第一篇:(教案)二次函數(shù)圖象和性質復習教案
《二次函數(shù)的圖象和性質》復習課教案
海洲初級中學 初三數(shù)學備課組
內(nèi)容來源:初中九年級《數(shù)學(上冊)》教科書 教學內(nèi)容:二次函數(shù)圖像與性質復習課時:兩課時 教學目標:
1.根據(jù)二次函數(shù)的圖象復習二次函數(shù)的性質,體會配方、平移的作用以及在解決相關問題的過程中進一步體會數(shù)形結合的數(shù)學思想。2.會利用二次函數(shù)的圖象判斷a、b、c的取值情況。
3.在解決二次函數(shù)相關問題時,滲透解題的技巧和方法,培養(yǎng)學生的中考意識。教材分析:
二次函數(shù)是學生在中學階段學習的第三種函數(shù),是中考的重要考點之一,它與學生前面所學的一元二次方程有密切的聯(lián)系,也是初中數(shù)學與高中數(shù)學的一個知識的交匯點。本節(jié)課通過二次函數(shù)的圖象和性質的復習,從特殊到一般,再由普遍的一般規(guī)律去指導具體的函數(shù)問題,加深學生對函數(shù)圖象和性質之間的聯(lián)系,構建知識網(wǎng)絡體系,發(fā)展技能,歸納解題方法,讓學生在練習中體會數(shù)形結合思想。學情分析
學生具有初步的、零散的關于二次函數(shù)的圖象和性質的知識基礎,但是還沒有形成系統(tǒng)的知識體系,缺乏解決問題有效的、系統(tǒng)的方法,解決問題辦法單一,較難想到運用函數(shù)的圖象解決問題。本節(jié)課針對班級學生特點采取小組合作進行教學,通過小組的交流、討論和展示,提高學生學習的積極性和有效性。通過本節(jié)課的學習使學生把函數(shù)的圖象和性質緊密聯(lián)系在一起,掌握解決一類問題的常用方法。教學過程
一、舊知回顧
1、已知關于x的函數(shù)y=
2、已知函數(shù)y=-2x-2,化為y=a
+3x-4是二次函數(shù),則a的取值范圍是.+k的形式:
此拋物線的開口向,對稱軸為,頂點坐標 ; 當x= 時,拋物線有最 值,最值為 ;
當x 時,y隨x的增大而增大;當x 時,y隨x的增大而減少。
3、二次函數(shù)y=-3的圖象向右平移1個單位,再向上平移3個單位,所得到
拋物線的解析式為
4、若二次函數(shù)y=2x+m的圖象與x軸有兩個交點,則m的取值范圍是
5、拋物線的頂點在(-1,-2)且又過(-2,-1),求該拋物線的解析式。
6、拋物線經(jīng)過三點(0,-1)、(1,0)、(-1,2),求該拋物線的解析式。
思維導圖:
二、例題精講:
1、(2016.新疆)已知二次函數(shù)y=
+bx+c(a)的圖
象如圖所示,則下列結論中正確的是()A、a>0 B、c<0 C、3是方程a+bx+c=0的一個根
D、當x<1時,y隨x的增大而減小
2:二次函數(shù)圖象過A,C,B三點,點A的坐標為(-1,0),點B的坐標為(4,0),點C在y軸正半軸上,且OB=OC.(1)求C的坐標;
(2)求二次函數(shù)的解析式,并求出函數(shù)最大值。C
(3)一次函數(shù)的圖象經(jīng)過點C,B,求一次函數(shù)的解析式;
(4)根據(jù)圖象,寫出滿足二次函數(shù)不小于一次函數(shù)值的x的取值范圍;
(5)若該拋物線頂點為D,y軸上是否存在一點P,使得PA+PD最短?若存在,求出P點的坐標;
(6)若該拋物線頂點為D,x軸上是否存在一點P,使得PC+PD最短?若存在,求出P點的坐標;
三、教學反思
第二篇:二次函數(shù)的圖象和性質教案
27.2.1 相似三角形的判定
(一)梅
一、教學目標
1.經(jīng)歷兩個三角形相似的探索過程,體驗分析歸納得出數(shù)學結論的過程,進一步發(fā)展學生的探究、交流能力.
2.掌握兩個三角形相似的判定條件(三個角對應相等,三條邊的比對應相等,則兩個三角形相似)——相似三角形的定義,和三角形相似的預備定理(平行于三角形一邊的直線和其它兩邊相交,所構成的三角形與原三角形相似).
3.會運用“兩個三角形相似的判定條件”和“三角形相似的預備定理”解決簡單的問題.
二、重點、難點
1.重點:相似三角形的定義與三角形相似的預備定理. 2.難點:三角形相似的預備定理的應用. 3.難點的突破方法
(1)要注意強調相似三角形定義的符號表示方法(判定與性質兩方面),應注意兩個相似三角形中,三邊對應成比例,AB?BC?CA每個比的前
A?B?B?C?C?A?項是同一個三角形的三條邊,而比的后項分別是另一個三角形的三條對應邊,它們的位置不能寫錯;
(2)要注意相似三角形與全等三角形的區(qū)別和聯(lián)系,弄清兩者之間的關系.全等三角形是特殊的相似三角形,其特殊之處在于全等三角形的相似比為1.兩者在定義、記法、性質上稍有不同,但兩者在知識學習上有很多類似之處,在今后學習中要注意兩者之間的對比和類比;
(3)要求在用符號表示相似三角形時,對應頂點的字母要寫在對應的位置上,這樣就會很快地找到相似三角形的對應角和對應邊;
(4)相似比是帶有順序性和對應性的(這一點也可以在上一節(jié)課中提出):
如△ABC∽△A′B′C′的相似比AB?BC?CA?k,那么△A′B′C′∽△ABC
A?B?B?C?C?A???????的相似比就是AB?BC?CA?1,它們的關系是互為倒數(shù).這
ABBCCAk一點在教學中科結合相似比“放大或縮小”的含義來讓學生理解;(5)“平行于三角形一邊的直線和其它兩邊相交,所構成的三角形與原三角形相似”定理也可以簡單稱為“三角形相似的預備定理”.這個定理揭示了有三角形一邊的平行線,必構成相似三角形,因此在三角形相似的解題中,常作平行線構造三角形與已知三角形相似.
三、例題的意圖
本節(jié)課的兩個例題均為補充的題目,其中例1是訓練學生能正確去尋找相似三角形的對應邊和對應角,讓學生明確可類比全等三角形對應邊、對應角的關系來尋找相似三角形中的對應元素:即(1)對頂角一定是對應角;(2)公共角一定是對應角;最大角或最小的角一定是對應角;(3)對應角所對的邊一定是對應邊;(4)對應邊所對的角一定是對應角;對應邊所夾的角一定是對應角.
例2是讓學生會運用“三角形相似的預備定理”解決簡單的問題,這里要注意,此題兩次用到相似三角形的對應邊成比例(也可以先寫出三個比例式,然后拆成兩個等式進行計算),學生剛開始可能不熟練,教學中要注意引導.
四、課堂引入
1.復習引入
(1)相似多邊形的主要特征是什么?
(2)在相似多邊形中,最簡單的就是相似三角形.
在△ABC與△A′B′C′中,如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且AB?BC?CA?k.
A?B?B?C?C?A?我們就說△ABC與△A′B′C′相似,記作△ABC∽△A′B′C′,k就是它們的相似比.
反之如果△ABC∽△A′B′C′,則有∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且AB?BC?CA.
A?B?B?C?C?A?(3)問題:如果k=1,這兩個三角形有怎樣的關系? 2.教材P42的思考,并引導學生探索與證明. 3.【歸納】
三角形相似的預備定理平行于三角形一邊的直線和其它兩邊相交,所構成的三角形與原三角形相似.
五、例題講解
例1(補充)如圖△ABC∽△DCA,AD∥BC,∠B=∠DCA.
(1)寫出對應邊的比例式;(2)寫出所有相等的角;
(3)若AB=10,BC=12,CA=6.求AD、DC的長.
分析:可類比全等三角形對應邊、對應角的關系來尋找相似三角形中的對應元素.對于(3)可由相似三角形對應邊的比相等求出AD與DC的長.
解:略(AD=3,DC=5)
例2(補充)如圖,在△ABC中,DE∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的長.
分析:由DE∥BC,可得△ADE∽△ABC,再由相似三角形的性質,有ADAE,又由?AD=EC可求出AD的長,再根據(jù)DE?AD求出DE的長.
ABACBCAB解:略(DE?103).
六、課堂練習
1.(選擇)下列各組三角形一定相似的是()
A.兩個直角三角形 B.兩個鈍角三角形
C.兩個等腰三角形 D.兩個等邊三角形
2.(選擇)如圖,DE∥BC,EF∥AB,則圖中相似三角形一共有(A.1對 B.2對 C.3對 D.4對 3.如圖,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的長.(CD= 10)
七、課后練習
1.如圖,△ABC∽△AED, 其中DE∥BC,寫出對應邊的比例式. 2.如圖,△ABC∽△AED,其中∠ADE=∠B,寫出對應邊的比例式.
3.如圖,DE∥BC,)
(1)如果AD=2,DB=3,求DE:BC的值;
(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的長. 教學反思
第三篇:九年級數(shù)學二次函數(shù)的圖象和性質教案23
九年級數(shù)學二次函數(shù)的圖象和性質教案本資料為woRD文檔,請點擊下載地址下載全文下載地址
23.2二次函數(shù)y=ax2的圖象和性質
教學目標:
.經(jīng)歷探索二次函數(shù)y=ax2的圖象的作法和性質的過程,獲得利用圖象研究函數(shù)性質的經(jīng)驗。
2.能夠利用描點法作出函數(shù)y=ax2的圖象,并能根據(jù)圖象認識和理解二次函數(shù)y=ax2的性質,初步建立二次函數(shù)表達式與圖象之間的聯(lián)系。
3.能根據(jù)二次函數(shù)y=ax2的圖象,探索二次函數(shù)的性質(開口方向、對稱軸、頂點坐標)。
教學重點:二次函數(shù)y=ax2的圖象的作法和性質
教學難點:建立二次函數(shù)表達式與圖象之間的聯(lián)系
教學方法:自主探索,數(shù)形結合 教學建議:
利用具體的二次函數(shù)圖象討論二次函數(shù)y=ax2的性質時,應盡可能多地運用小組活動的形式,通過學生之間的合作與交流,進行圖象和圖象之間的比較,表達式和表達式之間的比較,建立圖象和表達式之間的聯(lián)系,以達到學生對二次函數(shù)性質的真正理解。
教學過程:
一、認知準備:
.正比例函數(shù)、一次函數(shù)、反比例函數(shù)的圖象分別是什么?
2.畫函數(shù)圖象的方法和步驟是什么?(學生口答)
你會作二次函數(shù)y=ax2的圖象嗎?你想直觀地了解它的性質嗎?本節(jié)課我們一起探索。
二、新授:
(一)動手實踐:作二次函數(shù)
y=x2和y=-x2的圖象
(同桌二人,南邊作二次函數(shù)
y=x2的圖象,北邊作二次函數(shù)y=-x2的圖象,兩名學生黑板完成)
(二)對照黑板圖象議一議:
.你能描述該圖象的形狀嗎?
2.該圖象與x軸有公共點嗎?如果有公共點坐標是什么?
3.當x<0時,隨著x的增大,y如何變化?當x>0時呢?
4.當x取什么值時,y值最小?最小值是什么?你是如何知道的?
5.該圖象是軸對稱圖形嗎?如果是,它的對稱軸是什么?請你找出幾對對稱點。
(三)學生交流:
.交流上面的五個問題(由問題1引出拋物線的概念,由問題2引出拋物線的頂點)
2.二次函數(shù)y=x2和y=-x2的圖象有哪些相同點和不同點?
3.教師出示同一直角坐標系中的兩個函數(shù)y=x2
和y=-x2圖象,根據(jù)圖象回答:
(1)二次函數(shù)y=x2和y=-x2的圖象關于哪條直線對稱?
(2)兩個圖象關于哪個點對稱?
(3)由y=x2的圖象如何得到y(tǒng)=-x2的圖象?
(四)動手做一做:
1.作出函數(shù)y=2x2
和
y=-2x2的圖象
(同桌二人,南邊作二次函數(shù)y=-2x2的圖象,北邊作二次函數(shù)y=2x2的圖象,兩名學生黑板完成)
2.對照黑板圖象,數(shù)形結合,研討性質:
(1)你能說出二次函數(shù)y=2x2具有哪些性質嗎?
(2)你能說出二次函數(shù)y=-2x2具有哪些性質嗎?
(3)你能發(fā)現(xiàn)二次函數(shù)y=ax2的圖象有什么性質嗎?
(學生分小組活動,交流各自的發(fā)現(xiàn))
3.師生歸納總結二次函數(shù)y=ax2的圖象及性質:
(1)二次函數(shù)y=ax2的圖象是一條拋物線
(2)性質
a:開口方向:a>0,拋物線開口向上,a〈0,拋物線開口向下[
b:頂點坐標是(0,0)
c:對稱軸是y軸
d:最值:a>0,當x=0時,y的最小值=0,a〈0,當x=0時,y的最大值=0
e:增減性:a>0時,在對稱軸的左側(X<0),y隨x的增大而減小,在對稱軸的右側(x>0),y隨x的增大而增大,a〈0時,在對稱軸的左側(X<0),y隨x的增大而增大,在對稱軸的右側(x>0),y隨x的增大而減小。
4.應用:(1)說出二次函數(shù)y=1/3x2
和
y=-5x2
有哪些性質
(2)說出二次函數(shù)y=4
x2和
y=-1/4x2有哪些相同點和不同點?
三、小結:
通過本節(jié)課學習,你有哪些收獲?(學生小結)
.會畫二次函數(shù)y=ax2的圖象,知道它的圖象是一條拋物線
2.知道二次函數(shù)y=ax2的性質:
a:開口方向:a>0,拋物線開口向上,a〈0,拋物線開口向下
b:頂點坐標是(0,0)
c:對稱軸是y軸
d:最值:a>0,當x=0時,y的最小值=0,a〈0,當x=0時,y的最大值=0
e:增減性:a>0時,在對稱軸的左側,y隨x的增大而增大,a〈0時,在對稱軸的左側,y隨x的增大而增大,在對稱軸的右側,y隨x的增大而減小。
第四篇:二次函數(shù)的圖象和性質
二次函數(shù)的圖象和性質(第一課時)教學案例
函數(shù)是中學數(shù)學學習的重要內(nèi)容,函數(shù)概念通過坐標系中的曲線上點的坐標反映變量之間的對應關系。這種變化與對應的思想對于中學生來講,學習起來非常困難。雖然,函數(shù)圖像將函數(shù)的數(shù)量關系直觀化、形象化,提供了數(shù)形結合地研究問題的重要方法,但在沒有信息技術支持下的教學,研究函數(shù)圖像對教師來講也是較為困難的一件事。
二次函數(shù)教學時間約為 10課時,下面是第一課時的教學設計,此時學生對函數(shù)的相關知識已經(jīng)很陌生,第一課時應對上學段學的一次函數(shù)和反比例函數(shù)的知識做一個回顧,讓學生重溫學習函數(shù)應該從以下四個內(nèi)容入手:認識函數(shù);研究圖像及其性質;利用函數(shù)解決實際問題;函數(shù)與相應方程的關系。再通過分析實際問題,以及用關系式表示這一關系的過程,引出二次函數(shù)的概念,獲得用二次函數(shù)表示變量之間關系的體驗。然后根據(jù)這種體驗能夠表示簡單變量之間的二次函數(shù)關系.并能利用嘗試求值的方法解決實際問題.
二、教學目標:
知識技能
1.探索并歸納二次函數(shù)的定義;
2.能夠表示簡單變量之間的二次函數(shù)關系.
數(shù)學思考:
1.感悟新舊知識間的關系,讓學生更深地體會數(shù)學中的類比思想方法;
2.經(jīng)歷探索、分析和建立兩個變量之間的二次函數(shù)關系的過程,進一步體驗如何用數(shù)學的方法描述變量之間的數(shù)量關系.
解決問題:
1.讓學生學習了二次函數(shù)的定義后,能夠表示簡單變量之間的二次函數(shù)關系;
2.能夠利用嘗試求值的方法解決實際問題.進一步體會數(shù)學與生活的聯(lián)系,增強用數(shù)學意識。
情感態(tài)度:
1.把數(shù)學問題和實際問題相聯(lián)系,從學生感興趣的問題入手,能使學生積極參與數(shù)學學習活動,對數(shù)學有好奇心和求知欲;
2.使學生初步體會數(shù)學與人類生活的密切聯(lián)系及對人類歷史發(fā)展的作用;
3.通過學生之間互相交流合作,讓學生學會與人合作,并能與他人交流思維的過程,培養(yǎng)大家的合作意識.
三、教學重點、難點:
教學重點: 1.經(jīng)歷探索和表示二次函數(shù)關系的過程,獲得二次函數(shù)的定義。
2.能夠表示簡單變量之間的二次函數(shù)關系.
教學難點:經(jīng)歷探索和表示二次函數(shù)關系的過程,獲得用二次函數(shù)表示變量之間關系的體驗.
四、教學方法:教師引導——自主探究——合作交流。
五:教具、學具:教學課件
六、教學媒體:計算機、實物投影。
七、教學過程:
[活動1] 溫故知新,引出課題。
師:對于“函數(shù)”這個詞我們并不陌生,大家還記得我們學過哪些函數(shù)嗎?
生:學過正比例函數(shù),一次函數(shù),反比例函數(shù).
師:那函數(shù)的定義是什么,大家還記得嗎?
生:記得,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量.
師:能把學過的函數(shù)回憶一下嗎?
生:可以。
一次函數(shù)y=kx+b(其中k、b是常數(shù),且k≠0)
正比例函數(shù)y=kx(k是不為0的常數(shù))
反比例函數(shù)y=k/x(k是不為0的常數(shù))
師:學習這些函數(shù)的時候,大家還記得我們從哪幾個方面探究的嗎?
生: 定義、函數(shù)的一般形式、函數(shù)的圖像和性質、函數(shù)在實際問題中的應用、函數(shù)與方程與不等式的關系等。
師:很好,從上面的幾種函數(shù)來看,每一種函數(shù)都有一般的形式.那么二次函數(shù)的一般形式究竟是什么呢?本節(jié)課我們將揭開它神秘的面紗.
師生行為:教師提出問題,指名回答,師生共同回顧舊知,教師做出適當總結和評價。
教師重點關注:學生回答問題結論準確性,能否把前后知識聯(lián)系起來,對于一些概括性較強的問題,教師要進行適當引導。
設計意圖:由復習回顧舊知識入手,通過回顧已經(jīng)學過的函數(shù)的相關知識,對要探究的新的函數(shù)有個明確的方向,讓學生由舊知識中尋找新知識的生長點,符合認識新事物的規(guī)律,由淺入深,由表及里,逐漸深化。
[活動2]創(chuàng)設情境 探究新知:
問題
1.正方體六個面是全等的正方形,設正方形棱長為 x,表面積為 y,則 y 關于x 的關系式為是什么?
2.多邊形的對角線數(shù) d 與邊數(shù) n 有什么關系?
n邊形有___個頂點,從一個頂點出發(fā),連接與這點不相鄰的各頂點,可作____條對角線。因此,n邊形的對角線總數(shù)d =______。
3.某工廠一種產(chǎn)品現(xiàn)在年產(chǎn)量是20件,計劃今后兩年增加產(chǎn)量,如果每年都比上一年的產(chǎn)量增加x倍,那么兩年后這種產(chǎn)品的產(chǎn)量y將隨計劃所定的x的值而確定,y與x之間的關系應怎樣表示?
這種產(chǎn)品的原產(chǎn)量是20件,一年后的產(chǎn)量是件,再經(jīng)過一年后的產(chǎn)量是件,即兩年后的產(chǎn)量為。
4. 問題2中有哪些變量?其中哪些是自變量? 大家根據(jù)剛才的分析,判斷一下式子中的d是否是n的函數(shù)?若是函數(shù),與原來學過的函數(shù)相同嗎?問題3呢?
5.觀察上面的三個函數(shù),從解析式看有什么共同點?
師生行為:教師在大屏幕上逐一提出問題,問題1、2、3讓學生獨立思考完成師生共同訂正,問題4、5小組討論完成,教師做適當?shù)囊龑?,點撥,得出問題結論。
定義:一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a≠ 0)的函數(shù)叫做x的二次函數(shù)。教師重點關注:1.強調幾個注意的問題:(1)等號左邊是變量y,右邊是關于自變量x的整式。(2)a,b,c為常數(shù),且a≠0;(3)等式的右邊最高次數(shù)為 2,可以沒有一次項和常數(shù)項,但不能沒有二次項。(4)x的取值范圍是任意實數(shù)。
2.學生在探究問題的過程中,能否優(yōu)化思維過程,使解決問題的方法更準確。設計意圖:由現(xiàn)實中的實際問題入手給學生創(chuàng)設熟悉的問題情境,通過問題的解決,為得出二次函數(shù)的定義做好鋪墊,并讓學生感受到身邊的數(shù)學,激發(fā)學生學習數(shù)學的好
奇心和求知欲。學生通過分析、交流,探求二次函數(shù)的概念,加深對概念的理解,為解決問題打下基礎。
[活動3] 例題學習內(nèi)化新知
問題
例1,下列函數(shù)中,哪些是二次函數(shù)?若是,分別指出二次項系數(shù),一次項系數(shù),常數(shù)項。
(1)y=3(x-1)2+1(2)y=x+5
(3)s=3-2t2(4)y=(x+3)2-x2
(5)y=-x(6)v=10∏r2
2例2,函數(shù) y=(m-3)x-3x+5
(1)m取什么值時,此函數(shù)是正比例函數(shù)?
(2)m取什么值時,此函數(shù)是二次函數(shù)?
師生行為:教師出示例1,同學們稍加考慮即可獲得問題的結論,進而引出例2,例2讓學生分組展開討論,待學生充分交流后,教師再組織各小組展示自己的討論結果,共同得到正確是結論,并獲得解題的經(jīng)驗。
教師重點關注:(1)探究中各小組是否積極展開活動;(2)學生對二次函數(shù)概念是否理解透徹,應用是否得當;(3)教師在小組中巡視,盡可能多給學生一點思考的時間和空間,對學習有困難的學生適當引導。
設計意圖:通過例1的設計,有利于學生對二次函數(shù)的概念的理解,邊學邊練,為下一個討論做鋪墊;例2中三個問題的設計,由淺入深,層層遞進,在復習舊知的同時獲得解決新問題的經(jīng)驗,進一步內(nèi)化新知、突破難點。整個探究過程都是讓學生自己去探索,在探索中發(fā)現(xiàn)新知,在交流中歸納新知,把學習的主動權交給學生,增強學生創(chuàng)造的信心,體驗到成功的快樂。
[活動4] 練習反饋鞏固新知
問題:
(1)P80.練習1、2
m-2(2)若y=3x+6x-4 是二次函數(shù),求m的值.
師生行為:教師提出問題,問題(1)學生獨立思考后寫出答案,師生共同評價;問題(2)學生獨立思考后同桌交流,指名口答結果,教師強調正確解題思路;
教師重點關注:學生能否準確用二次函數(shù)表示變量之間關系;學生解題時候暴露的共性問題作針對性的點評,注重培養(yǎng)學生正確的思路和方法,積累解題經(jīng)驗。
設計意圖:問題(1)是從簡單的應用開始,及時鞏固新知,讓學生獲得用二次函數(shù)表示變量之間關系的體驗;問題(2)是讓學生對二次函數(shù)定義很深層次的理解,培養(yǎng)數(shù)學思維的嚴謹性;
八、自主小結,深化提高:
請同學們談談本節(jié)課的體會和收獲,各抒己見,不拘泥于形式,教師對學生的回答給予幫助,讓語言表達更準確。
設計意圖:學生歸納本節(jié)課學習的主要內(nèi)容,讓學生自覺對所學知識進行梳理,形成體系,養(yǎng)成良好的學習習慣。
九、分層作業(yè),發(fā)展個性:
十、教學反思:
數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知識經(jīng)驗基礎上。二次函數(shù)第一課時,教材中安排的內(nèi)容不多,但學生對函數(shù)的知識已經(jīng)生疏,接受起來不會很順
利。由此,我的設計是從溫故知新開始,通過溫故知新,引出課題、創(chuàng)設情境、探究新知、例題學習、內(nèi)化新知、練習反饋、鞏固新知等幾個數(shù)學活動,引導學生用類比的思想,用已有的知識經(jīng)驗歸納總結出新知、內(nèi)化新知、鞏固應用新知的?;顒又幸沧⒁饬藢W生的知識與實際問題的聯(lián)系,使學生充分體會數(shù)學源于生活又服務于生活。
第五篇:二次函數(shù)圖象和性質的教學反思
二次函數(shù)圖象和性質的教學反思
本節(jié)課的復習目標是:①能根據(jù)已知條件確定二次函數(shù)的解析式、開口方向、頂點和對稱軸。②理解并能運用二次函數(shù)的圖象和性質解決有關問題。本節(jié)課的重、難點是:二次函數(shù)圖象和性質的綜合應用。我立足于學生自主復習,師生合作探究的形式完成本節(jié)課的教學任務。
首先我讓學生課前完成二次函數(shù)圖象和性質的基礎訓練,促使學生對二次函數(shù)圖象和性質的知識點全面梳理和掌握。課上我用投影儀檢查一名學生完成課前復習情況,其他學生交換批改,發(fā)現(xiàn)最后一小條有部分學生有問題,我及時評講分析,幫助學生解決。
接著,師生合作探究本節(jié)課的例題。本例是用已知拋物線解決7個問題,這7個問題是我從全國2009年中考試題中整理出來的,它代表了中考的方面。問題1是用頂點式求出拋物線的解析式再通過解析式求與坐標軸的交點,通過觀察圖象我又提出了x為何值時,y>0,y<0?以及圖中△AOC與△DCB有何關系,進一步培養(yǎng)學生發(fā)現(xiàn)問題解決問題的能力。問題
2、問題
3、問題4是拋物線的平移、軸對稱和旋轉的題目。主要是讓學生抓住拋物線的頂點和開口方向來完成。這種類型的題目也有少數(shù)同學從坐標點的對稱角度來解決也是可行的,并且方便記憶,對于這兩種方法我讓學生作了及時的歸納小結。問題5和問題6是關于拋物線的最值問題。問題5是利用拋物線的對稱性解決三角形的周長最小的題目。學生通過作圖能獨立解決并求出點的坐標。問題6是本節(jié)課的重點,它通過建立目標函數(shù)解決四邊形面積的極值。本題目關鍵是引導學生如何設點的坐標,將四邊形的面積轉化成我們熟悉的三角形(或直角梯形)來建立函數(shù)關系式。通過這條題進一步培養(yǎng)學生建立函數(shù)模型的思想。本題讓學生充分合作交流,最后,讓學生在自主探索中獲取新的知識。通過觀察圖象求出了四邊形的面積后,我又提出如何求△BCF的面積的最大值的問題,讓本題得到進一步的升華,培養(yǎng)學生的創(chuàng)新思維。問題7是在拋物線上探求點存在性問題,引導學生先作出符合條件的平行四邊形,再判斷點是否在拋物線上,本題著重培養(yǎng)了學生數(shù)形結合的思想方法。
這7個問題由淺入深,循序漸進推出,符合學生的認知規(guī)律,使學生對二次函數(shù)圖象和性質有了進一步的理解和提高。
本節(jié)課完成后,我感到也有不足的地方:課堂容量稍有點偏大,學生沒有時間獨立完成作業(yè)。雖然我對每個問題及時小結、歸納,但沒有留一定時間讓學生整理消化。通過這堂公開課,我受益匪淺,感受頗多,讓我在如何備復習課,準確把握重點,突破難點方面有了很大的提高,同時在駕馭課堂能力方面有了很大的進步。今后我將在如何提高有效課堂效率方面多下功夫,使自己教育教學水平更上一個臺階。