36+(—7.4)+0.3+(—0.6)+0.64;(2)9+(—7)+10+(—3)+(—9);
4377(?3.5)?(?)?(?)?(?)?0.75?(?)3423
3、用算式表示:溫度由—5℃上升8℃后所達(dá)到的溫度.
4、有5筐菜,以每筐50千克為準(zhǔn),超過的千克數(shù)記為正,不足記為負(fù),稱重記錄如下:
+3,-6,-4,+2,-1,總計超過或不足多少千克?5筐蔬菜的總重量是多少千克? 答案:
5512;(2)1.6;(3)?;(4)?5;(5)0;(6); 6663(7)10;(8)0;(9)—6.7;(10)0;
1、(1)?511?
2、(1)6
(2)4.25
(3)12
(4)-12.2(5)3
3、-5+8=-3(°C)
4、不足6克;244克
第二篇:七年級數(shù)學(xué)有理數(shù)的加減法教案
株洲大學(xué)生家教舒新 http://004km.cn電話***
初一同步輔導(dǎo)材料(第9講)
第一章有理數(shù)加減及其混合運(yùn)算
【知識梳理】
1、有理數(shù)的加法法則:
同號兩數(shù)相加,取相同的符號,并把絕對值相加.
異號兩數(shù)相加,絕對值相等時和為0(即互為相反數(shù)的兩數(shù)相加得0);
絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值. 一個數(shù)同0相加,仍得這個數(shù).
加法的法則指出,兩個有理數(shù)相加的結(jié)果由兩部分構(gòu)成:
先確定和的符號,再確定兩數(shù)的絕對值相加或相減,以得到和的絕對值.
在加法運(yùn)算中,最容易錯的就是符號問題,運(yùn)算時要特別注意符號問題.
【重點(diǎn)難點(diǎn)】
重點(diǎn):有理數(shù)的加法法則和相關(guān)的運(yùn)算律。
難點(diǎn):運(yùn)用有理數(shù)加法法則和運(yùn)算律進(jìn)行簡化運(yùn)算。
【典例解析】
例
1、數(shù)軸上的一點(diǎn)由原點(diǎn)出發(fā),向左移動2個單位長度后又向左移動了4個單位,兩次
共向左移動了幾個單位?
解:(-2)+(-4)=-6。
答:這個點(diǎn)共向左移動6個單位。
例
2、計算:
(1)(?3)?(?2
4334134)(2)??1.2????1? ?5?2757?1?(3)?(?)(4)(3
4)??(31
4?23
4)?(?2); 解 :(1)(?3)?(?241)??6;
(2)??1.2????1??(?1.2)?(?1.2)?0;
?5?
4133415?1?(3)
31225254(4)3?(?2)??(3?2)??。77777?(?)??(?)??;
說明 嚴(yán)格按法則去做,對異號兩數(shù)相加,關(guān)鍵是判斷出兩數(shù)的絕對值哪一個大,從而確定和的符號以及哪個數(shù)的絕對值減去哪個數(shù)的絕對值.
株洲大學(xué)生家教舒新 http://004km.cn 電話***
例
3、計算(1)(?15)?(?20)?(?8)?(?6)?(?2)
(?27)?(?
52)?(?
127)?(?2.5)?(?0.125)?(?
198)
(2)
解:(1)(?15)?(?20)?(?8)?(?6)?(?2)
?(?15)?(?8)?(?2)?(?20)?(?6)?(?25)?(?26)??1
(?2727)?(?
52)?(?
12752)?(?2.5)?(?0.125)?(?
198
198)
(2)
?(??(?)?(?
127)?(?5)?(?2.5)?(?20)?(?
35)?(?
55)
141414 72
說明:把同分母的分?jǐn)?shù),互為相反數(shù)的數(shù)分別結(jié)合相加,計算起來就比較方便)?0?(?)?(?)??
【牛刀小試】
1、計算:(1)??
??
1??1??????; 2??3?
(2)(—2.2)+3.8;
(3)4(5)(+2
(7)(—6)+8+(—4)+12;
(9)0.36+(—7.4)+0.3+(—0.6)+0.64;
(10)9+(—7)+10+(—3)+(—9);
+(—5
16);(4)(—5
16)+0;
15)+(—2.2);(6)(—
215)+(+0.8);
(8)1
1?31?
???2??? 7?3?732、用簡便方法計算下列各題:
(10)?(?
57)?()?(?)4612
(1)3
919
(?0.5)?()?(?)?9.75
22(2)
185
395
(3)
(?)?(?)?(?)?()?()
(4)(?8)?(?1.2)?(?0.6)?(?2.4)
(?3.5)?(?
43)?(?
34)?(?
72)?0.75?(?
7)
(5)
3、用算式表示:溫度由—5℃上升8℃后所達(dá)到的溫度.
.
4、有5筐菜,以每筐50千克為準(zhǔn),超過的千克數(shù)記為正,不足記為負(fù),稱重記錄如下: +3,-6,-4,+2,-1,總計超過或不足多少千克?5筐蔬菜的總重量是多少千克?
5.已知
2a?1?5b?4?0,計算下題:
(1)a的相反數(shù)與b的倒數(shù)的相反數(shù)的和;(2)a的絕對值與b的絕對值的和。
答案:
1、(1)?5;(2)1.6;(3)
?56
;(4)
?5
;(5)0;(6)2 ;
(7)10;(8)0;(9)—6.7;(10)0;
2、(1)6(2)4.25(3)12(4)-12.2(5)
3、-5+8=-3(°C)
4、不足6克;244克
?
113
第三篇:七年級數(shù)學(xué)有理數(shù)的加減法教案
初一同步輔導(dǎo)材料(第9講)
第一章
有理數(shù)加減及其混合運(yùn)算
【知識梳理】
1、有理數(shù)的加法法則:
同號兩數(shù)相加,取相同的符號,并把絕對值相加.
異號兩數(shù)相加,絕對值相等時和為0(即互為相反數(shù)的兩數(shù)相加得0);
絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值. 一個數(shù)同0相加,仍得這個數(shù).
加法的法則指出,兩個有理數(shù)相加的結(jié)果由兩部分構(gòu)成:
先確定和的符號,再確定兩數(shù)的絕對值相加或相減,以得到和的絕對值. 在加法運(yùn)算中,最容易錯的就是符號問題,運(yùn)算時要特別注意符號問題.
【重點(diǎn)難點(diǎn)】
重點(diǎn):有理數(shù)的加法法則和相關(guān)的運(yùn)算律。
難點(diǎn):運(yùn)用有理數(shù)加法法則和運(yùn)算律進(jìn)行簡化運(yùn)算。
【典例解析】
例
1、數(shù)軸上的一點(diǎn)由原點(diǎn)出發(fā),向左移動2個單位長度后又向左移動了4個單位,兩次共向左移動了幾個單位?
解:(-2)+(-4)=-6。答:這個點(diǎn)共向左移動6個單位。例
2、計算:
(1)(?3)?(?2)1434(2)??1.2????1?
??1?5?1325?(?)
(4)(3)?(?2); 34771313解 :(1)(?3)?(?2)??(3?2)??6;
4444(3)
(2)??1.2????1??(?1.2)?(?1.2)?0;
??1?5?13315?(?)??(?)??;
34431225254(4)3?(?2)??(3?2)??。
77777
(3)說明 嚴(yán)格按法則去做,對異號兩數(shù)相加,關(guān)鍵是判斷出兩數(shù)的絕對值哪一個大,從而確定和的符號以及哪個數(shù)的絕對值減去哪個數(shù)的絕對值.
例
3、計算(1)(?15)?(?20)?(?8)?(?6)?(?2)
251219(?)?(?)?(?)?(?2.5)?(?0.125)?(?)278(2)7
解:(1)(?15)?(?20)?(?8)?(?6)?(?2)
?(?15)?(?8)?(?2)?(?20)?(?6)?(?25)?(?26)??1
251219(?)?(?)?(?)?(?2.5)?(?0.125)?(?)278(2)72125119?(?)?(?)?(?)?(?2.5)?(?)?(?)77288
105203555?(?)?0?(?)?(?)?(?)??7214141
4說明:把同分母的分?jǐn)?shù),互為相反數(shù)的數(shù)分別結(jié)合相加,計算起來就比較方便
【牛刀小試】
1、計算:(1)??
(3)4+(—
5(5)(+2
(7)(—6)+8+(—4)+12;
(9)0.36+(—7.4)+0.3+(—0.6)+0.64;
(10)9+(—7)+10+(—3)+(—9);
?1??1??????;
?2??3?
(2)(—2.2)+3.8;
131); 6
(4)(—5
1)+0; 61)+(—2.2);
5(6)(—
2)+(+0.8); 15
(8)14?1?31???2??? 7?3?73
2、用簡便方法計算下列各題:
101157()?(?)?()?(?)4612(1)3919(?0.5)?()?(?)?9.7522(2)1231839(?)?(?)?(?)?()?()5255(3)2(4)(?8)?(?1.2)?(?0.6)?(?2.4)
4377(?3.5)?(?)?(?)?(?)?0.75?(?)3423(5)
3、用算式表示:溫度由—5℃上升8℃后所達(dá)到的溫度.
.
4、有5筐菜,以每筐50千克為準(zhǔn),超過的千克數(shù)記為正,不足記為負(fù),稱重記錄如下: +3,-6,-4,+2,-1,總計超過或不足多少千克?5筐蔬菜的總重量是多少千克?
5.已知2a?1?5b?4?0,計算下題:
(1)a的相反數(shù)與b的倒數(shù)的相反數(shù)的和;(2)a的絕對值與b的絕對值的和。
答案:
1、(1)?;(2)1.6;(3)?;(4)?5;(5)0;(6);(7)10;(8)0;(9)—6.7;(10)0;
511?
2、(1)6
(2)4.25
(3)12
(4)-12.2(5)3 565616233、-5+8=-3(°C)
4、不足6克;244克
第四篇:人教版七年級 有理數(shù)加減法
七年級數(shù)學(xué)(人教版上)同步練習(xí)第一章
第三節(jié)有理數(shù)加減法
一、教學(xué)內(nèi)容:
有理數(shù)的加減
1.理解有理數(shù)的加減法法則以及減法與加法的轉(zhuǎn)換關(guān)系; 2.會用有理數(shù)的加減法解決生活中的實(shí)際問題. 3.有理數(shù)的加減混合運(yùn)算.
二、知識要點(diǎn):
1.有理數(shù)加法的意義
(1)在小學(xué)我們學(xué)過,把兩個數(shù)合并成一個數(shù)的運(yùn)算叫加法,數(shù)的范圍擴(kuò)大到有理數(shù)后,有理數(shù)的加法所表示的意義仍然是這種運(yùn)算.
(2)兩個有理數(shù)相加有以下幾種情況:
①兩個正數(shù)相加;②兩個負(fù)數(shù)相加;③異號兩數(shù)相加;④正數(shù)或負(fù)數(shù)或零與零相加.(3)有理數(shù)的加法法則:
同號兩數(shù)相加,取相同的符號,并把絕對值相加.
異號兩數(shù)相加,絕對值相等時和為0;絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值.
一個數(shù)同0相加,仍得這個數(shù).
注意:①有理數(shù)的加法和小學(xué)學(xué)過的加法有很大的區(qū)別,小學(xué)學(xué)習(xí)的加法都是非負(fù)數(shù),不考慮符號,而有理數(shù)的加法涉及運(yùn)算結(jié)果的符號;②有理數(shù)的加法在進(jìn)行運(yùn)算時,首先要判斷兩個加數(shù)的符號,是同號還是異號?是否有零?接下來確定用法則中的哪一條;③法則中,都是先強(qiáng)調(diào)符號,后計算絕對值,在應(yīng)用法則的過程中一定要“先算符號”,“再算絕對值”. 2.有理數(shù)加法的運(yùn)算律
(1)加法交換律:a+b=b+a;
(2)加法結(jié)合律:(a+b)+c=a+(b+c).
根據(jù)有理數(shù)加法的運(yùn)算律,進(jìn)行有理數(shù)的運(yùn)算時,可以任意交換加數(shù)的位置,也可以先把其中的幾個數(shù)加起來,利用有理數(shù)的加法運(yùn)算律,可使運(yùn)算簡便. 3.有理數(shù)減法的意義
(1)有理數(shù)的減法的意義與小學(xué)學(xué)過的減法的意義相同.已知兩個加數(shù)的和與其中一個加數(shù),求另一個加數(shù)的運(yùn)算,叫做減法.減法是加法的逆運(yùn)算.
(2)有理數(shù)的減法法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù).
4.有理數(shù)的加減混合運(yùn)算
對于加減混合運(yùn)算,可以根據(jù)有理數(shù)的減法法則,將加減混合運(yùn)算轉(zhuǎn)化為有理數(shù)的加法運(yùn)算。然后可以運(yùn)用加法的交換律和結(jié)合律簡化運(yùn)算。
三、重點(diǎn)難點(diǎn): 重點(diǎn):①有理數(shù)的加法法則和減法法則;②有理數(shù)加法的運(yùn)算律.難點(diǎn):①異號兩個有理數(shù)的加法法則;②將有理數(shù)的減法運(yùn)算轉(zhuǎn)化為加法運(yùn)算的過程.(這一過程中要同時改變兩個符號:一個是運(yùn)算符號由“-”變?yōu)椤埃?;另一個是減數(shù)的性質(zhì)符號,變?yōu)樵瓉淼南喾磾?shù))
【典型例題】
例1.計算:(1)(-2)+(-5)(2)(-6)+4(3)(-3)+0(4)-3-(-5)
解:(1)(-2)+(-5)(同號兩數(shù)相加)
=-(2+5)(取________的符號,并把絕對值相加)=-7(2)(-6)+4(異號兩數(shù)相加)
=-(6-4)(取_____________加數(shù)的符號,并用較大的絕對值減去較小的絕對值)=-2(3)(-3)+0(一個數(shù)同零相加)=-3(仍得__________)
(4)-3-(-5)(減去一個數(shù))
=-3+5(等于加上這個數(shù)的__________)=2 評析:進(jìn)行有理數(shù)的加減運(yùn)算時,注意先確定結(jié)果的符號,再計算絕對值.
例2.計算(-20)+(+3)-(-5)+(-7).
分析:這個式子中有加法,也有減法.可以根據(jù)有理數(shù)減法法則,把它改寫成(-20)+(+3)+(+5)+(-7),使問題轉(zhuǎn)化為幾個有理數(shù)的加法.
解:(-20)+(+3)-(-5)+(-7)=(-20)+(+3)+(+5)+(-7)=[(-20)+(-7)]+[(+5)+(+3)] =(-27)+(+8)=-19 評析:先將加減混合運(yùn)算統(tǒng)一成加法,再寫成省略加號的形式,形成清晰、條理的解題思路,減少出差錯的機(jī)會.
例3.有10名學(xué)生參加數(shù)學(xué)競賽,以80分為標(biāo)準(zhǔn),超過80分記為正,不足80分記為負(fù),評分記錄如下:
+10,+15,-10,-9,-8,-1,+2,-3,-2,+1,問這10名同學(xué)的總分比標(biāo)準(zhǔn)超過或不足多少分?總分為多少?
分析:此題用具有相反意義的量來表示各個同學(xué)的得分在標(biāo)準(zhǔn)之上還是在標(biāo)準(zhǔn)之下,我們也可以把這些數(shù)值相加來表示總分是超出還是不足.
解:(+10)+(+15)+(-10)+(-9)+(-8)+(-1)+(+2)+(-3)+(-2)+(+1)
=[(+10)+(-10)]+[(-1)+(+1)]+[(+2)+(-2)]+(+15)+[(-3)+(-9)+(-8)] =0+0+0+15+(-20)=-5 80×10-5=795(分)
答:這10名同學(xué)的總分比標(biāo)準(zhǔn)不足5分,總分為795分.
評析:這10個數(shù)中有3對相反數(shù),在運(yùn)算時我們應(yīng)先把它們相加,這樣可以大大降低運(yùn)算難度.另外,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題來解決是學(xué)習(xí)數(shù)學(xué)的目的.
評析:靈活運(yùn)用運(yùn)算律,使運(yùn)算簡化,通常有下列規(guī)律:
(1)互為相反數(shù)的兩數(shù)可先相加;(2)符號相同的兩數(shù)可以先相加;(3)分母相同的數(shù)可以先相加;(4)幾個數(shù)相加能得到整數(shù)的可以先相加.
例5.已知︱a+5︱=1,︱b-2︱=3,求a-b的值.
分析:要求a-b的值,首先必須確定a、b的值.因?yàn)榻^對值等于一個正數(shù)的數(shù)有兩個,一個正、一個負(fù),并且這兩個數(shù)互為相反數(shù),即︱x︱=m(m>0),則x=m,或x=-m.也就是說求出的a、b的值分別有兩個.
解:因?yàn)棣騛+5︱=1,︱b-2︱=3 所以a+5=1或a+5=-1,b-2=3或b-2=-3 所以a=-4或a=-6,b=5或b=-1 當(dāng)a=-4,b=5時,a-b=-4-5=-9 當(dāng)a=-4,b=-1時,a-b=-4-(-1)=-3 當(dāng)a=-6,b=5時,a-b=-6-5=-11 當(dāng)a=-6,b=-1時,a-b=-6-(-1)=-5 評析:(1)已知一個數(shù)的絕對值,求這個數(shù)的時候,要格外注意解有正負(fù)兩個值,不要漏掉負(fù)值.(2)當(dāng)確定出a、b的值后,求a-b時,應(yīng)考慮到可能出現(xiàn)的情況,使解題思維嚴(yán)密.
例6.依次排列4個數(shù):2,11,8,9.對相鄰的兩個數(shù),都用右邊的數(shù)減去左邊的數(shù),所得之差排在這兩個數(shù)之間得到一串新的數(shù):2,9,11,-3,8,1,9.這稱為一次操作,作二次操作后得到一串新的數(shù):2,7,9,2,11,-14,-3,11,8,-7,1,8,9.這樣下去,第100次操作后得到的一串?dāng)?shù)的和是()A.737 B.700 C.723 D.730 分析:根據(jù)題意,解決問題的方法有兩種:一是作100次操作,得到第100次操作后的一串?dāng)?shù)字,然后求和;二是經(jīng)過前幾次操作,推測第100次操作后的結(jié)果.顯然應(yīng)該用第二種方法.
解:D 評析:一些問題看上去非常復(fù)雜,是因?yàn)槲覀儧]有找到解決問題的辦法,多動腦、多思考、找到問題的內(nèi)在規(guī)律才是解決問題的根本方法.
【方法總結(jié)】
1.有理數(shù)加減法混合運(yùn)算的方法是:一般先把減法統(tǒng)一成加法,再進(jìn)行計算,或先把同號的數(shù)相加,再把異號的數(shù)相加.
2.解決探究型問題的時候不要急于探尋問題的結(jié)果,要從最初的條件開始,分析出其中的規(guī)律,用這個規(guī)律推斷出最后的結(jié)果.
【模擬試題】(答題時間:45分鐘)
一.選擇題
1.一個數(shù)是3,另一個數(shù)比它的相反數(shù)大3,則這兩個數(shù)的和為()A.3 B.0 C.-3 D.±3 2.計算2-3的結(jié)果是()
A.5 B.-5 C.1 D.-1
3.哈市4月份某天的最高氣溫是5℃,最低氣溫是-3℃,那么這天的溫差(最高氣溫減最低氣溫)是()
A.-2℃
B.8℃ C.-8℃ D.2℃ 4.下列說法中正確的是()
A.若兩個有理數(shù)的和為正數(shù),則這兩個數(shù)都為正數(shù) B.若兩個有理數(shù)的和為負(fù)數(shù),則這兩個數(shù)都為負(fù)數(shù) C.若兩個數(shù)的和為零,則這兩個數(shù)都為零
D.數(shù)軸上右邊的點(diǎn)所表示的數(shù)減去左邊的點(diǎn)所表示的數(shù)的差是正數(shù) *5.如果x<0,y>0,且︱x︱>︱y︱,那么x+y是()
A.正數(shù) B.負(fù)數(shù) C.非正數(shù) D.正、負(fù)不能確定 *6.若兩個有理數(shù)的差是正數(shù),那么()
A.被減數(shù)是負(fù)數(shù),減數(shù)是正數(shù) B.被減數(shù)和減數(shù)都是正數(shù) C.被減數(shù)大于減數(shù) D.被減數(shù)和減數(shù)不能同為負(fù)數(shù) **7.當(dāng)x<0,y>0時,則x,x+y,x-y,y中最大的是()A.x B.x+y C.x-y D.y
二.填空題
1.計算:-(-2)=__________.
2.2/5+(-3/5)=__________;(-3)+2=__________;-2+(-4)=__________. 3.0-(-6)=__________;1/2-1/3=__________;-3.8-7=__________. 4.一個數(shù)是-2,另一個數(shù)比-2大-5,則這兩個數(shù)的和是__________. 5.已知兩數(shù)之和是16,其中一個加數(shù)是-4,則另一個加數(shù)是__________.
*6.數(shù)軸上到原點(diǎn)的距離不到5并且表示整數(shù)的只有__________個,它們對應(yīng)的數(shù)的和是__________. *7.已知a是絕對值最小的負(fù)整數(shù),b是最小正整數(shù)的相反數(shù),c是絕對值最小的有理數(shù),則c+b-a=__________.
**8.有依次排列的3個數(shù):3,9,8,對任意相鄰的兩個數(shù),都用右邊的數(shù)減去左邊的數(shù),所得之差寫在這兩個數(shù)之間,可產(chǎn)生一個新數(shù)串:3,6,9,-1,8,這稱為第一次操作;作第二次同樣的操作后也可產(chǎn)生一個新數(shù)串:3,3,6,3,9,-10,-1,9,8,繼續(xù)依次操作下去,則從數(shù)串3,9,8開始操作第一百次以后所產(chǎn)生的那個新數(shù)串的所有數(shù)之和是__________.
三.解答題
1.計算:
(1)-19-19(2)-18-(-18)
(3)26/5-27/3(4)12-(9-10)(5)(5-10)-4
3.已知a是7的相反數(shù),b比a的相反數(shù)大3,那么b比a大多少?
4.某檢修小組乘汽車檢修供電線路,約定前進(jìn)為正,后退為負(fù).某天自A地出發(fā)到收工時,所走路程(單位:km)為+22,-3,+4,-2,-8,+17,-2,-3,+12,+7,-5,問收工時距A地多遠(yuǎn)?若每千米耗油4L,問從A地出發(fā)到收工共耗油多少升? 5.如圖所示是某地區(qū)春季的氣溫隨時間變化的圖象.
請根據(jù)上圖回答:
(1)何時氣溫最低?最低氣溫為多少?
(2)當(dāng)天的最高氣溫是多少?這一天最大溫差是多少?
【試題答案】
一.選擇題
1.A 2.D 3.B 4.D 5.B 6.C 7.D 8.A
二.填空題
1.2 2.-0.25,-1,-6 3.6,1/6,-10.8 4.-9 5.20 6.9,0 7.0 8.520
三.解答題
1.(1)-38(2)0(3)-(4)13(5)-9 2.(1)1.25(2)-2(3)-2(4)8(5)-2 3.解:因?yàn)閍是7的相反數(shù),所以a=-7.因?yàn)閎比a的相反數(shù)大3,所以b-(-a)=3,所以b=3+(-a)=10,所以b-a=10-(-7)=17,即b比a大17. 4.解:收工時距A地的距離是:
(+22)+(-3)+(+4)+(-2)+(-8)+(+17)+(-2)+(-3)+(+12)+(+7)+(-5)
=22+4+17+12+7-3-2-8-2-3-5 =62-(3+2+8+2+3+5)=62-23 =39(千米)
從A地出發(fā)到收工時的耗油量應(yīng)為該車所走過的所有路程的耗油量,即:
(︱+22︱+︱-3︱+︱+4︱+︱-2︱+︱-8︱+︱+17︱+︱-2︱+︱-3︱+︱+12︱+︱+7︱+︱-5︱)×4 =(22+3+4+2+8+17+2+3+12+7+5)×4 =85×4 =340(升)
答:收工時汽車距A地39千米,從A地出發(fā)到收工共耗油340升.
5.(1)2時氣溫最低,最低氣溫為-2℃(2)當(dāng)天的最高氣溫是10℃,這一天最大溫差是10-(-2)=12(℃)
第五篇:有理數(shù)加減法教案
有理數(shù)的減法
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點(diǎn)
1.理解掌握有理數(shù)的減法法則.
2.會進(jìn)行有理數(shù)的減法運(yùn)算.
(二)能力訓(xùn)練點(diǎn)
1.通過把減法運(yùn)算轉(zhuǎn)化為加法運(yùn)算,向?qū)W生滲透轉(zhuǎn)化思想.
2.通過有理數(shù)減法法則的推導(dǎo),發(fā)展學(xué)生的邏輯思維能力.
3.通過有理數(shù)的減法運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力.
(三)德育滲透點(diǎn)
通過揭示有理數(shù)的減法法則,滲透事物間普遍聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義思想.
(四)美育滲透點(diǎn)
在小學(xué)算術(shù)里減法不能永遠(yuǎn)實(shí)施,學(xué)習(xí)了本節(jié)課知道減法在有理數(shù)范圍內(nèi)可以永遠(yuǎn)實(shí)施,體現(xiàn)了知識體系的完整美.
二、學(xué)法引導(dǎo)
1.教學(xué)方法:教師盡量引導(dǎo)學(xué)生分析、歸納總結(jié),以學(xué)生為主體,師生共同參與教學(xué)活動.
2.學(xué)生學(xué)法:探索新知→歸納結(jié)論→練習(xí)鞏固.
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1.重點(diǎn):有理數(shù)減法法則和運(yùn)算.
2.難點(diǎn):有理數(shù)減法法則的推導(dǎo).
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
電腦、投影儀、自制膠片.
六、師生互動活動設(shè)計
教師提出實(shí)際問題,學(xué)生積極參與探索新知,教師出示練習(xí)題,學(xué)生以多種方式討論解決.
七、教學(xué)步驟
(一)創(chuàng)設(shè)情境,引入新課
1.計算(口答)(1);
(2)-3+(-7);
(3)-10+(+3);
(4)+10+(-3).
2.由實(shí)物投影顯示課本第42頁本章引言中的畫面,這是北京冬季里的一天,白天的最高氣溫是10℃,夜晚的最低氣溫是-5℃.這一天的最高氣溫比最低氣溫高多少?
教師引導(dǎo)學(xué)生觀察:
生:10℃比-5℃高15℃.
師:能不能列出算式計算呢?
生:10-(-5).
師:如何計算呢?
教師總結(jié):這就是我們今天要學(xué)的內(nèi)容.(引入新課,板書課題)
【教法說明】1題既復(fù)習(xí)鞏固有理數(shù)加法法則,同時為進(jìn)行有理數(shù)減法運(yùn)算打基礎(chǔ).2題是一個具體實(shí)例,教師創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的認(rèn)知興趣,把具體實(shí)例抽象成數(shù)學(xué)問題,從而點(diǎn)明本節(jié)課課題—有理數(shù)的減法.
(二)探索新知,講授新課
1.師:大家知道10-3=7.誰能把10-3=7這個式子中的性質(zhì)符號補(bǔ)出來呢?
生:(+10)-(+3)=+7.
師:計算:(+10)+(-3)得多少呢?
生:(+10)+(-3)=+7.
師:讓學(xué)生觀察兩式結(jié)果,由此得到
(+10)-(+3)=+10)+(-3).
(1)
師:通過上述題,同學(xué)們觀察減法是否可以轉(zhuǎn)化為加法計算呢?
生:可以.
師:是如何轉(zhuǎn)化的呢?
生:減去一個正數(shù)(+3),等于加上它的相反數(shù)(-3).
【教法說明】教師發(fā)揮主導(dǎo)作用,注重學(xué)生的參與意識,充分發(fā)展學(xué)生的思維能力,讓學(xué)生通過嘗試,自己認(rèn)識減法可以轉(zhuǎn)化為加法計算.
2.再看一題,計算(-10)-(-3).
教師啟發(fā):要解決這個問題,根據(jù)有理數(shù)減法的意義,這就是要求一個數(shù)使它與(-3)相加會得到-10,那么這個數(shù)是誰呢?
生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.
教師給另外一個問題:計算(-10)+(+3).
生:(-10)+(+3)=-7.
教師引導(dǎo)、學(xué)生觀察上述兩題結(jié)果,由此得到:
(-10)-(-3)=(-10)+(+3).
(2)
教師進(jìn)一步引導(dǎo)學(xué)生觀察(2)式;你能得到什么結(jié)論呢?
生:減去一個負(fù)數(shù)(-3)等于加上它的相反數(shù)(+3).
教師總結(jié):由(1)、(2)兩式可以看出減法運(yùn)算可以轉(zhuǎn)化成加法運(yùn)算.
【教法說明】由于學(xué)生剛剛接觸有理數(shù)減法運(yùn)算難度較大,為面向全體,通過第二個題給予學(xué)生進(jìn)一步觀察比較的機(jī)會,學(xué)生自己總結(jié)、歸納、思考,此時學(xué)生的思維活躍,易于充分發(fā)揮學(xué)生的學(xué)習(xí)主動性,同時也培養(yǎng)了學(xué)生分析問題的能力,達(dá)到能力培養(yǎng)的目標(biāo).
師:通過以上兩個題目,請同學(xué)們想一想兩個有理數(shù)相減的法則是什么?
學(xué)生活動:同學(xué)們思考,并要求同桌同學(xué)相到敘述,互相糾正補(bǔ)充,然后舉手回答,其他同學(xué)思考準(zhǔn)備更正或補(bǔ)充.
師:出示有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù).(板書)
教師強(qiáng)調(diào)法則:(1)減法轉(zhuǎn)化為加法,減數(shù)要變成相反數(shù).(2)法則適用于任何兩有理數(shù)相減.(3)用字母表示一般形式為:.
【教法說明】結(jié)合引入新課中溫度計的實(shí)例,進(jìn)一步驗(yàn)證了有理數(shù)的減法法則的合理性,同時向?qū)W生指出了有理數(shù)減法的實(shí)際意義.從而使學(xué)生體會到數(shù)學(xué)來源于實(shí)際,又服務(wù)于實(shí)際.
4.例題講解:
[出示投影1(例題1、2)]
例1 計算(1)(-3)-(-5);
(2)0-7;
例2 計算(1)7.2-(-4.8);
(2)()-.
例1是由學(xué)生口述解題過程,教師板書,強(qiáng)調(diào)解題的規(guī)范性,然后師生共同總結(jié)解題步驟:(1)轉(zhuǎn)化,(2)進(jìn)行加法運(yùn)算.
例2兩題由兩個學(xué)生板演,其他學(xué)生做在練習(xí)本上,然后師生講評.
【教法說明】學(xué)生口述解題過程,教師板書做示范,從中培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)風(fēng)和良好的學(xué)習(xí)習(xí)慣.例1(2)題是0減去一個數(shù),學(xué)生在開始學(xué)時很容易出錯,這里作為例題是為引起學(xué)生的重視.例2兩題是簡單的變式題目,意在說明有理數(shù)減法法則不但適用于整數(shù),也適用于分?jǐn)?shù)、小數(shù),即有理數(shù).
師:組織學(xué)生自己編題,學(xué)生回答.
【教法說明】教師與學(xué)生以平等身份參與教學(xué),放手讓學(xué)生自己編擬有理數(shù)減法的題目,其目的是讓學(xué)生鞏固怕學(xué)知識.這樣做,一方面可以活躍學(xué)生的思維,培養(yǎng)學(xué)生的表達(dá)能力.另一方面通過出題,相互解答,互相糾正,能增強(qiáng)學(xué)生學(xué)習(xí)的主動性和參與意識.同時,教師可以獲取學(xué)生掌握知識的反饋信息,對于存在的問題及時回授.
(三)嘗試反饋,鞏固練習(xí)
師:下面大家一起看一組題.
[出示投影2(計算題1、2)]
1.計算(口答)
(1)6-9;
(2)(+4)-(-7);
(3)(-5)-(-8);
(4)(-4)-9(5)0-(-5);
(6)0-5.
2.計算
(1)(-2.5)-5.9;
(2)1.9-(-0.6);
(3)()-;
(4)-().
學(xué)生活動:1題找學(xué)生口答,2題找四個學(xué)生板演,其他同學(xué)做在練習(xí)本上.
【教法說明】學(xué)生對有理數(shù)減法法則已經(jīng)熟悉,學(xué)生在做練習(xí)時,要引導(dǎo)學(xué)生注意歸納有理數(shù)減法規(guī)律,而不要只是簡單機(jī)械地將減法化成加法,為以后逐步省略化成加法的中間步驟做準(zhǔn)備.
用實(shí)物投影顯示課本第45頁的畫面.
3.世界最高峰是珠穆朗瑪峰,海拔高度是8848米,陸上最低處是位于亞洲西部的死海湖,湖面海拔高度是-392米,兩處高度相差多少?
生答:8848-(-392)=8848+392=9240.
所以兩地高度相差9240米.
【教法說明】此題是實(shí)際問題,與新課引入中的實(shí)際問題前后呼應(yīng),貫徹《教學(xué)大綱》中規(guī)定的“要使學(xué)生受到把實(shí)際問題抽象成教學(xué)問題的訓(xùn)練,逐步形成用數(shù)學(xué)意識”的要求,把實(shí)際問題轉(zhuǎn)化為有理數(shù)減法,說明數(shù)學(xué)來源于實(shí)際,又用于實(shí)際.
(四)課堂小結(jié)
提問:通過本節(jié)課學(xué)習(xí)你學(xué)到了什么?生答:略.
師:有理數(shù)減法法則是一個轉(zhuǎn)化法則,要求同學(xué)們掌握并能應(yīng)用其計算.對于小學(xué)不能解決的2-5這類不夠減的問題就不成問題了.也就是說,在有理數(shù)范圍內(nèi),減法總可能實(shí)施.
八、隨堂練習(xí)
1.填空題
(1)3-(-3)=____________;
(2)(-11)-2=______________;
(3)0-(-6)=____________;
(4)(-7)-(+8)=____________;
(5)-12-(-5)=____________;(6)3比5大____________;
(7)-8比-2小___________;
(8)-4-()=10;
(9)如果,則的符號是___________;
(10)用算式表示:珠穆朗瑪峰的海拔高度是8848米,吐魯番盆地的海拔高度是-155米,兩處高度相差多少米__________.
2.判斷題
(1)兩數(shù)相減,差一定小于被減數(shù).()
(2)(-2)-(+3)=2+(-3).()
(3)零減去一個數(shù)等于這個數(shù)的相反數(shù).()
(4)方程在有理數(shù)范圍內(nèi)無解.()
(5)若,,.()
九、布置作業(yè)
(一)必做題:課本第83頁中2.偶數(shù)題,3.偶數(shù)題,4.偶數(shù)題.
(二)選做題:課本第84頁中5、8.