欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      高等數(shù)學(xué)教學(xué)總結(jié)

      時間:2019-05-12 08:23:40下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《高等數(shù)學(xué)教學(xué)總結(jié)》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《高等數(shù)學(xué)教學(xué)總結(jié)》。

      第一篇:高等數(shù)學(xué)教學(xué)總結(jié)

      高等數(shù)學(xué)教學(xué)工作總結(jié)

      本學(xué)期我擔(dān)任本科金融專業(yè)的高等數(shù)學(xué)教學(xué)工作,一學(xué)期來,我自始至終以認(rèn)真、嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度,勤懇、堅持不懈的精神從事教學(xué)工作。作為任課教師,我能認(rèn)真制定計劃,注重教學(xué)理論,認(rèn)真?zhèn)湔n和教學(xué),積極參加教研組活動和學(xué)校教研活動,上好每一節(jié)課,并能經(jīng)常聽各位優(yōu)秀老師的課,從中吸取教學(xué)經(jīng)驗,取長補短,提高自己的教學(xué)的業(yè)務(wù)水平。還注意多方面、多角度去培養(yǎng)學(xué)生的分析能力。

      現(xiàn)將本學(xué)期的教育教學(xué)工作總結(jié)如下:

      (一)主要工作:

      一、加強師德修養(yǎng),提高道德素質(zhì) 過去的一個學(xué)期中,我認(rèn)真加強師德修養(yǎng),提高道德素質(zhì)。認(rèn)真學(xué)習(xí)教育法律法規(guī),嚴(yán)格按照有事業(yè)心、有責(zé)任心、有上進心、愛校、愛崗、愛生、團結(jié)協(xié)作、樂于奉獻、勇于探索、積極進取的要求去規(guī)范自己的行為。對待學(xué)生做到:民主平等,公正合理,嚴(yán)格要求,耐心教導(dǎo);對待同事做到:團結(jié)協(xié)作、互相尊重、友好相處;對待自己做到:嚴(yán)于律已、以身作則、為人師表。

      二、加強教育教學(xué)理論學(xué)習(xí)

      能積極投入到課改的實踐探索中,認(rèn)真學(xué)習(xí),加快教育、教學(xué)方法的研究,更新教育觀念,掌握教學(xué)改革的方式方法,提高了駕馭課程的能力。

      三、教學(xué)工作

      在教學(xué)中,我大膽探索適合于學(xué)生發(fā)展的教學(xué)方法。為了教學(xué)質(zhì)量,我做了下面的工作:

      1、認(rèn)真?zhèn)浜谜n。

      ①認(rèn)真學(xué)習(xí)鉆研教材。了解教材的基本思想、基本概念、結(jié)構(gòu)、重點與難點,掌握知識的邏輯。多方參閱各種資料,力求深入理解教材,準(zhǔn)確把握難重點。

      ②了解學(xué)生原有的知識技能的質(zhì)量,他們的興趣、需要、方法、習(xí)慣,學(xué)習(xí)新知識可能會有哪些困難,采取相應(yīng)的措施。

      2、堅持堅持學(xué)生為主體,向50分鐘課堂教學(xué)要質(zhì)量。精心組織好課堂教學(xué),關(guān)注全體學(xué)生,堅持學(xué)生為主體,注意信息反饋,調(diào)動學(xué)生的注意力,使其保持相對穩(wěn)定性。同時,激發(fā)學(xué)生的情感,針對大一學(xué)生特點,以愉快式教學(xué)為主,不搞滿堂灌,堅持學(xué)生為主體,注重講練結(jié)合。在教學(xué)中注意抓住重點,突破難點。

      3、認(rèn)真批改作業(yè)。

      在作業(yè)批改上,做到認(rèn)真及時,重在訂正,及時反饋。

      (二)存在問題

      由于我是一名年輕教師,對教材的熟悉程度以及在教學(xué)經(jīng)驗上還很欠缺。因此在教學(xué)過程中有時會出現(xiàn)一些問題。除此之外,現(xiàn)在注重考察的是學(xué)生應(yīng)用知識的能力,但由于以前的教學(xué)模式,學(xué)生的這種能力培養(yǎng)還很弱,以后還需加強這方面的培養(yǎng)。

      (三)今后努力的方向

      1、加強學(xué)習(xí),學(xué)習(xí)新的教學(xué)思想。

      2、挖掘教材,進一步把握知識點和考點。

      3、多聽課,學(xué)習(xí)同科目教師先進的教學(xué)方法的教學(xué)理念。

      4、加強轉(zhuǎn)差培優(yōu)力度。

      5、讓學(xué)生具有良好的數(shù)學(xué)思維。

      一份耕耘,一份收獲,教學(xué)工作苦樂相伴。在以后的教學(xué)工作中,我要不斷總結(jié)經(jīng)驗,力求提高自己的教學(xué)水平,還要多下功夫加強對個別差生的輔導(dǎo),相信一切問題都會迎刃而解,我也相信有耕耘總會有收獲!

      第二篇:高等數(shù)學(xué)總結(jié)

      FROM BODY TO SOUL

      高等數(shù)學(xué)

      第一講 函數(shù)、極限和連續(xù)

      一、函數(shù) 1.函數(shù)的概念

      幾種常見函數(shù) 絕對值函數(shù): 符號函數(shù): 取整函數(shù): 分段函數(shù):

      最大值最小值函數(shù):

      2.函數(shù)的特性

      有界性: 單調(diào)性: 奇偶性: 周期性:

      3.反函數(shù)與復(fù)合函數(shù)

      反函數(shù):

      復(fù)合函數(shù):

      第三篇:高等數(shù)學(xué)難點總結(jié)

      高等數(shù)學(xué)難點總結(jié) 上冊:

      函數(shù)(高等數(shù)學(xué)的主要研究對象)

      極限:數(shù)列的極限(特殊)——函數(shù)的極限(一般)極限的本質(zhì)是通過已知某一個量(自變量)的變化趨勢,去研究和探索另外一個量(因變量)的變化趨勢

      由極限可以推得的一些性質(zhì):局部有界性、局部保號性……應(yīng)當(dāng)注意到,由極限所得到的性質(zhì)通常都是只在局部范圍內(nèi)成立

      在提出極限概念的時候并未涉及到函數(shù)在該點的具體情況,所以函數(shù)在某點的極限與函數(shù)在該點的取值并無必然聯(lián)系

      連續(xù):函數(shù)在某點的極限 等于 函數(shù)在該點的取值 連續(xù)的本質(zhì):自變量無限接近,因變量無限接近

      導(dǎo)數(shù)的概念

      本質(zhì)是函數(shù)增量與自變量增量的比值在自變量增量趨近于零時的極限,更簡單的說法是變化率

      微分的概念:函數(shù)增量的線性主要部分,這個說法有兩層意思,一、微分是一個線性近似,二、這個線性近似帶來的誤差是足夠小的,實際上任何函數(shù)的增量我們都可以線性關(guān)系去近似它,但是當(dāng)誤差不夠小時,近似的程度就不夠好,這時就不能說該函數(shù)可微分了

      不定積分:導(dǎo)數(shù)的逆運算 什么樣的函數(shù)有不定積分

      定積分:由具體例子引出,本質(zhì)是先分割、再綜合,其中分割的作用是把不規(guī)則的整體劃作規(guī)則的許多個小的部分,然后再綜合,最后求極限,當(dāng)極限存在時,近似成為精確 什么樣的函數(shù)有定積分

      求不定積分(定積分)的若干典型方法:換元、分部,分部積分中考慮放到積分號后面的部分,不同類型的函數(shù)有不同的優(yōu)先級別,按反對冪三指的順序來記憶

      定積分的幾何應(yīng)用和物理應(yīng)用

      高等數(shù)學(xué)里最重要的數(shù)學(xué)思想方法:微元法

      微分和導(dǎo)數(shù)的應(yīng)用:判斷函數(shù)的單調(diào)性和凹凸性

      微分中值定理,可從幾何意義去加深理解

      泰勒定理:本質(zhì)是用多項式來逼近連續(xù)函數(shù)。要學(xué)好這部分內(nèi)容,需要考慮兩個問題:

      一、這些多項式的系數(shù)如何求?

      二、即使求出了這些多項式的系數(shù),如何去評估這個多項式逼近連續(xù)函數(shù)的精確程度,即還需要求出誤差(余項),當(dāng)余項隨著項數(shù)的增多趨向于零時,這種近似的精確度就是足夠好的。下冊

      (一):

      多元函數(shù)的微積分:將上冊的一元函數(shù)微積分的概念拓展到多元函數(shù)

      最典型的是二元函數(shù)

      極限:二元函數(shù)與一元函數(shù)要注意的區(qū)別,二元函數(shù)中兩點無限接近的方式有無限多種(一元函數(shù)只能沿直線接近),所以二元函數(shù)存在的要求更高,即自變量無論以任何方式接近于一定點,函數(shù)值都要有確定的變化趨勢

      連續(xù):二元函數(shù)和一元函數(shù)一樣,同樣是考慮在某點的極限和在某點的函數(shù)值是否相等

      導(dǎo)數(shù):上冊中已經(jīng)說過,導(dǎo)數(shù)反映的是函數(shù)在某點處的變化率(變化情況),在二元函數(shù)中,一點處函數(shù)的變化情況與從該點出發(fā)所選擇的方向有關(guān),有可能沿不同方向會有不同的變化率,這樣引出方向?qū)?shù)的概念

      沿坐標(biāo)軸方向的導(dǎo)數(shù)若存在,稱之為偏導(dǎo)數(shù)

      通過研究發(fā)現(xiàn),方向?qū)?shù)與偏導(dǎo)數(shù)存在一定關(guān)系,可用偏導(dǎo)數(shù)和所選定的方向來表示,即二元函數(shù)的兩個偏導(dǎo)數(shù)已經(jīng)足夠表示清楚該函數(shù)在一點沿任意方向的變化情況

      高階偏導(dǎo)數(shù)若連續(xù),則求導(dǎo)次序可交換

      微分:微分是函數(shù)增量的線性主要部分,這一本質(zhì)對一元函數(shù)或多元函數(shù)來說都一樣。只不過若是二元函數(shù),所選取的線性近似部分應(yīng)該是兩個方向自變量增量的線性組合,然后再考慮誤差是否是自變量增量的高階無窮小,若是,則微分存在

      僅僅有偏導(dǎo)數(shù)存在,不能推出用線性關(guān)系近似表示函數(shù)增量后帶來的誤差足夠小,即偏導(dǎo)數(shù)存在不一定有微分存在

      若偏導(dǎo)數(shù)存在,且連續(xù),則微分一定存在

      極限、連續(xù)、偏導(dǎo)數(shù)和可微的關(guān)系在多元函數(shù)情形里比一元函數(shù)更為復(fù)雜

      極值:若函數(shù)在一點取極值,且在該點導(dǎo)數(shù)(偏導(dǎo)數(shù))存在,則此導(dǎo)數(shù)(偏導(dǎo)數(shù))必為零

      所以,函數(shù)在某點的極值情況,即函數(shù)在該點附近的函數(shù)增量的符號,由二階微分的符號判斷。對一元函數(shù)來說,二階微分的符號就是二階導(dǎo)數(shù)的符號,對二元函數(shù)來說,二階微分的符號可由相應(yīng)的二次型的正定或負(fù)定性判斷。

      級數(shù)斂散性的判別思路:首先看通項是否趨于零,若不趨于零則發(fā)散。若通項趨于零,看是否正項級數(shù)。若是正項級數(shù),首先看能否利用比較判別法,注意等比級數(shù)和調(diào)和級數(shù)是常用來作比較的級數(shù),若通項是連乘形式,考慮用比值判別法,若通項是乘方形式,考慮用根值判別法。若不是正項級數(shù),取絕對值,考慮其是否絕對收斂,絕對收斂則必收斂。若絕對值不收斂,考察一般項,看是否交錯級數(shù),用萊布尼茲準(zhǔn)則判斷。若不是交錯級數(shù),只能通過最根本的方法判斷,即看其前n項和是否有極限,具體問題具體分析。

      比較判別法是充分必要條件,比值和根值法只是充分條件,不是必要條件。

      函數(shù)項級數(shù)情況復(fù)雜,一般只研究冪級數(shù)。阿貝爾定理揭示了冪級數(shù)的重要性質(zhì):收斂區(qū)域存在一個收斂半徑。所以對冪級數(shù),關(guān)鍵在于求出收斂半徑,而這可利用根值判別法解決。

      逐項求導(dǎo)和逐項積分不改變冪級數(shù)除端點外的區(qū)域的斂散性,端點情況復(fù)雜,需具體分析。

      一個函數(shù)能展開成冪級數(shù)的條件是:存在任意階導(dǎo)數(shù)。展開后的冪級數(shù)能收斂于原來函數(shù)的條件是:余項(誤差)要隨著項數(shù)的增加趨于零。這與泰勒展開中的結(jié)論一致。

      微分方程:不同種類的方程有不同的常見解法,但理解上并無難處。

      第四篇:高等數(shù)學(xué)難點總結(jié)

      高等數(shù)學(xué)難點總結(jié)

      函數(shù)(高等數(shù)學(xué)的主要研究對象)

      極限:數(shù)列的極限(特殊)——函數(shù)的極限(一般)

      極限的本質(zhì)是通過已知某一個量(自變量)的變化趨勢,去研究和探索另外一個量(因變量)的變化趨勢

      由極限可以推得的一些性質(zhì):局部有界性、局部保號性……應(yīng)當(dāng)注意到,由極限所得到的性質(zhì)通常都是只在局部范圍內(nèi)成立

      在提出極限概念的時候并未涉及到函數(shù)在該點的具體情況,所以函數(shù)在某點的極限與函數(shù)在該點的取值并無必然聯(lián)系

      連續(xù):函數(shù)在某點的極限 等于 函數(shù)在該點的取值 連續(xù)的本質(zhì):自變量無限接近,因變量無限接近

      導(dǎo)數(shù)的概念

      本質(zhì)是函數(shù)增量與自變量增量的比值在自變量增量趨近于零時的極限,更簡單的說法是變化率

      微分的概念:函數(shù)增量的線性主要部分,這個說法有兩層意思,一、微分是一個線性近似,二、這個線性近似帶來的誤差是足夠小的,實際上任何函數(shù)的增量我們都可以線性關(guān)系去近似它,但是當(dāng)誤差不夠小時,近似的程度就不夠好,這時就不能說該函數(shù)可微分了

      不定積分:導(dǎo)數(shù)的逆運算 什么樣的函數(shù)有不定積分

      定積分:由具體例子引出,本質(zhì)是先分割、再綜合,其中分割的作用是把不規(guī)則的整體劃作規(guī)則的許多個小的部分,然后再綜合,最后求極限,當(dāng)極限存在時,近似成為精確 什么樣的函數(shù)有定積分

      求不定積分(定積分)的若干典型方法:換元、分部,分部積分中考慮放到積分號后面的部分,不同類型的函數(shù)有不同的優(yōu)先級別,按反對冪三指的順序來記憶

      定積分的幾何應(yīng)用和物理應(yīng)用

      高等數(shù)學(xué)里最重要的數(shù)學(xué)思想方法:微元法

      微分和導(dǎo)數(shù)的應(yīng)用:判斷函數(shù)的單調(diào)性和凹凸性

      微分中值定理,可從幾何意義去加深理解

      泰勒定理:本質(zhì)是用多項式來逼近連續(xù)函數(shù)。要學(xué)好這部分內(nèi)容,需要考慮兩個問題:

      一、這些多項式的系數(shù)如何求?

      二、即使求出了這些多項式的系數(shù),如何去評估這個多項式逼近連續(xù)函數(shù)的精確程度,即還需要求出誤差(余項),當(dāng)余項隨著項數(shù)的增多趨向于零時,這種近似的精確度就是足夠好的 下冊

      (一):

      多元函數(shù)的微積分:將上冊的一元函數(shù)微積分的概念拓展到多元函數(shù)

      最典型的是二元函數(shù)

      極限:二元函數(shù)與一元函數(shù)要注意的區(qū)別,二元函數(shù)中兩點無限接近的方式有無限多種(一元函數(shù)只能沿直線接近),所以二元函數(shù)存在的要求更高,即自變量無論以任何方式接近于一定點,函數(shù)值都要有確定的變化趨勢

      連續(xù):二元函數(shù)和一元函數(shù)一樣,同樣是考慮在某點的極限和在某點的函數(shù)值是否相等

      導(dǎo)數(shù):上冊中已經(jīng)說過,導(dǎo)數(shù)反映的是函數(shù)在某點處的變化率(變化情況),在二元函數(shù)中,一點處函數(shù)的變化情況與從該點出發(fā)所選擇的方向有關(guān),有可能沿不同方向會有不同的變化率,這樣引出方向?qū)?shù)的概念

      沿坐標(biāo)軸方向的導(dǎo)數(shù)若存在,稱之為偏導(dǎo)數(shù)

      通過研究發(fā)現(xiàn),方向?qū)?shù)與偏導(dǎo)數(shù)存在一定關(guān)系,可用偏導(dǎo)數(shù)和所選定的方向來表示,即二元函數(shù)的兩個偏導(dǎo)數(shù)已經(jīng)足夠表示清楚該函數(shù)在一點沿任意方向的變化情況

      高階偏導(dǎo)數(shù)若連續(xù),則求導(dǎo)次序可交換

      微分:微分是函數(shù)增量的線性主要部分,這一本質(zhì)對一元函數(shù)或多元函數(shù)來說都一樣。只不過若是二元函數(shù),所選取的線性近似部分應(yīng)該是兩個方向自變量增量的線性組合,然后再考慮誤差是否是自變量增量的高階無窮小,若是,則微分存在

      僅僅有偏導(dǎo)數(shù)存在,不能推出用線性關(guān)系近似表示函數(shù)增量后帶來的誤差足夠小,即偏導(dǎo)數(shù)存在不一定有微分存在

      若偏導(dǎo)數(shù)存在,且連續(xù),則微分一定存在

      極限、連續(xù)、偏導(dǎo)數(shù)和可微的關(guān)系在多元函數(shù)情形里比一元函數(shù)更為復(fù)雜

      極值:若函數(shù)在一點取極值,且在該點導(dǎo)數(shù)(偏導(dǎo)數(shù))存在,則此導(dǎo)數(shù)(偏導(dǎo)數(shù))必為零

      所以,函數(shù)在某點的極值情況,即函數(shù)在該點附近的函數(shù)增量的符號,由二階微分的符號判斷。對一元函數(shù)來說,二階微分的符號就是二階導(dǎo)數(shù)的符號,對二元函數(shù)來說,二階微分的符號可由相應(yīng)的二次型的正定或負(fù)定性判斷。

      級數(shù)斂散性的判別思路:首先看通項是否趨于零,若不趨于零則發(fā)散。若通項趨于零,看是否正項級數(shù)。若是正項級數(shù),首先看能否利用比較判別法,注意等比級數(shù)和調(diào)和級數(shù)是常用來作比較的級數(shù),若通項是連乘形式,考慮用比值判別法,若通項是乘方形式,考慮用根值判別法。若不是正項級數(shù),取絕對值,考慮其是否絕對收斂,絕對收斂則必收斂。若絕對值不收斂,考察一般項,看是否交錯級數(shù),用萊布尼茲準(zhǔn)則判斷。若不是交錯級數(shù),只能通過最根本的方法判斷,即看其前n項和是否有極限,具體問題具體分析。

      比較判別法是充分必要條件,比值和根值法只是充分條件,不是必要條件。

      函數(shù)項級數(shù)情況復(fù)雜,一般只研究冪級數(shù)。阿貝爾定理揭示了冪級數(shù)的重要性質(zhì):收斂區(qū)域存在一個收斂半徑。所以對冪級數(shù),關(guān)鍵在于求出收斂半徑,而這可利用根值判別法解決。

      逐項求導(dǎo)和逐項積分不改變冪級數(shù)除端點外的區(qū)域的斂散性,端點情況復(fù)雜,需具體分析。

      一個函數(shù)能展開成冪級數(shù)的條件是:存在任意階導(dǎo)數(shù)。展開后的冪級數(shù)能收斂于原來函數(shù)的條件是:余項(誤差)要隨著項數(shù)的增加趨于零。這與泰勒展開中的結(jié)論一致。

      微分方程:不同種類的方程有不同的常見解法,但理解上并無難處。下冊

      (二)定積分、二重積分、三重積分、第一類曲線積分、第一類曲面積分都可以概率為一種類型的積分,從物理意義上來理解是某個空間區(qū)域(直線段、平面區(qū)域、立體區(qū)域、曲線段、曲面區(qū)域)的質(zhì)量,其中被積元可看作區(qū)域的微小單元,被積函數(shù)則是該微小單元的密度

      這些積分最終都是轉(zhuǎn)化成定積分來計算

      第二類曲線積分的物理意義是變力做功(或速度環(huán)量),第二類曲面積分的物理意義是流量

      在研究上述七類積分的過程中,發(fā)現(xiàn)其實被積函數(shù)都是空間位置點的函數(shù),于是把這種以空間位置作為自變量的函數(shù)稱為場函數(shù)

      場函數(shù)有標(biāo)量場和向量場,一個向量場相當(dāng)于三個標(biāo)量場

      場函數(shù)在一點的變化情況由方向?qū)?shù)給出,而方向?qū)?shù)最大的方向,稱為梯度方向。梯度是一個向量,任何方向的方向?qū)?shù),都是梯度在這個方向上的投影,所以梯度的模是方向?qū)?shù)的最大值

      梯度方向是函數(shù)變化最快的方向,等位面方向是函數(shù)無變化的方向,這兩者垂直

      梯度實際上一個場函數(shù)不均勻性的量度

      梯度運算把一個標(biāo)量場變成向量場

      一條空間曲線在某點的切向量,便是該點處的曲線微元向量,有三個分量,它建立了第一類曲線積分與第二類曲線積分的聯(lián)系

      一張空間曲面在某點的法向量,便是該點處的曲面微元向量,有三個分量,它建立了第一類曲面積分和第二類曲面積分的聯(lián)系

      物體在一點處的相對體積變化率由該點處的速度場決定,其值為速度場的散度 散度運算把向量場變成標(biāo)量場

      散度為零的場稱為無源場

      高斯定理的物理意義:對散度在空間區(qū)域進行體積分,結(jié)果應(yīng)該是這個空間區(qū)域的體積變化率,同時這種體積變化也可看成是在邊界上的流量造成的,故兩者應(yīng)該相等。即高斯定理把一個速度場在邊界上的積分與速度場的散度在該邊界所圍的閉區(qū)域上的體積分聯(lián)系起來

      無源場的體積變化為零,這是容易理解的,相當(dāng)于既無損失又無補充

      物體在一點處的旋轉(zhuǎn)情況由該點處的速度場決定,其值為速度場的旋度

      旋度運算把向量場變成向量場

      旋度為零的場稱為無旋場

      斯托克斯定理的物理意義:對旋度在空間曲面進行第二類曲面積分,結(jié)果應(yīng)該表示的是這個曲面的旋轉(zhuǎn)快慢程度,同時這種旋轉(zhuǎn)也可看成是邊界上的速度環(huán)量造成的,故兩者應(yīng)該相等。即斯托克斯定理把一個速度場在邊界上形成的環(huán)量與該邊界所圍的曲面的第二類曲面積分聯(lián)系起來。該解釋是從速度環(huán)量的角度出發(fā)得到的,比高斯定理要難,不強求掌握。

      無旋場的速度環(huán)量為零,這相當(dāng)于一個區(qū)域沒有旋轉(zhuǎn)效應(yīng),這是容易理解的

      格林定理是斯托克斯定理的平面情形

      進一步考察無旋場的性質(zhì)

      旋度為零,相當(dāng)于對旋度作的第二類曲面積分為零——即等號后邊的第二類曲線積分為零,相當(dāng)于該力場圍繞一閉合空間曲線作做的功為零——即從該閉合曲線上任選一點出發(fā),積分與路徑無關(guān)——相當(dāng)于所得到的曲線積分結(jié)果只于終點的選擇有關(guān),與路徑無關(guān),可看成終點的函數(shù),這是一個場函數(shù)(空間位置的函數(shù)),稱為勢函數(shù)——所得的勢函數(shù)的梯度正好就是原來的力場——因為力場函數(shù)是連續(xù)的,所以勢函數(shù)有全微分

      簡單的概括起來就是:無旋場——積分與路徑無關(guān)——梯度場——有勢場——全微分

      要注意以上這些說法之間的等價性

      三定理(Gauss Stokes Green)的向量形式和分量形式都要熟悉

      第五篇:高等數(shù)學(xué)積分總結(jié)[推薦]

      ?問題引例:曲邊梯形的面積、變速直線運動的路程?n?積分定義:bf?x?dx?lim?f????xii?a??0?i?1?b?計算方法:?f?x?dx?F?b??F?a?a??一元定積分?幾何意義:連續(xù)曲線與x軸所圍曲邊梯形面積的代數(shù)和?物理意義:變力沿直線做功??應(yīng)用?幾何?:平面圖形的面積?直角坐標(biāo)、極坐標(biāo)?、體積?已知平行截面、旋轉(zhuǎn)體體積??平面曲線的弧長?直角坐標(biāo)、極坐標(biāo)、參數(shù)方程?、旋轉(zhuǎn)曲面的面積????應(yīng)用?物理?:水壓力、質(zhì)量與引力、邊際成本

      一元不定積分:解決定積分的計算問題,將積分問題與求導(dǎo)問題聯(lián)系起來

      ?問題引例:曲頂柱體的體積、平面薄片的質(zhì)量?n?積分定義:f?x,y?d??lim?f??,????iii????0?i?1D??計算方法:關(guān)鍵問題是定限,在直角坐標(biāo)下d?=dxdy,在極坐標(biāo)下d?=rdrd??二重積分?幾何意義:以D為底,f?x,y?為曲頂柱體的體積的代數(shù)和??物理意義:?應(yīng)用?幾何?:求平面圖形的面積d????D??應(yīng)用?物理???問題引例:四維空間中曲頂柱體的體積問題?n?積分定義:f?x,y,z?dv?lim?f??,?,???viiii?????0?i?1???計算方法:直角坐標(biāo) dv=dxdydz?柱面坐標(biāo)x?rcos?,y?rsin?,z?z,dv=rdrd?dz??三重積分?球面坐標(biāo)x?rsin?cos?,y?rsin?sin?,z?rcos?,dv=r2sin?drd?d??定限的方法參考二重積分 ??幾何意義、物理意義??應(yīng)用?幾何???應(yīng)用?物理???

      ?問題引例:曲線形構(gòu)件的質(zhì)量?nn?積分定義:f?x,y?ds?lim?f??,???s,f?x,y,z?ds?lim?f??,?,???siii?iiii???0??0?i?1i?1LL??計算方法:用路徑函數(shù)L化簡f?x,y?,化為一元定積分?弧長元素ds=dx2?dy2??2?ds=1+??y'?x???dx?對弧長的曲線積分?2ds=1+?x'y??????dy?第一型曲線積分??22?ds=??t+?'t???????????dt?22?ds=r?+r'??????????????d???幾何意義、物理意義?應(yīng)用?幾何???應(yīng)用?物理???n?問題引例:曲面不均勻薄片的質(zhì)量?n?積分定義:f?x,y,z?dS?lim?f??,?,???Siiii????0?i?1??對面積的曲面積分?計算方法:

      1、投影,2、代入,3、轉(zhuǎn)換22?第一型曲面積分??f?x,y,z?dS???f???x,y,z?x,y???1?zx?zydxdy????Dxy??應(yīng)用?幾何?:計算曲面面積?應(yīng)用物理???

      ????P??i,?i??xi?Q??i,?i??yi???問題引例:變力沿曲線作功W?lim??0i?1?nn??

      1、定義:如果一階微分方程P?x,y?dx?Q?x,y?dy?0的左端恰好是某一個二元積分定義:Px,ydx?limP?,??x,Qx,ydy?limQ??i,?i??yi?ii?i?L?????L????0???0?i?1i?1??函數(shù)u的全微分,此時方程的通解為u=C,因此全微分方程的關(guān)鍵就是求u?積分的定義可推廣到空間的情況,并可簡寫成?P?x,y?dx?Q?x,y?dy?

      2、求解方法:L對坐標(biāo)的曲線積分????計算方法:本質(zhì)是將其化為一元定積分?用參數(shù)方程、將y化為x?'全微分方程?u?u???第二型曲線積分???①不定積分法:?P,u?Pdx??y,?Pdx??y??????Q???x?y???兩種曲線積分的關(guān)系:???②湊微分法???Pdx?Qdy????Pcos??Qcos??ds??③積分因子法:見筆記?Pdx?Qdy?Rdz???Pcos??Qcos??Rcos??ds???? ?其中cos?,cos?,cos?是曲線在一點的與有向曲線同向的切向量的方向余弦?? ?問題引例:曲面的側(cè)的定義?指明了曲面是有方向的??????曲面的投影,流體力學(xué)中流量問題?=??v?dS???n?積分定義:lim?P??i,?i,?i??Szy?Q??i,?i,?i??Sxz?R??i,?i,?i??Sxy????Pcos??Qcos??Rcos??dS??0?i?1?對坐標(biāo)的曲面積分??n?limP??i,?i,?i??Szy?Q??i,?i,?i??Sxz?R??i,?i,?i??Sxy???Pdydz?Qdxdz?Rdxdy??第二型曲面積分????0i?1??第一式將定義以第一型曲面積分的形式給出;第二式是我們普遍用的第二型曲面積分??兩個式子反應(yīng)的是一個東西,也就闡明了兩類曲面積分的聯(lián)系??計算方法:投影、代入、轉(zhuǎn)換???應(yīng)用:流量的計算

      ???Q?P? ??格林定理:①曲線正向的定義;②???dxdy,L為D的取正向的邊界曲線?LPdx?Qdy????x?y?D? ???Q?P應(yīng)用格林公式應(yīng)注意:1?曲線L必須封閉;2?、在D內(nèi)每點具有一階連續(xù)偏導(dǎo);3?L為正向曲線 ??x?y?

      A?格林公式?曲線積分的路徑無關(guān)性:概念,積分值只與初始點的坐標(biāo)有關(guān)?Pdx?Qdy B? ?四個等價命題:在一個單連通區(qū)域內(nèi),函數(shù)P?x,y?、Q?x,y?在G內(nèi)有一階連續(xù)偏導(dǎo)? 則下面四個命題等價:???Q?P ①=;②Pdx?Qdy?0;③Pdx?Qdy與路徑無關(guān);④存在函數(shù)ux,y,使du?Pdx?Qdy?????L??L ??x?y ?高斯公式:?是閉曲面?圍成的區(qū)域,函數(shù)P、Q、R在?上具有一階連續(xù)偏導(dǎo),則???P?Q?R??Pdydz?Qdzdx?Rdxdy?++?dV?????????x?y?z????????P?Q?R?Pcos??Qcos??Rcos?dS?++?dV????????高斯公式?通量散度????x?y?z?????其中?是?的外側(cè),cos?、cos?、cos?是點出法向量的方向余弦?????????P?Q?R?通量與散度:?=?A?dS,divA?++????x?y?z??

      ?斯托克斯公式:設(shè)?是以?為邊界的有向曲面,?的正向與?的側(cè)符合右手規(guī)則,P,Q,R具有一階連續(xù)偏導(dǎo) ? ??R?Q???Q?P???P?R??Pdx?Qdy?Rdz??dydz??dzdx??dxdy????????L??? ?y?z?z?x?x?y???????????????斯托克斯公式?環(huán)流量與旋度?

      ?環(huán)流量與旋度:向量場A沿有向閉曲線?的曲線積分???A?ds稱為A沿?的環(huán)流量 ?????R?Q????P?R????Q?P???旋度:rotA= ?????i???k?j????y?z?z?x?x?y???????

      積分應(yīng)用歸納幾何應(yīng)用:

      1、求曲邊梯形的面積:用一元定積分可做

      2、求曲頂柱體的體積:用二重積分可做,用三重積分可做

      3、曲面的面積:??1dS???dS ?????柱面面積=f?x,y?ds——?牟合方蓋的表面積???Lfy,zds,fx,zds???????LL?該柱面以L為準(zhǔn)線,母線平行于z軸,介于z?0與曲面z?f?x,y?之間的部分?

      4、平面的面積:其實就是曲面面積的特殊情況,用一元定積分可做,用二重積分可做

      物理應(yīng)用:

      1、質(zhì)量??平面直線桿?一元定積分?????線狀質(zhì)量?線密度?長度??平面曲線桿?對弧長的曲線積分??這也就解釋了為什么對弧長的積分化為定積分??空間曲線桿被積函數(shù)為三元函數(shù)的對弧長的曲線積分????????平面面片?二重積分?面狀質(zhì)量?面密度?面積????空間面片?對曲面的面積積分?立體快質(zhì)量?體密度?體積??三重積分????解釋了為什么對曲面的面積積分化為二重積分???=f?P?;M??f?P?d??

      2、質(zhì)心?物理重心——質(zhì)心——幾何中心——形心?概念解釋:物理重心——是在重力場中,物體處于任何方位時所有各組成質(zhì)點的重力的合力都通過的那一點。規(guī)則而密度均勻物體的重心就是它的幾何中心。質(zhì)心——質(zhì)量中心簡稱質(zhì)心,指物質(zhì)系統(tǒng)上被認(rèn)為質(zhì)量集中于此的一個假想點。與重心不同的是,質(zhì)心不一定要在有重力場的系統(tǒng)中。值得注意的是,除非重力場是均勻的,否則同一物質(zhì)系統(tǒng)的質(zhì)心與重心不通常在同一假想點上。形心——面的形心就是截面圖形的幾何中心,質(zhì)心是針對實物體而言的,而形心是針對抽象幾何體而言的,對于密度均勻的實物體,質(zhì)心和形心重合。質(zhì)心的計算:?引入了靜力矩的概念?????x??x,y?d?y??x,y??薄片:x?D???x,y?d?,y???d?D??x,y?d?平面????D??D?x??x,y??dsy??x,曲線桿:x??L?y?ds??????x,y?ds,y?L??x,y?dsL?L3、轉(zhuǎn)動慣量:定義:I?Mr2Ix???y2??x,y?d?DIy???x2??x,y?d?DI0????x2?y2???x,y?d? D

      ??

      ?塊:x??x?dv,y??y?dv???dv??dv空間??面片:x??x?d?,y??y??d????d???d????曲桿:x??x?ds,y??y?ds????ds??ds

      下載高等數(shù)學(xué)教學(xué)總結(jié)word格式文檔
      下載高等數(shù)學(xué)教學(xué)總結(jié).doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        高等數(shù)學(xué)極限總結(jié)

        我的高等數(shù)學(xué) 學(xué)我所學(xué),想我所想 【摘要】《高等數(shù)學(xué)》教學(xué)中對于極限部分的要求很高,這主要是因為其特殊的地位決定的。然而極限部分絕大部分的運算令很多從中學(xué)進入高校的學(xué)......

        高等數(shù)學(xué)極限總結(jié)[最終定稿]

        【摘 要】《高等數(shù)學(xué)》教學(xué)中對于極限部分的要求很高,這主要是因為其特殊的地位決定的。然而極限部分絕大部分的運算令很多從中學(xué)進入高校的學(xué)生感到困窘。本文立足教材的基......

        高等數(shù)學(xué)上冊總結(jié)

        《工程應(yīng)用數(shù)學(xué)A》課程總結(jié) 無論我們做什么事都要不斷地思考,不斷地總結(jié),學(xué)習(xí)也是這樣,所以這次就借此機會對于這一學(xué)期所學(xué)內(nèi)容進行一次總結(jié),也算是對自我的一次思考。 一、課......

        高等數(shù)學(xué)教學(xué)設(shè)計方案

        篇一:課程整體教學(xué)設(shè)計(新高數(shù)) 《高等數(shù)學(xué)》課程整體設(shè)計一、管理信息 課程名稱:高等數(shù)學(xué) 課程代碼:220000103 制 定 人: 張秀玲 制定時間:2011.7.20 所屬部門:基礎(chǔ)課教學(xué)部......

        高等數(shù)學(xué)教學(xué)心得

        高等數(shù)學(xué)教學(xué)心得 高等數(shù)學(xué)教學(xué)心得1 高等數(shù)學(xué)是我院財務(wù)管理、工程管理、國際貿(mào)易、商管等相關(guān)專業(yè)的基礎(chǔ)課,主要講述了一元函數(shù)與多元函數(shù)的微積分學(xué),針對不同專業(yè)的實際情......

        高等數(shù)學(xué)B教學(xué)建設(shè)項目總結(jié)1

        高等數(shù)學(xué)B教學(xué)項目建設(shè)總結(jié)1高等數(shù)學(xué)是大學(xué)理工科以及一些文科專業(yè)的必修課程,是一門數(shù)學(xué)基礎(chǔ)課程,其重要性在于它是各種精確自然科學(xué)、社會科學(xué)中表述基本定律和各種問題的根......

        高等數(shù)學(xué)難點總結(jié)函數(shù)

        函數(shù)(高等數(shù)學(xué)的主要研究對象) 極限:數(shù)列的極限(特殊)——函數(shù)的極限(一般) 極限的本質(zhì)是通過已知某一個量(自變量)的變化趨勢,去研究和探索另外一個量(因變量)的變化趨勢 由極限可以推......

        《高等數(shù)學(xué)》課程建設(shè)總結(jié)

        《高等數(shù)學(xué)》課程建設(shè)總結(jié) 作為工科本科院校,高等數(shù)學(xué)課程是我校長期扶持的重點建設(shè)課程,其教學(xué)質(zhì)量的好壞直接影響到我校本科教學(xué)質(zhì)量能否穩(wěn)步提高。為了適應(yīng)大眾化教育階段......