欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      七年級(jí)下數(shù)學(xué)教案:7.3多邊形及其內(nèi)角和[范文大全]

      時(shí)間:2019-05-12 20:18:46下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫寫幫文庫小編為你整理了多篇相關(guān)的《七年級(jí)下數(shù)學(xué)教案:7.3多邊形及其內(nèi)角和》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《七年級(jí)下數(shù)學(xué)教案:7.3多邊形及其內(nèi)角和》。

      第一篇:七年級(jí)下數(shù)學(xué)教案:7.3多邊形及其內(nèi)角和

      7.3多邊形及其內(nèi)角和(1)

      教學(xué)目標(biāo)

      1.了解多邊形及有關(guān)概念,理解正多邊形及其有關(guān)概念; 2.區(qū)別凸多邊形與凹多邊形。教學(xué)重點(diǎn)、難點(diǎn)

      1.了解多邊形及其有關(guān)概念,理解正多邊形及其有關(guān)概念; 2.區(qū)別凸多邊形和凹多邊形; 3.多邊形定義的準(zhǔn)確理解。教學(xué)過程

      一、新課講授:

      1.投影:圖形見課本P84圖7.3一l。

      你能從投影里找出幾個(gè)由一些線段圍成的圖形嗎? 上面三圖中讓同學(xué)邊看、邊議.在同學(xué)議論的基礎(chǔ)上,老師給以總結(jié),這些線段圍成的圖形有何特性?

      (1)它們?cè)谕黄矫鎯?nèi).(2)它們是由不在同一條直線上的幾條線段首尾順次相接組成的.這些圖形中有三角形、四邊形、五邊形、六邊形、八邊形,那么什么叫做多邊形呢?

      2.相關(guān)概念: 提問:三角形的定義。

      (1)你能仿照三角形的定義給多邊形定義嗎?

      在平面內(nèi),由一些線段首位順次相接組成的圖形叫做多邊形。如果一個(gè)多邊形由n條線段組成,那么這個(gè)多邊形叫做n邊形。(一個(gè)多邊形由幾條線段組成,就叫做幾邊形。)

      (2)多邊形的邊、頂點(diǎn)、內(nèi)角和外角

      多邊形相鄰兩邊組成的角叫做多邊形的內(nèi)角,多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。

      (3)多邊形的對(duì)角線

      連接多邊形的不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。讓學(xué)生畫出五邊形的所有對(duì)角。(4)凸多邊形與凹多邊形 看投影:圖形見課本P85.7.3—6.在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個(gè)圖形都在這條直線的同一側(cè),這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因?yàn)槲覀儺婤D所在直線,整個(gè)多邊形不都在這條直線的同一側(cè),我們稱它為凹多邊形,今后我們?cè)诹?xí)題、練習(xí)中提到的多邊形都是凸多邊形.(5)正多邊形

      由正方形的特征出發(fā),得出正多邊形的概念; 各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。

      二、課堂練習(xí): 課本P86練習(xí)1.2。

      三、課堂小結(jié):

      引導(dǎo)學(xué)生總結(jié)本節(jié)課的相關(guān)概念。

      四、課后作業(yè): 課本P90第1題。

      第二篇:七年級(jí)下數(shù)學(xué)教案:7.3多邊形及其內(nèi)角和

      7.3多邊形及其內(nèi)角和(2)

      教學(xué)目標(biāo)

      1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理; 2.通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;

      3.通過推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;

      4.講解四邊形的有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.教學(xué)重點(diǎn)難點(diǎn)

      四邊形的內(nèi)角和定理; 四邊形的概念。教學(xué)過程

      一、復(fù)習(xí):

      在小學(xué)里,我們學(xué)過長(zhǎng)方形、正方形、平行四邊形和梯形的有關(guān)知識(shí).請(qǐng)同學(xué)們回憶一下這些圖形的概念.找學(xué)生說出四種幾何圖形的概念,教師作評(píng)價(jià).二、提出問題,引入新課:

      利用這些圖形的定義,你能在下圖中找出長(zhǎng)方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件。(先看畫面一)

      問題:你能類比三角形的概念,說出四邊形的概念嗎?

      三、理解概念: 1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形。

      在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說明一下。其次,要給學(xué)生講清楚“首尾”和“順次”的含義。

      2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念。

      3.四邊形的記法:對(duì)照?qǐng)D形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書寫,可以按順時(shí)針或逆時(shí)針的順序。

      練習(xí):課本124頁1、2題。

      4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了。

      5.四邊形的對(duì)角線: 四、四邊形的內(nèi)角和定理: 定理:四邊形的內(nèi)角和等于。

      注意:在研究四邊形時(shí),常常通過作它的對(duì)角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決。

      五、應(yīng)用、反思: 例1:已知:如圖,直線足為C。

      求證:(1)證明:(1)

      ,垂足為B, 直線 , 垂

      ;(2)

      (四邊形的內(nèi)角和等于),(2).六、小結(jié):

      知識(shí):四邊形的有關(guān)概念及其內(nèi)角和定理。能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法。作業(yè):課本130頁 2、3、4題。

      第三篇:多邊形的內(nèi)角和初中數(shù)學(xué)教案范文

      1.教材分析

      (1)知識(shí)結(jié)構(gòu):

      (2)重點(diǎn)和難點(diǎn)分析:

      重點(diǎn):四邊形的有關(guān)概念及內(nèi)角和定理.因?yàn)樗倪呅蔚挠嘘P(guān)概念及內(nèi)角和定理是本章的基礎(chǔ)知識(shí),對(duì)后繼知識(shí)的學(xué)習(xí)起著重要的作用。

      難點(diǎn):四邊形的概念及四邊形不穩(wěn)定性的理解和應(yīng)用.在前面講解三角形的概念時(shí),因?yàn)槿切蔚娜齻€(gè)頂點(diǎn)確定一個(gè)平面,所以三個(gè)頂點(diǎn)總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個(gè)頂點(diǎn)有不共面的情況,又限于我們現(xiàn)在研究的是平面圖形,所以在四邊形的定義中加上“在同一平面內(nèi)”這個(gè)條件,這幾個(gè)字的意思學(xué)生不好理解,所以是難點(diǎn)。

      2.教法建議

      (1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個(gè)課件,使學(xué)生認(rèn)識(shí)到這些四邊形都是常見圖形,研究它們具有實(shí)際應(yīng)用意義,從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

      (2)本節(jié)的教學(xué),要以三角形為基礎(chǔ),可以仿照三角形,通過類比的方法建立四邊形的有關(guān)概念,如四邊形的邊、頂點(diǎn)、內(nèi)角、外角、內(nèi)角和、外角和、周長(zhǎng)等都可同三角形類比,要結(jié)合三角形、四邊形的圖形,對(duì)比著指給學(xué)生看,讓學(xué)生明確這些概念。

      (3)因?yàn)樵谌切沃袥]有對(duì)角線,所以四邊形的對(duì)角線是一個(gè)新概念,它是解決四邊形問題時(shí)常用的輔助線,通過它可以把四邊形問題轉(zhuǎn)化為三角形問題來解決.結(jié)合圖形,讓學(xué)生自己動(dòng)手作四邊形的一條對(duì)角線,并觀察四邊形的一條對(duì)角線把它分成幾個(gè)三角形??jī)蓷l對(duì)角線呢?使學(xué)生加深對(duì)對(duì)角線的作用的認(rèn)識(shí)。

      (4)本節(jié)用到的數(shù)學(xué)思想方法是化歸轉(zhuǎn)化的思想和類比的思想,教師在講解本節(jié)知識(shí)時(shí)要滲透這兩種思想方法,并且在本節(jié)小結(jié)中對(duì)這兩種數(shù)學(xué)思想方法進(jìn)行總結(jié),使學(xué)生明白碰到復(fù)雜的、未知的問題要轉(zhuǎn)化為簡(jiǎn)單的、已知的問題。

      教學(xué)目標(biāo):

      1.使學(xué)生掌握四邊形的有關(guān)概念及四邊形的內(nèi)角和定理;

      2.通過引導(dǎo)學(xué)生觀察氣象站的實(shí)例,培養(yǎng)學(xué)生從具體事物中抽象出幾何圖形的能力;

      3.通過推導(dǎo)四邊形內(nèi)角和定理,對(duì)學(xué)生滲透化歸轉(zhuǎn)化的數(shù)學(xué)思想;

      4.講解四邊形的有關(guān)概念時(shí),聯(lián)系三角形的有關(guān)概念向?qū)W生滲透類比思想.教學(xué)重點(diǎn):

      四邊形的內(nèi)角和定理.教學(xué)難點(diǎn):

      四邊形的概念

      教學(xué)過程:

      (一)復(fù)習(xí)

      在小學(xué)里,我們學(xué)過長(zhǎng)方形、正方形、平行四邊形和梯形的有關(guān)知識(shí).請(qǐng)同學(xué)們回憶一下這些圖形的概念.找學(xué)生說出四種幾何圖形的概念,教師作評(píng)價(jià).(二)提出問題,引入新課

      利用這些圖形的定義,你能在下圖中找出長(zhǎng)方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)

      問題:你能類比三角形的概念,說出四邊形的概念嗎?

      (三)理解概念

      1.四邊形:在平面內(nèi),由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.在定義中要強(qiáng)調(diào)“在同一平面內(nèi)”這個(gè)條件,或?yàn)閷W(xué)生稍微說明一下.其次,要給學(xué)生講清楚“首尾”和“順次”的含義.2.類比三角形的邊、頂點(diǎn)、內(nèi)角、外角的概念,找學(xué)生答出四邊形的邊、頂點(diǎn)、內(nèi)角、外交的概念.3.四邊形的記法:對(duì)照?qǐng)D形向?qū)W生講明四邊形的記法與三角形不同,表示四邊形必須按頂點(diǎn)的順序書寫,可以按順時(shí)針或逆時(shí)針的順序.練習(xí):課本124頁1、2題.4.四邊形的分類:凸四邊形、凹四邊形(不必向?qū)W生講它的概念),只要學(xué)生會(huì)辨認(rèn)一個(gè)四邊形是不是凸四邊形就可以了.5.四邊形的對(duì)角線:

      (四)四邊形的內(nèi)角和定理

      定理:四邊形的內(nèi)角和等于.注意:在研究四邊形時(shí),常常通過作它的對(duì)角線,把關(guān)于四邊形的問題化成關(guān)于三角形的問題來解決.(五)應(yīng)用、反思

      例1 已知:如圖,直線,垂足為b, 直線 , 垂足為c.求證:(1);(2)

      證明:(1)(四邊形的內(nèi)角和等于),(2)

      .練習(xí):

      1.課本124頁3題.2.如果四邊形有一個(gè)角是直角,另外三個(gè)角之比是1:3:6,那么這三個(gè)角的度數(shù)分別是多少?

      小結(jié):

      知識(shí):四邊形的有關(guān)概念及其內(nèi)角和定理.能力:向?qū)W生滲透類比和轉(zhuǎn)化的思想方法.作業(yè): 課本130頁 2、3、4題.

      第四篇:多邊形及多邊形內(nèi)角和教案

      多邊形及多邊形的內(nèi)角和

      【教學(xué)目標(biāo)】 知識(shí)與能力: 1.了解多邊形定義。

      2.掌握多邊形內(nèi)角和的計(jì)算公式.3.掌握“多邊形外角和等于360°”.

      4.會(huì)用多邊形的內(nèi)角和與外角和的性質(zhì)解決簡(jiǎn)單幾何問題. 過程與方法:

      1.通過類比歸納得出多邊形的概念,培養(yǎng)學(xué)生的類比能力,滲透化歸思想方法。

      2.探索并了解多邊形的內(nèi)角和公式,進(jìn)一步發(fā)展學(xué)生的說理和簡(jiǎn)單推理的意識(shí)及能力;

      3.通過探索多邊形的內(nèi)角和公式,感受數(shù)學(xué)思考過程的條理性; 4.探索多邊形內(nèi)角和公式,體驗(yàn)歸納發(fā)現(xiàn)規(guī)律的思想方法. 【教學(xué)重點(diǎn)、難點(diǎn)】

      ?重點(diǎn):本節(jié)教學(xué)的重點(diǎn)是任意多邊形的內(nèi)角和公式. ?難點(diǎn):例2的解題思路不易形成,是本節(jié)教學(xué)的難點(diǎn).?!窘虒W(xué)過程】

      1、創(chuàng)設(shè)情境,導(dǎo)入新課 1/4頁

      (1)昨天我們已經(jīng)學(xué)習(xí)了四邊形的定義,今天清晨,小明在廣場(chǎng)的小路上跑步,請(qǐng)問小明跑步的圖案可以抽象出什么圖形呢?(2)上圖廣場(chǎng)上的小路可以抽象出一個(gè)邊數(shù)為5的多邊形——五邊形。我們知道邊數(shù)為 3的多邊形——三角形,邊數(shù)為4的多邊形——四邊形,??邊數(shù)為n的多邊形——n邊形(n≥3,n是整數(shù)).[設(shè)計(jì)意圖:數(shù)學(xué)源于生活。教師創(chuàng)設(shè)生活情境,通過類比讓學(xué)生有意識(shí)地整理所學(xué)習(xí)的內(nèi)容,激發(fā)了學(xué)生的探究欲望和興趣,從而自覺參與數(shù)學(xué)知識(shí)整理的活動(dòng)和探究新知的過程。] 【合作交流,探究新知】

      (1)你能設(shè)法求出這個(gè)五邊形的五個(gè)內(nèi)角和嗎?先啟發(fā)學(xué)生回顧四邊形的內(nèi)角和及推理 方法,提出多邊形對(duì)角線定義:連結(jié)多邊形不相鄰兩頂點(diǎn)的線段叫做多邊形的對(duì)角線(是下面解決多邊形問題的常用輔助線)。

      (2)啟發(fā)學(xué)生用連結(jié)對(duì)角線的方法把多邊形劃分成若干個(gè)三角形來完成書本第96頁的合作學(xué)習(xí)。

      (3)再啟發(fā)學(xué)生觀察所能劃分成的三角形個(gè)數(shù)與邊數(shù)n有關(guān)。(4)結(jié)論:n邊形的內(nèi)角和為(n-2)×180°(n≥3).(5)及時(shí)鞏固

      【總結(jié)回顧,反思內(nèi)化】 這節(jié)課學(xué)了什么?學(xué)生自由發(fā)言。

      教師小結(jié):(1)從n邊形的一個(gè)頂點(diǎn)出發(fā)有 條對(duì)角線.(2)一個(gè)n邊形共有 條對(duì)角線】。(3)n邊形的內(nèi)角和為

      (4)任何多邊形的外角和為360°(5)數(shù)學(xué)思想:類比(多邊形定義類比四邊形定義)轉(zhuǎn)化(多邊形內(nèi)角和問題可以轉(zhuǎn)化為三角形問題)?!咀鳂I(yè)布置,延伸拓展】

      第五篇:多邊形及其內(nèi)角和教案

      多邊形

      教學(xué)目標(biāo):

      1.了解多邊形及有關(guān)概念,理解正多邊形及其有關(guān)概念. 2.區(qū)別凸多邊形與凹多邊形.

      教學(xué)重點(diǎn)、難點(diǎn):

      1.重點(diǎn):

      (1)了解多邊形及其有關(guān)概念,理解正多邊形及其有關(guān)概念.(2)區(qū)別凸多邊形和凹多邊形. 2.難點(diǎn):

      多邊形定義的準(zhǔn)確理解.

      課時(shí)安排:第一課時(shí)

      教學(xué)方法:自主探索,合作交流 預(yù)習(xí)提示:

      (1)你能仿照三角形的定義給多邊形定義嗎?

      (2)什么叫多邊形的邊、頂點(diǎn)、對(duì)角線、內(nèi)角和外角?試畫圖說明。(3)凸多邊形與凹多邊形有什么區(qū)別?(4)什么叫正多邊形?

      教學(xué)過程:

      一、知識(shí)探索

      投影:圖形見課本P84圖7.3一l.

      你能從投影里找出幾個(gè)由一些線段圍成的圖形嗎?

      上面三圖中讓同學(xué)邊看、邊議.

      在同學(xué)議論的基礎(chǔ)上,老師給以總結(jié),這些線段圍成的圖形有何特性?(1)它們?cè)谕黄矫鎯?nèi).

      (2)它們是由不在同一條直線上的幾條線段首尾順次相接組成的.

      這些圖形中有三角形、四邊形、五邊形、六邊形、八邊形,那么什么叫做多邊形呢?

      提問:三角形的定義.

      你能仿照三角形的定義給多邊形定義嗎?

      1.在平面內(nèi),由一些線段首位順次相接組成的圖形叫做多邊形. 如果一個(gè)多邊形由n條線段組成,那么這個(gè)多邊形叫做n邊形.(一個(gè)多邊形由幾條線段組成,就叫做幾邊形.)

      2.多邊形的邊、頂點(diǎn)、內(nèi)角和外角.

      多邊形相鄰兩邊組成的角叫做多邊形的內(nèi)角,多邊形的邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角.

      3.多邊形的對(duì)角線

      連接多邊形的不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線. 讓學(xué)生畫出五邊形的所有對(duì)角線. 4.凸多邊形與凹多邊形

      看投影:圖形見課本P80.7.3—6.

      在圖(1)中,畫出四邊形ABCD的任何一條邊所在的直線,整個(gè)圖形都在這條直線的同一側(cè),這樣的四邊形叫做凸四邊形,這樣的多邊形稱為凸多邊形;而圖(2)就不滿足上述凸多邊形的特征,因?yàn)槲覀儺婤D所在直線,整個(gè)多邊形不都在這條直線的同一側(cè),我們稱它為凹多邊形,今后我們?cè)诹?xí)題、練習(xí)中提到的多邊形都是凸多邊形.

      5.正多邊形

      由正方形的特征出發(fā),得出正多邊形的概念.

      各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形.

      二、課堂練習(xí)

      課本P81練習(xí)1.2.

      三、課堂小結(jié)

      引導(dǎo)學(xué)生總結(jié)本節(jié)課的相關(guān)概念.

      四、課后作業(yè)

      課本P84第1題.

      課堂檢測(cè):

      1.下列不是凸多邊形的是()

      2.下列圖形中∠1是外角的是()

      3.下列說法正確的是()

      A.一個(gè)多邊形外角的個(gè)數(shù)與邊數(shù)相同。B.一個(gè)多邊形外角的個(gè)數(shù)是邊數(shù)的二倍。C.每個(gè)角都相等的多邊形是正多邊形。D.每條邊都相等的多邊形是正多邊形。

      4、為迎接2008奧運(yùn)會(huì),北京四家賓館A、B、C、D 決定建一個(gè)停車場(chǎng),使它到四個(gè)賓館的距離和最小.請(qǐng)你幫他們確定停車場(chǎng)的位置,并說明理由.7.3.2 多邊形的內(nèi)角和

      [教學(xué)目標(biāo)] 1.使學(xué)生了解多邊形的內(nèi)角、外角等概念.

      2.能通過不同方法探索多邊形的內(nèi)角和與外角和公式,并會(huì)應(yīng)用它們進(jìn)行有關(guān)計(jì)算.

      [教學(xué)重點(diǎn)、難點(diǎn)] 1.重點(diǎn):

      (1)多邊形的內(nèi)角和公式.

      (2)多邊形的外角和公式.

      2.難點(diǎn):多邊形的內(nèi)角和定理的推導(dǎo). [教學(xué)過程]

      一、探究

      1.我們知道三角形的內(nèi)角和為180°.

      2.我們還知道,正方形的四個(gè)角都等于90°,那么它的內(nèi)角和為360°,同樣長(zhǎng)方形的內(nèi)角和也是360°.

      3.正方形和長(zhǎng)方形都是特殊的四邊形,其內(nèi)角和為360°,那么一般的四邊形的內(nèi)角和為多少呢?

      畫一個(gè)任意的四邊形,用量角器量出它的四個(gè)內(nèi)角,計(jì)算它們的和,與同伴交流你的結(jié)果,從中你得到什么結(jié)論?

      同學(xué)們進(jìn)行量一量,算一算及交流后老師加以歸納得到四邊形的內(nèi)角和為360°的感性認(rèn)識(shí),是否成為定理要進(jìn)行推導(dǎo).

      二、思考幾個(gè)問題

      1.從四邊形的一個(gè)頂點(diǎn)出發(fā)可以引幾條對(duì)角線?它們將四邊形分成幾個(gè)三角形?那么四邊形的內(nèi)角和等于多少度?

      2.從五邊形一個(gè)頂點(diǎn)出發(fā)可以引幾條對(duì)角線?它們將五邊形分成幾個(gè)三角形?那么這五邊形的內(nèi)角和為多少度?

      3.從n邊形的一個(gè)頂點(diǎn)出發(fā),可以引幾條對(duì)角線?它們將n邊形分成幾個(gè)三角形?n邊形的內(nèi)角和等于多少度?

      綜上所述,你能得到多邊形內(nèi)角和公式嗎? 設(shè)多邊形的邊數(shù)為n,則

      n邊形的內(nèi)角和等于(n一2)·180°.

      想一想:要得到多邊形的內(nèi)角和必需通過“三角形的內(nèi)角和定理”來完成,就是把一個(gè)多邊形分成幾個(gè)三角形.除利用對(duì)角線把多邊形分成幾個(gè)三角形外,還有其他的分法嗎?你會(huì)用新的分法得到n邊形的內(nèi)角和公式嗎?

      由同學(xué)動(dòng)手并推導(dǎo)在與同伴交流后,老師歸納:(以五邊形為例)

      分法一:在五邊形ABCDE內(nèi)任取一點(diǎn)O,連結(jié)OA、OB、OC、OD、OE,則得五個(gè)三角形.其五個(gè)三角形內(nèi)角和為5×180°,而∠1,∠2,∠3,∠4,∠5不是五邊形的內(nèi)角應(yīng)減去,∴五邊形的內(nèi)角和為5×180°一2×180°=(5—2)×180°=540°.

      如果五邊形變成n邊形,用同樣方法也可以得到n個(gè)三角形的內(nèi)角和減去一個(gè)周角,即可得:n邊形內(nèi)角和=n×l80°一2×180°=(n一2)×180°.

      A 1O234EB5

      分法二:在邊AB上取一點(diǎn)O,連OE、OD、OC,則可以(5-1)個(gè)三角形,而∠

      1、∠

      2、∠

      3、∠4不是五邊形的內(nèi)角,應(yīng)舍去.

      ∴五邊形的內(nèi)角和為(5—1)×180°一180°=(5—2)×180°

      用同樣的辦法,也可以把n邊形分成(n一1)個(gè)三角形,把不是n邊形內(nèi)角的∠AOB舍去,即可得n邊形的內(nèi)角和為(n一2)×180°.

      CDEDA 12O34CB

      三、例題

      1如果一個(gè)四邊形的一組對(duì)角互補(bǔ),那么另一組對(duì)角有什么關(guān)系? 已知:四邊形ABCD的∠A+∠C=180°.求:∠B與∠D的關(guān)系.

      分析:本題要求∠B與∠D的關(guān)系,由于已知∠A+∠C=180°,所以可以從四邊形的內(nèi)角和入手,就可得到完滿的答案.

      BCA D

      解:如圖,四邊形ABCD中,∠A+∠C=180°。

      ∵∠A+∠B+∠C+∠D=(4-2)×360°=180°,∴∠B+∠D= 360°-(∠A+∠C)=180°

      這就是說:如果四邊形一組對(duì)角互補(bǔ),那么另一組對(duì)角也互補(bǔ).

      2如圖,在六邊形的每個(gè)頂點(diǎn)處各取一個(gè)外角,這些外角的和叫做六邊

      形的外角和.六邊形的外角和等于多少?

      A B216F5C3ED4

      已知:∠1,∠2,∠3,∠4,∠5,∠6分別為六邊形ABCDEF的外角. 求:∠1+∠2+∠3+∠4+∠5+∠6的值. 分析:關(guān)于外角問題我們馬上就會(huì)聯(lián)想到平角,這樣我們就得到六邊形的6個(gè)外角加上它相鄰的內(nèi)角的總和為6×180°.由于六邊形的內(nèi)角和為(6—2)×180°=720°.

      這樣就可求得∠1+∠2+∠3+∠4+∠5+∠6=360°.

      解:∵六邊形的任何一個(gè)外角加上它相鄰的內(nèi)角和為180°.

      ∴六邊形的六個(gè)外角加上各自相鄰內(nèi)角的總和為6×180°.

      由于六邊形的內(nèi)角和為(6—2)×180°=720°

      ∴它的外角和為6×180°一720°=360°

      如果把六邊形橫成n邊形.(n為不小于3的正整數(shù))同樣也可以得到其外角和等于360°.即 多邊形的外角和等于360°.

      所以我們說多邊形的外角和與它的邊數(shù)無關(guān).

      對(duì)此,我們也可以象以下這種,理解為什么多邊形的外角和等于360°. 如下圖,從多邊形的一個(gè)頂點(diǎn)A出發(fā),沿多邊形各邊走過各頂點(diǎn),再回到A點(diǎn),然后轉(zhuǎn)向出發(fā)時(shí)的方向,在行程中所轉(zhuǎn)的各個(gè)角的和就是多邊形的外角和,由于走了一周,所得的各個(gè)角的和等于一個(gè)周角,所以多邊形的外角和等于360°.

      四、課堂練習(xí)

      課本P83--84練習(xí)1、2、3題.

      習(xí)題7.3

      第2、3題

      五、課堂小結(jié)

      引導(dǎo)學(xué)生總結(jié)本節(jié)課主要內(nèi)容.

      六、課后作業(yè)

      課本P85第4、5、6題.

      下載七年級(jí)下數(shù)學(xué)教案:7.3多邊形及其內(nèi)角和[范文大全]word格式文檔
      下載七年級(jí)下數(shù)學(xué)教案:7.3多邊形及其內(nèi)角和[范文大全].doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        七年級(jí)上冊(cè)數(shù)學(xué)教案:7.3線段長(zhǎng)短比較

        7.3 線段長(zhǎng)短的比較(2) 一、 教學(xué)目標(biāo) 1、理解兩點(diǎn)間距離的概念和線段中點(diǎn)的概念及表示方法 2、學(xué)會(huì)線段中點(diǎn)的簡(jiǎn)單應(yīng)用 3、借助具體情境,了解“兩點(diǎn)間線段最短”這一性質(zhì),并學(xué)......

        人教版七年級(jí)數(shù)學(xué)《多邊形的內(nèi)角和》說課稿

        各位評(píng)委、各位老師:大家好!我是來自錢場(chǎng)中學(xué)的陳芬老師。我說課的內(nèi)容是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書,七年級(jí)數(shù)學(xué)(下)第七章第三節(jié)《多邊形的內(nèi)角和》。下面,我從以下幾個(gè)方......

        多邊形內(nèi)角和教學(xué)設(shè)計(jì)

        《多邊形內(nèi)角和》教學(xué)設(shè)計(jì) 一、教學(xué)目標(biāo) 1、知識(shí)目標(biāo) (1)使學(xué)生了解多邊形的有關(guān)概念。 (2)使學(xué)生掌握多邊形內(nèi)角和公式,并學(xué)會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。 2、能力目標(biāo) (1)通過對(duì)“......

        多邊形內(nèi)角和教學(xué)設(shè)計(jì)

        《多邊形內(nèi)角和》教學(xué)設(shè)計(jì) 一、教材分析 本節(jié)課是人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(六三學(xué)制)七年級(jí)下冊(cè)第七章第三節(jié)多邊形內(nèi)角和。 二、教學(xué)目標(biāo) 1、知識(shí)目標(biāo): (1)使......

        《多邊形內(nèi)角和》教學(xué)反思

        《7.3.2多邊形內(nèi)角和》教學(xué)反思 欽州市浦北外國(guó)語學(xué)校 本節(jié)課,我先從問題“把一個(gè)四邊形紙片剪去一個(gè)角后會(huì)得到一個(gè)什么圖形呢?”入手,讓學(xué)生思考,通過驗(yàn)證得到“五邊形、四邊......

        《多邊形及其內(nèi)角和》教案設(shè)計(jì)2

        多邊形的內(nèi)角和教案 在新人教版教材中,《三角形》一章的章節(jié)結(jié)構(gòu)是:“與三角形有關(guān)的線段”,“與三角形有關(guān)的角”,“多邊形及其內(nèi)角和”,“課題學(xué)習(xí)——鑲嵌”。 這種結(jié)構(gòu)是一種......

        《多邊形的內(nèi)角和》說課稿

        《多邊形的內(nèi)角和》說課稿 《多邊形的內(nèi)角和》說課稿1 各位評(píng)委老師大家好,我是來自,我今天說課的題目是《多邊形的內(nèi)角和》。它是人教版,七年級(jí)下冊(cè)第七章第三節(jié)的內(nèi)容,分兩課......

        《多邊形的內(nèi)角和》教案

        《多邊形的內(nèi)角和》教案 以下是查字典數(shù)學(xué)網(wǎng)為您推薦的 《多邊形的內(nèi)角和》教案,希望本篇文章對(duì)您學(xué)習(xí)有所幫助。 《多邊形的內(nèi)角和》教案 眾所周知,數(shù)學(xué)課堂是以學(xué)生為中......