第一篇:《實(shí)用三視圖》教案
《實(shí)用三視圖》教案
教學(xué)目標(biāo):
1、了解三視圖的基本含義及簡要畫法。
2、嘗試進(jìn)行三視圖和立體圖的相互轉(zhuǎn)化練習(xí)。
3、通過練習(xí),提高學(xué)生空間思維能力。
教學(xué)重難點(diǎn):
三視圖和立體圖的相互轉(zhuǎn)化,引導(dǎo)學(xué)生學(xué)會看懂三視圖。
教具準(zhǔn)備:
課本,電腦課件。
教學(xué)過程:
一、導(dǎo)入
我們在各種媒體上都會看到模特的時(shí)裝秀,模特們身著時(shí)裝在T臺上擺出各種造型,是用來——(展示時(shí)裝)。下面讓我們欣賞一段時(shí)裝表演。(大屏幕播放時(shí)裝表演片段)同學(xué)們通過欣賞我們看到了——(衣服)——(正面、后面、側(cè)面)所有的信息。我們在觀察事物時(shí),要想獲得所有的信息,我們會怎么去觀察?(前后左右上下的看)幾個(gè)面?(六個(gè))由于物體的相對應(yīng)的面表現(xiàn)出的形象有相似或一樣的可能。因此,我們一般只需要從選擇三個(gè)角度即可獲得完整的物體形象。那么這節(jié)課我們共同學(xué)習(xí)一下“三視圖”。
二、知識環(huán)節(jié) 自我展示
1.三視圖定義
a、請同學(xué)們例舉你所熟知的幾何圖形。b、你會將這些幾何圖形組合成哪些立體圖形?
2.三視圖定義:從三個(gè)不同的視點(diǎn)測量所畫出的物體的三個(gè)不同角度的平面形,可以確定這個(gè)物體的全部形狀的信息,這種平面圖形被稱為三視圖。
3.數(shù)學(xué)中三視圖定義:物體的正投影叫做物體的視圖,從正面得到的視圖叫主視圖,從上面得到的視圖叫俯視圖,從左面得到的視圖叫左視圖。
4.實(shí)力演練(完成課本練習(xí))(考察學(xué)生對三視圖及立體圖的相互轉(zhuǎn)化的情況)
三、大顯身手 我來設(shè)計(jì)
四、游戲
鞏固學(xué)生對三視圖及立體圖的相互轉(zhuǎn)化。
五、小結(jié)
三視圖在我們生活中應(yīng)用很廣,同學(xué)們通過三視圖和立體圖的相互轉(zhuǎn)化,不僅提高了同學(xué)們的立體空間思維能力,而且也為同學(xué)們九年級數(shù)學(xué)課的“三視圖”的學(xué)習(xí)打下了良好的學(xué)習(xí)基礎(chǔ)。
第二篇:《三視圖》教案
《三視圖》教案
杜娟
教學(xué)目標(biāo):
知識與技能:能畫出簡單空間圖形(長方體,球,圓柱,圓錐,棱柱等等簡易組合)的三視圖,能識上述三視圖表示的立體模型,從而進(jìn)一步熟悉簡單幾何體的結(jié)構(gòu)特征。
過程與方法:通過直觀感知,操作確認(rèn),提高學(xué)生的空間想象能力、幾何直觀能力,培養(yǎng)學(xué)生的應(yīng)用意識。
情感、態(tài)度與價(jià)值觀:感受數(shù)學(xué)就在身邊,提高學(xué)生的學(xué)習(xí)立體幾何的興趣,培養(yǎng)學(xué)生大膽創(chuàng)新、勇于探索、互相合作的精神。教學(xué)的重點(diǎn)和難點(diǎn):
重點(diǎn):畫出空間幾何體的三視圖,體會三視圖的作用。難點(diǎn):識別三視圖所表示的空間幾何體。教具準(zhǔn)備:電腦 教學(xué)過程:
一、創(chuàng)設(shè)情境,導(dǎo)入新課:
投影儀《題西林壁》詩,教會了我們怎樣觀察物體(橫看、側(cè)看、近看、身處其中看)這類似于本節(jié)課所研究的內(nèi)容——三視圖。
二、探究新知:
1、出示課件中:
某此軍事活動中展示出我國不少先進(jìn)的武器,聰明的同學(xué)校你發(fā)現(xiàn)他們是從哪些角度看的嗎?
問題1 你知道他與正投影的關(guān)系嗎? 活動1探究長方體的三視圖
(1)按你觀察到方向,想象一束平行光線正對著物體投射過去,那么會留下什么樣子的影子(正投影)
(2)請?jiān)谌晥D標(biāo)出對應(yīng)長方體的長寬高(方式:學(xué)生參與思考,提問個(gè)別學(xué)生。)
由學(xué)生歸納推理 三視圖的三個(gè)視圖在量上的關(guān)系
(3)思考:幾何體的三視圖是不是唯一的,為什么?
例子:正方體的背面ABCD平行于投影面,把正方體旋轉(zhuǎn)一定的角度,ABCD與投影面不平行,方式:讓學(xué)生獨(dú)立思考,并認(rèn)真觀察動畫,形成結(jié)論簡單介紹三視圖在生活中的應(yīng)用。
活動2探究簡單幾何體的三視圖畫法,方式:交流合作探究 思考:三視圖的畫法
三視圖畫法:長對正、高平齊、寬相等
2、講解例題:
教材的例1見教材110頁
A、確定主視圖的位置,畫出主視圖; B、在主視圖的下方畫出俯視圖,注意與主視圖的“長對正”; C、在主視圖正右方畫出左視圖,注意與主視圖“高平齊”,與俯視圖“寬相等”。
教材例2見教材111頁 學(xué)生探究
三、教材練習(xí)112頁練習(xí)1、2、3
四、小結(jié):
畫物體的三視圖時(shí),要符合如下原則: 位置:主視圖 左視圖
俯視圖
大?。洪L對正,高平齊,寬相等.能看見的輪廓和棱用實(shí)線,不能看見的輪廓和棱用虛線.三視圖是空間幾何體的平面表示
三視圖是統(tǒng)一的,是一個(gè)整體,切忌片面下結(jié)論
五、作業(yè):
層次1 教材練習(xí)A 3.4題 練習(xí)B 第二題
第三篇:三視圖教案(精選)
三視圖教案
教學(xué)目的:
知識技能:熟練掌握三視圖的概念,會看幾何體的三視圖 過程方法:通過觀察幾何體的三視圖,進(jìn)一步掌握三視圖的概念 情感態(tài)度價(jià)值觀:培養(yǎng)學(xué)生的觀察能力,提高空間想象力,從而激
發(fā)學(xué)習(xí)數(shù)學(xué)的興趣
學(xué)情分析
投影與視圖 日常生活中,中心投影、平行投影的事例隨處可見,因此數(shù)學(xué)中與投影相關(guān)的概念都與現(xiàn)實(shí)生活緊密相關(guān).平行投影是三視圖的學(xué)習(xí)基礎(chǔ).投影與視圖涉及立體圖形與平面圖形之間的轉(zhuǎn)化,需要利用直觀感知、動手操作等學(xué)習(xí)方式,是培養(yǎng)空間觀念的好載體.因此,本章按“投影──三視圖──課題學(xué)習(xí)(制作立體模型)”的順序展開. “投影”的內(nèi)容按照從一般到特殊的線索展開,重點(diǎn)討論了正投影問題.教科書先從學(xué)生身邊的實(shí)例出發(fā),引出投影的概念、分類(平行投影、中心投影);接著,通過“思考”,引導(dǎo)學(xué)生比較和認(rèn)識中心投影與平行投影的投影線的區(qū)別,以及平行投影中“斜投影”與“正投影”的區(qū)別,進(jìn)而給出正投影的概念;再通過“探究”,引導(dǎo)學(xué)生借助生活經(jīng)驗(yàn),討論正投影中基本而重要的線段、正方形的投影問題: 線段與投影面的位置關(guān)系(有且只有平行、傾斜和垂直三種),不同位置關(guān)系下線段的正投影的形狀、線段與其正投影的大小關(guān)系; 正方形與投影面的位置關(guān)系(有且只有平行、傾斜和垂直三種),不同位置關(guān)系下正方形的正投影的形狀、正方形與其正投影的大小關(guān)系; 在此基礎(chǔ)上,歸納出正投影的基本性質(zhì).最后,以正方體的正投影為例,舉例說明這些性質(zhì)在畫立體圖形的正投影時(shí)的應(yīng)用. 概括本節(jié)內(nèi)容,其編寫思路是:從生活實(shí)例中抽象出投影的概念──投影的分類(以投影線的位置關(guān)系為分類標(biāo)準(zhǔn))──特殊的投影(正投影的概念和性質(zhì)).考慮到與初中生認(rèn)知水平相適應(yīng)的問題,在正投影性質(zhì)的討論中,一是關(guān)注了簡單但基本而重要的問題,即線段、正方形的正投影(其實(shí)就是線、面的正投影問題的代表);二是根據(jù)線、面與投影面的不同位置關(guān)系討論它們之間的形狀、大小關(guān)系(要素之間的相互關(guān)系就是性質(zhì)). “三視圖”一節(jié)包括三視圖的概念、畫立體圖形(實(shí)物)的三視圖、由三視圖想象立體圖形(實(shí)物)以及利用三視圖知識解決度量問題.這里的立體圖形限制在直棱柱、圓柱、圓錐、球或它們的組合.本節(jié)是“投影”知識的應(yīng)用,教科書先借助生活實(shí)例介紹視圖的概念,這里“從某一方向看”相當(dāng)于“某一方向的平行投影線”,因此看到的平面圖形是物體在這個(gè)方向光線下的正投影.接著,教科書重點(diǎn)介紹了三視圖,直接指出三視圖的投影面是三個(gè)互相垂直的平面,介紹三視圖的成像原理、三視圖的位置和度量規(guī)定,然后通過5個(gè)例題,引導(dǎo)學(xué)生畫直棱柱、圓柱、圓錐、球的三視圖,判斷簡單物體的視圖,根據(jù)視圖描述簡單幾何體等. 教科書安排的“課題學(xué)習(xí)制作立體模型”,其目的是讓學(xué)生“通過由三視圖制作立體模型的實(shí)踐活動,體驗(yàn)平面圖形向立體圖形轉(zhuǎn)化的過程,體會用三視圖表示立體圖形的作用,進(jìn)一步感受立體圖形與平面圖形之間的聯(lián)系.”實(shí)際上,從三維目標(biāo)看,制作立體模型的過程,不僅是鞏固已學(xué)的相關(guān)知識,而且也是培養(yǎng)空間觀念、感受數(shù)學(xué)與生活的聯(lián)系、體會數(shù)學(xué)的應(yīng)用價(jià)值的過程. 關(guān)于“視圖”,學(xué)生在前面兩個(gè)學(xué)段都已經(jīng)接觸過.第一學(xué)段要求“能根據(jù)具體事物、照片或直觀圖辨認(rèn)從不同角度觀察到的簡單物體”,第二學(xué)段要求“能辨認(rèn)從不同方向(前面、側(cè)面、上面)看到的物體的形狀圖”,第三學(xué)段要求“會畫直棱柱、圓柱、圓錐、球的主視圖、左視圖、俯視圖,能判斷簡單物體的視圖,會根據(jù)視圖描述簡單的幾何體”.《課程標(biāo)準(zhǔn)(2013年版)》提出的要求具有層次性,體現(xiàn)了從整體到局部的研究過程,也與學(xué)生的認(rèn)知特點(diǎn)相符合,是一個(gè)循序漸進(jìn)、螺旋上升、不斷精細(xì)化的過程.因此,本章的重點(diǎn),一是投影的概念、正投影的性質(zhì)及其研究方法,二是簡單幾何體三視圖的畫法,以及簡單幾何體(實(shí)物)的視圖與幾何體(實(shí)物)的相互轉(zhuǎn)化,其核心是發(fā)展學(xué)生的空間。
教學(xué)過程
一、自主探究(看書理解、記憶,把重點(diǎn)知識句劃在書上,并把課后簡單練習(xí)完成在書上)1.回顧:
叫正投影.2.當(dāng)我們從某一個(gè)角度觀察一個(gè)物體時(shí),叫做物體的一個(gè)視圖.視圖也可以看做
.其中正對著我們的叫做
,正面下方的叫做,右邊的叫做
.3.一個(gè)物體在三個(gè)投影面內(nèi)同時(shí)進(jìn)行正投影,叫做主視圖;
叫做俯視圖;
叫做左視圖.4.將三個(gè)投影面展開在一個(gè)平面內(nèi),得到這一物體的一張三視圖.注意:(1)主視圖反映的是物體的長和高;俯視圖反映的是物體的長和寬;左視圖反映的是物體的寬和高. 因此,在畫三種視圖時(shí),主視圖與俯視圖要長對正,主視圖與左視圖要高平齊,俯視圖與左視圖要寬相等.(2)三視圖與投影密切相關(guān),某些物體的三視圖實(shí)際上是該物體在一定條件下所形成的平行投影,某些物體的主視圖、俯視圖、左視圖可以看成在一束平行光線分別從物體的正面,上面,左面照射下,在垂直于這一方向的平面上所形成的投影.二、合作探究(自主學(xué)習(xí)時(shí)完成,課上交流展示)
1.小明從正面觀察如圖1所示的兩個(gè)物體,看到的是()2.如圖2,水杯的俯視圖是()
3.我們從不同的方向觀察同一物體時(shí),可以看到不同的平面圖形,如圖3,從圖的左面看這個(gè)幾何體的所得左視圖是()
三、探究應(yīng)用(課上完成并交流展示)
例1.畫出右圖所示的一些基本幾何體的三視圖.解:
例2.畫出如圖所示的支架(一種小零件)的三視圖.支架的兩個(gè)臺階的高度和寬度都是同一長度出它的三視圖.解:
(補(bǔ)充)例.右圖是一根鋼管的直觀圖,畫出它的三視圖.解:
總結(jié):基本幾何體包括圓柱、圓錐、球、直棱柱、圓臺,它們的三視圖是畫復(fù)雜幾何體三視圖的基礎(chǔ).基本幾何體的三視圖:
(1)正方體的三視圖都是正方形.(2)圓柱的三視圖中有兩個(gè)是長方形,另一個(gè)是圓.(3)圓錐的三視圖中有兩個(gè)是三角形,另一個(gè)是圓和一個(gè)點(diǎn).(4)四棱錐的三視圖中有兩個(gè)是三角形,另一個(gè)是矩形和它的對角線.(5)球體的三視圖都是圓形.四、鞏固再現(xiàn):P97 練習(xí)
五、能力提升:
1.右圖是由幾個(gè)小立方塊搭成的幾何體的俯視圖,小正方形中的數(shù)字表示在該位置的小立方塊的個(gè)數(shù),那么這個(gè)幾何體的主視圖是()2.如圖所示,畫出該物體的三視圖.六、探究小結(jié): 1.你學(xué)會了什么?
2.你存在的問題?
第四篇:三視圖教案
三視圖
教材分析 本節(jié)課選自浙教版八年級數(shù)學(xué)上冊第三章第三節(jié),主要內(nèi)容是幾何體的三視圖包括正視圖、側(cè)視圖、俯視圖。在本章中學(xué)生已學(xué)過直棱柱和直棱柱的表面展開圖的基礎(chǔ)上提出來的,便于對幾何體的進(jìn)一步的認(rèn)識,也為高中學(xué)習(xí)三視圖打下基礎(chǔ)。
學(xué)情分析 本節(jié)課的授課對象是八年級學(xué)生,他們正處于形象思維向抽象思維的過渡階段,注意力水平不高,在教學(xué)中需要采用啟發(fā)式教學(xué)。在知識上,我們對直棱柱和直棱柱的表面展開圖比較熟悉,具有一定的觀察能力,有助于本節(jié)課的學(xué)習(xí)。教學(xué)目標(biāo) 知識與技能:
1、理解主視圖、俯視圖、左視圖和三視圖的概念。
2、了解各個(gè)視圖之間的尺寸關(guān)系:長對正、高平齊、寬相等。
3、會畫直棱柱等簡單幾何體的三視圖。過程與方法:
在探索過程中,從現(xiàn)實(shí)生活中抽象出數(shù)學(xué)問題并進(jìn)行探索歸納過程。通過自己觀察、動手等習(xí)得新知。情感態(tài)度價(jià)值觀:
1、通過合作交流,以面對面的互動形式,培養(yǎng)良好的團(tuán)隊(duì)合作精神,感受集體的力量。
2、以具體的例子出發(fā),體會數(shù)學(xué)來源于生活,生活離不開數(shù)學(xué),從來增加學(xué)習(xí)數(shù)學(xué)的興趣。教學(xué)重難點(diǎn)
重點(diǎn):三視圖的概念及畫法。難點(diǎn):組合體三視圖的畫法。教學(xué)方法
采用情景探究、小組合作,實(shí)施啟發(fā)式教學(xué)。教學(xué)手段
借助現(xiàn)代多媒體和傳統(tǒng)媒體相結(jié)合的方式教學(xué)。借助ppt可以增大教學(xué)容量,增強(qiáng)教學(xué)直觀性,提高教學(xué)效率,也可以更好地激發(fā)學(xué)生的學(xué)習(xí)興趣。而嚴(yán)謹(jǐn)?shù)陌鍟?,可以幫助學(xué)生更好地把握住本節(jié)課的學(xué)習(xí)要點(diǎn)。教學(xué)過程
一、創(chuàng)設(shè)情景 引出課題 題西林壁(蘇軾)橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同。不識廬山真面目,只緣身在此山中。
老師提問:多么美的廬山,多么美的詩句啊。哪位同學(xué)能說說蘇東坡是從哪些角度描寫廬山的呢?
學(xué)生回答:橫看、側(cè)看、遠(yuǎn)看、近看、身處山中看。
這也是我們這節(jié)課將要學(xué)習(xí)的內(nèi)容,從不同的方向觀察同一物體。
設(shè)計(jì)意圖:從一首故事引出今天的課題,調(diào)動學(xué)生的情緒,提高學(xué)習(xí)興趣。
二、合作學(xué)習(xí)知識解讀
如圖,這是飛機(jī)模型(右下)及其從不同方向觀察到的視圖。
我們?yōu)榱四芡暾_切地表達(dá)物體的形狀和大小,可以從上、下、左、右、前、后這八個(gè)方向來觀察物體。這三幅圖分別是從哪個(gè)方向觀察到的呢?思考若減少幾個(gè)方向能不能完整確切地表達(dá)物體的形狀和大小呢? 學(xué)生回答:前、左、上。
實(shí)際上在機(jī)械制圖時(shí)的要求,只要從正面、上面、左邊就可以完整確切地表達(dá)物體的形狀和大小。因此在幾何中,我們通常選擇從、正面、上面、左面三個(gè)方向觀察物體,如圖所示。
我們把從正面看到的圖形叫做主視圖,從左面看到的圖形叫做左視圖,從上面看到的圖形叫做俯視圖。主視圖、左視圖、俯視圖合稱三視圖。
例題
1、說出圓錐、球的三視圖各是什么圖形。
在生活和生產(chǎn)實(shí)踐中,我們經(jīng)常需要運(yùn)用三視圖來描述物體的形狀和大小,如圖所示的圖形就是熱水瓶的三視圖。
(小組討論)從上圖可以看出,在三視圖中,主視圖和俯視圖共同反映了物體左右方向的尺寸那么主視圖和左視圖、俯視圖和左視圖分別共同反映了物體哪個(gè)方向的尺寸?
學(xué)生回答:主視圖和左視圖共同反映了物體上下方向的尺寸,俯視圖和左視圖共同反映了物體前后方向的尺寸。
主視圖和俯視圖共同反映了物體左右方向的尺寸,通常稱之為“長對正”;主視圖和左視圖共同反映了物體上下方向的尺寸,通常稱之為“高平齊”;俯視圖和左視圖共同反映了物體前后方向的尺寸,通常稱之為“寬相等”?!伴L對正、高平齊、寬相等”是畫三視圖必須遵循的法則。例題
2、一個(gè)長方體的立體圖如圖所示,請畫出它的三視圖。
注意:在畫三視圖時(shí),我們一般先畫主視圖,再把左視圖畫在主視圖的右邊,把俯視圖畫在主視圖的下面。
設(shè)計(jì)意圖:從飛機(jī)模型切入,機(jī)械制圖時(shí)只要三個(gè)面就可以完整確切地表達(dá)物體,從而得到在幾何體中,我們也只需從三個(gè)面完整確切地表達(dá)物體,即主視圖、左視圖和俯視圖。
三、典例分析 鞏固新知
例題
3、已知一個(gè)直三棱柱的底面是等腰直角三角形,請畫出它的三視圖。例題
4、由5個(gè)相同的小立方塊搭成的幾何體如圖所示,請畫出它的三視圖。
四、探究學(xué)習(xí)拓展練習(xí)
1、一個(gè)直六棱柱和長方體如圖所示放置,你能說出下面a、b、c三個(gè)視圖分別是從哪個(gè)方向看到的嗎?
2、一個(gè)直六棱柱的主視圖和俯視圖如圖所示,請補(bǔ)畫它的左視圖。
五、小結(jié)
(1)從不同方向觀察同一物體時(shí),可能看到不同的圖形。(2)畫簡單幾何體的三視圖。
這節(jié)課我們研究的都是從不同方向觀察物體,對人、對事呢? 從不同方向觀察同一物體時(shí),可能看到不同的圖形,從不同角度分析同一件事或同一個(gè)人,結(jié)果可能也不一樣。今后看物、看人、看事從多角度、多方向分析,這樣,我們就會發(fā)現(xiàn)許多美好的、閃光的東西,從而感受生活是多么的美好。
第五篇:三視圖教案
第一章 空間幾何體
1.2.1 中心投影與平行投影 1.2.2 空間幾何體的三視圖
一、教材分析
本節(jié)內(nèi)容是普通高中新課程人教版《必修2》第一章第一節(jié)的內(nèi)容,是在學(xué)習(xí)空間幾何體結(jié)構(gòu)特征之后,直觀圖之前,尚未學(xué)習(xí)點(diǎn)、直線、平面位置關(guān)系的情況下教學(xué)的。畫三視圖是立體幾何中的基本技能,同時(shí),通過三視圖的學(xué)習(xí),可以豐富學(xué)生的空間想象力,為立體幾何的學(xué)習(xí)奠定基礎(chǔ),另一方面也有利于激發(fā)學(xué)生學(xué)習(xí)立體幾何的興趣,體會數(shù)學(xué)的實(shí)用價(jià)值。
二、學(xué)情分析
在義務(wù)教育階段,學(xué)生已經(jīng)初步接觸了正方體,長方體的幾何特征以及從不同的方向看物體得到不同的視圖的方法,但是對于三視圖的概念還不清晰;只接觸了從空間幾何體到三視圖的單向轉(zhuǎn)化,還無法準(zhǔn)確的識別三視圖的立體模型。本節(jié)課主要通過學(xué)生自己的親身實(shí)踐、動手作圖來完成。三、三維目標(biāo)
1.知識與技能目標(biāo):
(1)了解中心投影與平行投影;(2)能畫出簡單幾何體的三視圖;
(3)能識別三視圖所表示的簡單空間幾何體。2.過程與方法目標(biāo):
學(xué)生通過自己的親身實(shí)踐,動手作圖,體會三視圖的作用。3.情感態(tài)度與價(jià)值觀
(1)學(xué)生通過本節(jié)課的學(xué)習(xí)提高空間想象力;
(2)體會三視圖的作用培養(yǎng)學(xué)生空間想象能力和動手實(shí)踐能力,激發(fā)學(xué)習(xí)興趣。
四、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):畫出簡單幾何體的三視圖
難點(diǎn):識別三視圖所表示的簡單空間幾何體
五、學(xué)法與教學(xué)用具
1.學(xué)法:觀察、動手實(shí)踐、討論
2.教學(xué)用具:實(shí)物模型、三角板、多媒體輔助
六、教學(xué)過程
(一)問題的提出
在建筑、機(jī)械等工程學(xué)中,需要用平面圖形反映空間幾何體的形狀和大小,在作圖技術(shù)上這也是一個(gè)幾何問題,你想知道這方面的基礎(chǔ)知識嗎?
(二)、探究新知
【探究一】中心投影與平行投影
投影的概念:光是直線傳播的,由于光的照射,一個(gè)不透明物體在后面的屏幕上可以留下這個(gè)物體的影子,這種現(xiàn)象叫做投影.其中,我們把光線叫做投影線,把留下物體影子的屏幕叫做投影面.問題1:不同的光源發(fā)出的光線是有差異的,其中燈泡發(fā)出的光線與平行光線有什么不同?
問題2:我們把光由一點(diǎn)向外散射形成的投影叫做中心投影,把在一束平行光線照射下形成的投影叫做平行投影,那么用燈泡照射物體和用平行光線照射物體形成的投影分別是哪種投影?
問題3:用燈泡照射一個(gè)與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大小有什么關(guān)系?當(dāng)物體與燈泡的距離發(fā)生變化時(shí),影子的大小會有什么不同?
問題4:用平行光線照射一個(gè)與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大小有什么關(guān)系?
問題5:在平行投影中,投影線正對著投影面時(shí)叫做正投影,否則叫做斜投影.一個(gè)與投影面平行的平面圖形,在正投影和斜投影下的形狀、大小是否會發(fā)生變化?
【探究二】柱、錐、臺、球的三視圖
把一個(gè)空間幾何體投影到一個(gè)平面上,可以獲得一個(gè)平面圖形,但是只有一個(gè)平面圖形難以把握幾何體的全貌.從多個(gè)角度進(jìn)行投影就能較好地把握幾何體的形狀和大小,通常選擇三種正投影,即正面、側(cè)面和上面,并給出下列概念:
(1)光線從幾何體的前面向后面正投影得到的投影圖,叫做幾何體的正視圖;(2)光線從幾何體的左面向右面正投影得到的投影圖,叫做幾何體的側(cè)視圖;(3)光線從幾何體的上面向下面正投影得到的投影圖,叫做幾何體的俯視圖;(4)幾何體的正視圖、側(cè)視圖、俯視圖統(tǒng)稱為幾何體的三視圖.問題1:如圖(見課件),設(shè)長方體的長、寬、高分別為a、b、c,那么其三視圖分別是什么?
引導(dǎo)學(xué)生作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識了它的基本結(jié)構(gòu)特征后,再動手作圖(要求學(xué)生畫出它們的三視圖,教師巡視,學(xué)生畫完后可交流結(jié)果并討論。)問題2:通過觀察,你能發(fā)現(xiàn)這個(gè)長方體的正視圖、側(cè)視圖、俯視圖他們?nèi)咧g的邊長關(guān)系嗎?
問題3:圓柱、圓錐、球體的三視圖分別是什么?
(讓學(xué)生畫出它們的三視圖,教師巡視,學(xué)生畫完后可交流結(jié)果并討論。學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。)問題4:下面的三視圖表示的一個(gè)什么樣的幾何體?
(投影出示圖片,請同學(xué)們觀察后回答。)【探究三】簡單組合體的三視圖
問題1:下列物體表示的幾何體是一些簡單幾何體的組合體,你能畫出它們的三視圖嗎?(圖象見課件)
(讓學(xué)生畫出它們的三視圖,教師巡視,學(xué)生畫完后可交流結(jié)果并展示。)問題2:課本圖1.2-9(1)、(2)分別是兩個(gè)簡單組合體的三視圖,你能想象出它們表示的組合體的結(jié)構(gòu)特征嗎?
(讓學(xué)生觀察課本圖形并相互討論得出結(jié)論)
(三)鞏固練習(xí)
1.將如圖的Rt△ABC繞直角邊AC旋轉(zhuǎn)一周,所得幾何體的正視圖是()
2.已知正方體的棱長為1,其俯視圖是一個(gè)面積為1的正方形,側(cè)視圖是一個(gè)面積為形,則該正方體的正視圖的面積等于()A.B.1
C.D.的矩3.一物體及其正視圖如圖:
則它的側(cè)視圖與俯視圖分別是圖形中的____________.4.用若干塊相同的小正方體搭成一個(gè)幾何體,該幾何體的三視圖如圖所示,則搭成該幾何體 需要的小正方體的塊數(shù)是()
A.8 B.7
C.6
D.5(4)課堂小結(jié)
1、中心投影與平行投影;
2、空間幾何體的三視圖。(5)課后作業(yè)
1、課本15頁練習(xí)1,2,3,4題。
2、習(xí)題1.2 A組 第1,2題。
七、教學(xué)反思