第一篇:考研數(shù)學 破解證明題三大思路
http://004km.cn
第一步:首先要記住零點存在定理,介值定理,中值定理、極限存在的兩個準則等基本原理,包括條件及結(jié)論,中值定理最好能記住他們的推到過程,有時可以借助幾何意義去記憶。
因為知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導致不同的推理能力。如2006年數(shù)學一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數(shù)學推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準則之一:單調(diào)有界數(shù)列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗證的。再比如2009年直接讓考生證明拉格朗日中值定理;但是像這樣直接可以利用基本原理的證明題在考研真題中并不是很多見,更多的是要用到第二步。
第二步:可以試著借助幾何意義尋求證明思路,以構(gòu)造出所需要的輔助函數(shù)。
一個證明題,大多時候是能用其幾何意義來正確解釋的,當然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學一第19題是一個關(guān)于中值定理的證明題,可以在直角坐標系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點中公考研 http://004km.cn
http://004km.cn 不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學一第18題(1)是關(guān)于零點存在定理的證明題,只要在直角坐標系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應該看到兩函數(shù)在兩個端點處大小關(guān)系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結(jié)果。如果第二步實在無法完滿解決問題的話,轉(zhuǎn)第三步。
第三步:從要證的結(jié)論出發(fā),去尋求我們所需要的構(gòu)造輔助函數(shù),我們稱之為“逆推”。
如2004年第15題是不等式證明題,該題只要應用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時需借助導數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導數(shù)的符號判定一階導數(shù)的單調(diào)性,再用一階導的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。
以后同學們在做證明題時不妨試一試以上三種方法,慢慢建立自信心,以阻止考試分數(shù)的白白流失。最后祝各位考生如愿以償。
中公考研 http://004km.cn
第二篇:2016考研數(shù)學證明題解題三大思路剖析
2016考研數(shù)學證明題解題三大思路 考研數(shù)學一、三數(shù)學中概率統(tǒng)計占22%,數(shù)學二不考概率??忌肴〉酶叻?,概率學科盡量拿滿分。老師將概率統(tǒng)計中重點內(nèi)容和典型題型做了總結(jié),希望對大家學習有幫助。
第1章 隨機事件和概率 1.1 重點內(nèi)容
事件的關(guān)系:包含,相等,互斥,對立,完全事件組,獨立;事件的運算:并,交,差;運算規(guī)律:交換律,結(jié)合律,分配律,對偶律;概率的基本性質(zhì)及五大公式:加法公式、減法公式、乘法公式、全概率公式、貝葉斯公式;利用獨立性進行概率計算,伯努力試驗計算。
近幾年單獨考查本章的考題相對較少,但是大多數(shù)考題中將本章的內(nèi)容作為基礎(chǔ)知識來考核。
1.2 常見題型 1.求隨機事件的概率;2.隨機事件的關(guān)系運算。第2章 隨機變量及其分布 2.1 重點內(nèi)容
隨機變量及其分布函數(shù)的概念和性質(zhì),分布律和概率密度,隨機變量的函數(shù)的分布,一些常見的分布:0-1分布、二項分布、超幾何分布、泊松分布、均勻分布、正態(tài)分布、指數(shù)分布及它們的應用。而重點要求會計算與隨機變量相聯(lián)系的事件的概率,用泊松分布近似表示二項分布,以及隨機變量簡單函數(shù)的概率分布。
近幾年單獨考核本章內(nèi)容不太多,主要考一些常見分布及其應用、隨機變量函數(shù)的分布。
2.2 常見題型
1.求一維隨機變量的分布律、分布密度或分布函數(shù);2.一個函數(shù)為某一隨機變量的分布函數(shù)或分布密度的判定;3.根據(jù)概率反求或判定分布中的參數(shù);4.求一維隨機變量在某一區(qū)間的概率;5.求一維隨機變量函數(shù)的分布。第3章 二維隨機變量及其分布 3.1 重點內(nèi)容
本章是概率論重點部分之一,尤其是二維隨機變量及其分布的概念和性質(zhì),邊緣分布,邊緣密度,條件分布和條件密度,隨機變量的獨立性及不相關(guān)性,一些常見分布:二維均勻分布,二維正態(tài)分布,幾個隨機變量的簡單函數(shù)的分布。
3.2 常見題型
1.求二維隨機變量的聯(lián)合分布律或分布函數(shù)或邊緣概率分布或條件分布和條件密度;2.已知部分邊緣分布,求聯(lián)合分布律;3.求二維連續(xù)型隨機變量的分布或分布密度或邊緣密度函數(shù)或條件分布和條件密度;4.兩個或多個隨機變量的獨立性或相關(guān)性的判定或證明;5.與二維隨機變量獨立性相關(guān)的命題;6.求兩個隨機變量的相關(guān)系數(shù);
7.求兩個隨機變量的函數(shù)的概率分布或概率密度或在某一區(qū)域的概率。1.結(jié)合幾何意義記住零點存在定理、中值定理、泰勒公式、極限存在的兩個準則等基本原理,包括條件及結(jié)論。
知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度 不同會導致不同的推理能力。如2006年數(shù)學一真題第16題(1是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數(shù)學推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準則之一:單調(diào)有界數(shù)列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步??佳袛?shù)學證明題解題三大思路" /> 2.借助幾何意義尋求證明思路
一個證明題,大多時候是能用其幾何意義來正確解釋的,當然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學一第19題是一個關(guān)于中值定理的證明題,可以在直角坐標系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點 之間的一個點。這樣很容易想到輔助函數(shù)F(x=f(x-g(x有三個零點,兩次應用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學一第18題(1是關(guān)于零點存在定理的證明題,只要在直角坐標系中結(jié)合所給條件作出函數(shù)y=f(x及y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應該看到兩函數(shù)在兩個端點處大小關(guān)系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結(jié)果。如果第二步實在無法完滿解決問題的話,轉(zhuǎn)第三步。
3.逆推法
從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時需借助導數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況,這時需先用二階導數(shù)的符號判定一階導數(shù)的單調(diào)性,再用一階導的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x=ln*x-ln*a-4(x-a/e*,其中eF(a就是所要證的不等式。對于那些經(jīng)常使用如上方法的考生來說,利用三步走就能輕松收獲數(shù)學證明的12分,但對于從心理上就不自信能解決證明題的考生來說,卻常常輕易丟失12分,后一部分同學請按“證明三步走”來建立自信心,以阻止考試分數(shù)的白白流失。
凱程教育:
凱程考研成立于2005年,國內(nèi)首家全日制集訓機構(gòu)考研,一直從事高端全日制輔導,由李海洋教授、張鑫教授、盧營教授、王洋教授、楊武金教授、張釋然教授、索玉柱教授、方浩教授等一批高級考研教研隊伍組成,為學員全程高質(zhì)量授課、答疑、測試、督導、報考指導、方法指導、聯(lián)系導師、復試等全方位的考研服務。
凱程考研的宗旨:讓學習成為一種習慣; 凱程考研的價值觀口號:凱旋歸來,前程萬里; 信念:讓每個學員都有好最好的歸宿;
使命:完善全新的教育模式,做中國最專業(yè)的考研輔導機構(gòu); 激情:永不言棄,樂觀向上; 敬業(yè):以專業(yè)的態(tài)度做非凡的事業(yè);
服務:以學員的前途為已任,為學員提供高效、專業(yè)的服務,團隊合作,為學員服務,為學員引路。
如何選擇考研輔導班:
在考研準備的過程中,會遇到不少困難,尤其對于跨專業(yè)考生的專業(yè)課來說,通過報輔導班來彌補自己復習的不足,可以大大提高復習效率,節(jié)省復習時間,大家可以通過以下幾個方面來考察輔導班,或許能幫你找到適合你的輔導班。
師資力量:師資力量是考察輔導班的首要因素,考生可以針對輔導名師的輔導年限、輔導經(jīng)驗、歷年輔導效果、學員評價等因素進行綜合評價,詢問往屆學長然后選擇。判斷師資力量關(guān)鍵在于綜合實力,因為任何一門課程,都不是由
一、兩個教師包到底的,是一批教師配合的結(jié)果。還要深入了解教師的學術(shù)背景、資料著述成就、輔導成就等。凱程考研名師云集,李海洋、張鑫教授、方浩教授、盧營教授、孫浩教授等一大批名師在凱程授課。而有的機構(gòu)只是很普通的老師授課,對知識點把握和命題方向,欠缺火候。
對該專業(yè)有輔導歷史:必須對該專業(yè)深刻理解,才能深入輔導學員考取該校。在考研輔導班中,從來見過如此輝煌的成績:凱程教育拿下2015五道口金融學院狀元,考取五道口15人,清華經(jīng)管金融碩士10人,人大金融碩士15個,中財和貿(mào)大金融碩士合計20人,北師大教育學7人,會計碩士保錄班考取30人,翻譯碩士接近20人,中傳狀元王園璐、鄭家威都是來自凱程,法學方面,凱程在人大、北大、貿(mào)大、政法、武漢大學、公安大學等院校斬獲多個法學和法碩狀元,更多專業(yè)成績請查看凱程網(wǎng)站。在凱程官方網(wǎng)站的光榮榜,成功學員經(jīng)驗談視頻特別多,都是凱程戰(zhàn)績的最好證明。對于如此高的成績,凱程集訓營班主任邢老師說,凱程如此優(yōu)異的成績,是與我們凱程嚴格的管理,全方位的輔導是分不開的,很多學生本科都不是名校,某些學生來自二本三本甚至不知名的院校,還有很多是工作了多年才回來考的,大多數(shù)是跨專業(yè)考研,他們的難度大,競爭激烈,沒有嚴格的訓練和同學們的刻苦學習,是很難達到優(yōu)異的成績。最好的辦法是直接和凱程老師詳細溝通一下就清楚了。
建校歷史:機構(gòu)成立的歷史也是一個參考因素,歷史越久,積累的人脈資源更多。例如,凱程教育已經(jīng)成立10年(2005年),一直以來專注于考研,成功率一直遙遙領(lǐng)先,同學們有興趣可以聯(lián)系一下他們在線老師或者電話。
有沒有實體學校校區(qū):有些機構(gòu)比較小,就是一個在寫字樓里上課,自習,這種環(huán)境是不太好的,一個優(yōu)秀的機構(gòu)必須是在教學環(huán)境,大學校園這樣環(huán)境。凱程有自己的學習校區(qū),有吃住學一體化教學環(huán)境,獨立衛(wèi)浴、空調(diào)、暖氣齊全,這也是一個考研機構(gòu)實力的體現(xiàn)。此外,最好還要看一下他們的營業(yè)執(zhí)照。
第三篇:2017考研:考研數(shù)學證明題知識點歸納
2017考研:考研數(shù)學證明題知識點歸納
高等數(shù)學題目中比較困難的是證明題,今天凱程老師給大家整理了在整個高等數(shù)學,容易出證明題的地方。
一、數(shù)列極限的證明
數(shù)列極限的證明是數(shù)一、二的重點,特別是數(shù)二最近幾年考的非常頻繁,已經(jīng)考過好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調(diào)有界準則。
二、微分中值定理的相關(guān)證明
微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強,涉及到知識面廣,涉及到中值的等式主要是三類定理:
1.零點定理和介質(zhì)定理; 2.微分中值定理;
包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導數(shù)的相關(guān)問題,考查頻率底,所以以前兩個定理為主。
3.微分中值定理
積分中值定理的作用是為了去掉積分符號。
在考查的時候,一般會把三類定理兩兩結(jié)合起來進行考查,所以要總結(jié)到現(xiàn)在為止,所考查的題型。
三、方程根的問題
包括方程根唯一和方程根的個數(shù)的討論。
四、不等式的證明
五、定積分等式和不等式的證明
主要涉及的方法有微分學的方法:常數(shù)變異法;積分學的方法:換元法和分布積分法。
六、積分與路徑無關(guān)的五個等價條件
這一部分是數(shù)一的考試重點,最近幾年沒涉及到,所以要重點關(guān)注。
以上是容易出證明題的地方,同學們在復習的時候重點歸納這類題目的解法??佳胁欢牡胤?,可以關(guān)注凱程微信公眾號“凱程考研”,第一時間發(fā)布考研資訊,精心推送考研經(jīng)驗,匯聚考研正能量,提供權(quán)威擇校擇專業(yè)指導,答疑、求罵醒,你需要的都在這里。
第四篇:考研證明題
翻閱近十年的數(shù)學真題,同學可以發(fā)現(xiàn):幾乎每一年的試題中都會有一道證明題,而且基本上都可以用中值定理來解決,重點考察同學的邏輯推理分析能力,但是參加研究生數(shù)學考試的同學所學專業(yè)要么是理工要么是經(jīng)管,同學們在大學學習數(shù)學的時候?qū)τ谶壿嬐评矸矫娴挠柧毚蠖嗍遣粔虻?,這就導致你們數(shù)學考試中遇到證明推理題就發(fā)怵,根本不想去想,以致簡單的證明題得分率卻極低。下面給同學們總結(jié)了一些方法步驟或思路,以后在遇到證明題時不妨試一試。
第一步:首先要記住零點存在定理,介值定理,中值定理、極限存在的兩個準則等基本原理,包括條件及結(jié)論,中值定理最好能記住他們的推到過程,有時可以借助幾何意義去記憶。因為知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導致不同的推理能力。如2006年數(shù)學一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數(shù)學推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準則之一:單調(diào)有界數(shù)列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗證的。再比如2009年直接讓考生證明拉格朗日中值定理;但是像這樣直接可以利用基本原理的證明題在考研真題中并不是很多見,更多的是要用到第二步。
第二步:可以試著借助幾何意義尋求證明思路,以構(gòu)造出所需要的輔助函數(shù)。一個證明題,大多時候是能用其幾何意義來正確解釋的,當然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學一第19題是一個關(guān)于中值定理的證明題,可以在直角坐標系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學一第18題(1)是關(guān)于零點存在定理的證明題,只要在直角坐標系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應該看到兩函數(shù)在兩個端點處大小關(guān)系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結(jié)果。如果第二步實在無法完滿解決問題的話,轉(zhuǎn)第三步。
第三步:從要證的結(jié)論出發(fā),去尋求我們所需要的構(gòu)造輔助函數(shù),我們稱之為“逆推”如2004年第15題是不等式證明題,該題只要應用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時需借助導數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導數(shù)的符號判定一階導數(shù)的單調(diào)性,再用一階導的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。
第五篇:考研數(shù)學證明題題目11
今天還是討論關(guān)于不等式的問題。
這次的這個不等式大家看見了一定不會陌生,因為思路很容易就拿出來了。就是轉(zhuǎn)化成求一個函數(shù)的極值問題。然后解法一就誕生了。
上面的方法估計是絕大多數(shù)人都會采用的方法,算是一種通法了。也是必須得掌握的重要思想方法之一。
然而,是不是這個題目除了這種方法就沒有其他的辦法來做了呢?答案是否定的。
注意到需要證明的不等式可以先化成e^x>x^2-2ax+1,而左邊的式子要和冪函數(shù)聯(lián)系起來,很容易想到的就是馬克勞林展開。于是可以嘗試著看看是否能夠利用這個來做。
首先可以試著將e^x展開到二階的,然后看看是否能夠證明需要的不等式。發(fā)現(xiàn)不行,然后再繼續(xù)多展開一階。于是,解法二橫空出世。
說句實話,就這道題而言,這種方法確實挺復雜的,而且還沒有求導的方法精確。不過,這種思想方法對于一些題目來說,卻可能是重要的突破口!下面看看一道習題吧。
由于這道題目比較難,所以直接給出解答。
這個題目可以說相當于反用冪級數(shù)的展開,然后利用馬克老林余項的估值最后證明出結(jié)論。這個看似很一般的題目,中間卻蘊含著無限的思想,需要大家細細品味!