欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      考研數(shù)學(xué)單選題和證明題經(jīng)典解題技巧

      時(shí)間:2019-05-12 20:35:49下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《考研數(shù)學(xué)單選題和證明題經(jīng)典解題技巧》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《考研數(shù)學(xué)單選題和證明題經(jīng)典解題技巧》。

      第一篇:考研數(shù)學(xué)單選題和證明題經(jīng)典解題技巧

      考研數(shù)學(xué)單選題和證明題經(jīng)典解題技巧

      到了考研復(fù)習(xí)的關(guān)鍵性強(qiáng)化和沖刺階段。一些答題技巧性的掌握能夠使我們事半功倍。下面小編為2015考生們分享單選題和證明題經(jīng)典解題技巧,希望對考生們有所幫助。

      一、單選題經(jīng)典解題技巧

      1.推演法。提示條件中給出一些條件或者一些數(shù)值,你很容易判斷,那這樣的題就用推演法去做。推演法實(shí)際上是一些計(jì)算題,簡單一點(diǎn)的計(jì)算題。那么從提示條件中往后推,推出哪個(gè)結(jié)果選擇哪個(gè)。

      2.賦值法。給一個(gè)數(shù)值馬上可以判斷我們這種做法對不對,這個(gè)值可以加在給出的條件上,也可以加在被選的4個(gè)答案中的其中幾個(gè)上,我們加上去如果得出和我們題設(shè)的條件矛盾,或者是和我們已知的事實(shí)相矛盾。比方說2小于1就是明顯的錯(cuò)誤,所以把這些排除了,排除掉3個(gè)最后一個(gè)肯定是正確的。

      3.舉反例排除法。這是針對提示中給出的函數(shù)是抽象的函數(shù),抽象的對立面是具體,所以我們用具體的例子來核定,這個(gè)跟我們剛才的賦值法有某種相似之處。一般來講舉的范例是越簡單越好,而且很多考題你只要簡單的看就可以看出他的錯(cuò)誤點(diǎn)。

      4.類推法。從最后被選的答案中往前推,推出哪個(gè)錯(cuò)誤就把哪個(gè)否定掉,再換一個(gè)。我們推出3個(gè)錯(cuò)誤最后一個(gè)肯定是正確的。后面三種方法有些相似之處,類推法這種方法是費(fèi)時(shí)費(fèi)力的,一般來講我們不太用。

      總結(jié):經(jīng)常進(jìn)行自我總結(jié),錯(cuò)題總結(jié)能逐漸提高解題能力。大家可以在學(xué)完每一章后,自己通過畫圖的形式回憶這章有哪些知識點(diǎn),有哪些定理,他們之間有些什么聯(lián)系,如何應(yīng)

      用等;對做錯(cuò)的題分析一下原因:概念不清楚、定理用錯(cuò)了還是計(jì)算粗心?數(shù)學(xué)思維方法是數(shù)學(xué)的精髓,只有對此進(jìn)行歸納、領(lǐng)會、應(yīng)用,才能把數(shù)學(xué)知識與技能轉(zhuǎn)化為分析問題、解決問題的能力,使解題能力“更上一層樓”。

      二、證明題的解法與技巧

      1.結(jié)合幾何意義記住零點(diǎn)存在定理、中值定理、泰勒公式、極限存在的兩個(gè)準(zhǔn)則等基本原理,包括條件及結(jié)論。

      知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的 存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因?yàn)閿?shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個(gè)題目非常簡單,只用了極限存在的兩個(gè)準(zhǔn)則之一:單調(diào)有界數(shù)列必有極限。只要知道這個(gè)準(zhǔn)則,該問題就能輕松解決,因?yàn)閷τ谠擃}中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗(yàn)證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。

      2.借助幾何意義尋求證明思路

      一個(gè)證明題,大多時(shí)候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個(gè)關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個(gè)函數(shù)除兩個(gè)端點(diǎn)外還有一個(gè)函數(shù)值相等的點(diǎn),那就是兩個(gè)函數(shù)分別取最大值的點(diǎn)(正確審題:兩個(gè)函數(shù)取得最大值的點(diǎn)不一定是同一個(gè)點(diǎn))之間的一個(gè)點(diǎn)。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個(gè)零點(diǎn),兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點(diǎn)存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及 y=1-x在[0,1]上的圖形就立刻能看到兩個(gè)函數(shù)圖形有交點(diǎn),這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個(gè)端點(diǎn)處大小關(guān)系恰好相反,也就是差函數(shù)在兩個(gè)端點(diǎn)的值是異號的,零點(diǎn)存在定理保證了區(qū)間內(nèi)有零點(diǎn),這就證得所需結(jié)果。如果第二步實(shí)在無法完滿解決問題的話,轉(zhuǎn)第三步。

      3.逆推法

      從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時(shí)需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所 舉出的例子就屬非正常情況),這時(shí)需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè) F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。對于那些經(jīng)常使用如上方法的考生來說,利用三步走就能輕松收獲數(shù)學(xué)證明的12分,但對于從心理上就不自信能解決證明題的考生來說,卻常常輕易丟失12分,后一部分同學(xué)請按“證明三步走”來建立自信心,以阻止考試分?jǐn)?shù)的白白流失。

      第二篇:考研數(shù)學(xué):單選與證明題經(jīng)典解題技巧

      考研數(shù)學(xué):單選與證明題經(jīng)典解題技巧

      很多同學(xué)準(zhǔn)備考研買了各種輔導(dǎo)機(jī)構(gòu)的資料,大量練習(xí)認(rèn)為這樣的話一是能通過題復(fù)習(xí)知識點(diǎn),還有就是期望通過題海戰(zhàn)術(shù)能做到考試真題。這種盲目的做題方法未必能高效提升成績。同學(xué)們一定要明確,做題不是目的,是為了更好的培養(yǎng)答題的感覺,理清思路,鞏固知識點(diǎn)。對于考研數(shù)學(xué)來說,題海無邊但題型有限。我們可以通過對典型題型的練習(xí),掌握相應(yīng)的解題方法,能迅速提高解題能力,節(jié)省考場上的寶貴時(shí)間。在此,我們數(shù)學(xué)教研室李老師為大家整理單選題和證明題經(jīng)典解題技巧。

      一、單選題巧解技巧總結(jié)為五種方法:

      第一種:推演法。提示條件中給出一些條件或者一些數(shù)值,你很容易判斷,那這樣的題就用推演法去做。推演法實(shí)際上是一些計(jì)算題,簡單一點(diǎn)的計(jì)算題。那么從提示條件中往后推,推出哪個(gè)結(jié)果選擇哪個(gè)。

      第二種:賦值法。給一個(gè)數(shù)值馬上可以判斷我們這種做法對不對,這個(gè)值可以加在給出的條件上,也可以加在被選的4個(gè)答案中的其中幾個(gè)上,我們加上去如果得出和我們題設(shè)的條件矛盾,或者是和我們已知的事實(shí)相矛盾。比方說2小于1就是明顯的錯(cuò)誤,所以把這些排除了,排除掉3個(gè)最后一個(gè)肯定是正確的。

      第三種:舉反例排除法。這是針對提示中給出的函數(shù)是抽象的函數(shù),抽象的對立面是具體,所以我們用具體的例子來核定,這個(gè)跟我們剛才的賦值法有某種相似之處。一般來講舉的范例是越簡單越好,而且很多考題你只要簡單的看就可以看出他的錯(cuò)誤點(diǎn)。

      第五種:類推。從最后被選的答案中往前推,推出哪個(gè)錯(cuò)誤就把哪個(gè)否定掉,再換一個(gè)。我們推出3個(gè)錯(cuò)誤最后一個(gè)肯定是正確的。后面三種方法有些相似之處,類推法這種方法是費(fèi)時(shí)費(fèi)力的,一般來講我們不太用。

      總結(jié):經(jīng)常進(jìn)行自我總結(jié),錯(cuò)題總結(jié)能逐漸提高解題能力。大家可以在學(xué)完每一章后,自己通過畫圖的形式回憶這章有哪些知識點(diǎn),有哪些定理,他們之間有些什么聯(lián)系,如何應(yīng)用等;對做錯(cuò)的題分析一下原因:概念不清楚、定理用錯(cuò)了還是計(jì)算粗心?數(shù)學(xué)思維方法是數(shù)學(xué)的精髓,只有對此進(jìn)行歸納、領(lǐng)會、應(yīng)用,才能把數(shù)學(xué)知識與技能轉(zhuǎn)化為分析問題、解決問題的能力,使解題能力“更上一層樓”。

      二、證明題總結(jié)為三大解題方法:

      1.結(jié)合幾何意義記住零點(diǎn)存在定理、中值定理、泰勒公式、極限存在的兩個(gè)準(zhǔn)則等基本原理,包括條件及結(jié)論。

      知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的 存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因?yàn)閿?shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個(gè)題目非常簡單,只用了極限存在的兩個(gè)準(zhǔn)則之一:單調(diào)有界數(shù)列必有極限。只要知道這個(gè)準(zhǔn)則,該問題就能輕松解決,因?yàn)閷τ谠擃}中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗(yàn)證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。

      2.借助幾何意義尋求證明思路。

      一個(gè)證明題,大多時(shí)候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個(gè)關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個(gè)函數(shù)除兩個(gè)端點(diǎn)外還有一個(gè)函

      數(shù)值相等的點(diǎn),那就是兩個(gè)函數(shù)分別取最大值的點(diǎn)(正確審題:兩個(gè)函數(shù)取得最大值的點(diǎn)不一定是同一個(gè)點(diǎn))之間的一個(gè)點(diǎn)。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個(gè)零點(diǎn),兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點(diǎn)存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及 y=1-x在[0,1]上的圖形就立刻能看到兩個(gè)函數(shù)圖形有交點(diǎn),這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個(gè)端點(diǎn)處大小關(guān)系恰好相反,也就是差函數(shù)在兩個(gè)端點(diǎn)的值是異號的,零點(diǎn)存在定理保證了區(qū)間內(nèi)有零點(diǎn),這就證得所需結(jié)果。如果第二步實(shí)在無法完滿解決問題的話,轉(zhuǎn)第三步。

      3.逆推法

      從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時(shí)需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所 舉出的例子就屬非正常情況),這時(shí)需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè) F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。

      對于那些經(jīng)常使用如上方法的考生來說,利用三步走就能輕松收獲數(shù)學(xué)證明的12分,但對于從心理上就不自信能解決證明題的考生來說,卻常常輕易丟失12分,后一部分同學(xué)請按“證明三步走”來建立自信心,以阻止考試分?jǐn)?shù)的白白流失。

      最后,李老師提醒大家:強(qiáng)化階段大家應(yīng)把復(fù)習(xí)過的知識系統(tǒng)化綜合化,注意搞細(xì)搞透搞活,也可適當(dāng)做幾套模擬題。數(shù)學(xué)題目千變?nèi)f化,有各種延伸或變式,考生們要在考試中取得好成績,一定要腳踏實(shí)地地復(fù)習(xí),華而不實(shí)靠押題碰運(yùn)氣是行不通的,多思多議,不斷地總結(jié)經(jīng)驗(yàn)與教訓(xùn),做到融會貫通。

      第三篇:2018考研數(shù)學(xué)重點(diǎn):中值定理證明題解題技巧

      凱程考研輔導(dǎo)班,中國最權(quán)威的考研輔導(dǎo)機(jī)構(gòu)

      2018考研數(shù)學(xué)重點(diǎn):中值定理證明題解

      題技巧

      考研數(shù)學(xué)中證明題雖不能說每年一定考,但也基本上十年有九年都會涉及,在此著重說說應(yīng)用拉格朗日中值定理來證明不等式的解題方法與技巧。

      凱程考研輔導(dǎo)班,中國最權(quán)威的考研輔導(dǎo)機(jī)構(gòu)

      根據(jù)以上的攻關(guān)點(diǎn)撥和典例練習(xí),相信同學(xué)們對該題型的解題訓(xùn)練有了一定的掌握。

      需要提醒考生們,數(shù)學(xué)題目多,而且考查的知識點(diǎn)很綜合,很多人擔(dān)心自己做的少,碰到的知識點(diǎn)就會少一些,從而加快了解題速度,實(shí)際上考生最重要的是要注重對題目的理解,對基本知識的概括和各種題型解題技巧的能力訓(xùn)練,因此大家可以根據(jù)以上的攻關(guān)點(diǎn)撥和典例練習(xí),這樣加以積累練習(xí),為以后的快速準(zhǔn)確解題打下基礎(chǔ)。

      另外,數(shù)學(xué)試題切忌眼高手低,實(shí)踐出真知,只有自己真正做一遍,印象才能深刻,才能了解自己的復(fù)習(xí)程度,疏漏的內(nèi)容,如果題目確實(shí)做不出來,可以先看答案,看明白之后再拋棄答案自己再把題目獨(dú)立地做一遍,一定要力求全部理解和掌握所考查的知識點(diǎn)。

      頁 共 2 頁

      第四篇:數(shù)學(xué)證明題解題技巧

      證明

      徐琛同學(xué),系黃山學(xué)院文學(xué)院2012級專升本學(xué)生。該生在我院學(xué)習(xí)期間,表現(xiàn)良好,學(xué)習(xí)認(rèn)真,2013至2014學(xué)被同學(xué)選為學(xué)習(xí)委員。其工作盡職盡責(zé),深得全班學(xué)生和老師的認(rèn)可。

      特此證明

      黃山學(xué)院文學(xué)院

      2014年4月28日

      第五篇:2017考研:考研數(shù)學(xué)證明題知識點(diǎn)歸納

      2017考研:考研數(shù)學(xué)證明題知識點(diǎn)歸納

      高等數(shù)學(xué)題目中比較困難的是證明題,今天凱程老師給大家整理了在整個(gè)高等數(shù)學(xué),容易出證明題的地方。

      一、數(shù)列極限的證明

      數(shù)列極限的證明是數(shù)一、二的重點(diǎn),特別是數(shù)二最近幾年考的非常頻繁,已經(jīng)考過好幾次大的證明題,一般大題中涉及到數(shù)列極限的證明,用到的方法是單調(diào)有界準(zhǔn)則。

      二、微分中值定理的相關(guān)證明

      微分中值定理的證明題歷來是考研的重難點(diǎn),其考試特點(diǎn)是綜合性強(qiáng),涉及到知識面廣,涉及到中值的等式主要是三類定理:

      1.零點(diǎn)定理和介質(zhì)定理; 2.微分中值定理;

      包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導(dǎo)數(shù)的相關(guān)問題,考查頻率底,所以以前兩個(gè)定理為主。

      3.微分中值定理

      積分中值定理的作用是為了去掉積分符號。

      在考查的時(shí)候,一般會把三類定理兩兩結(jié)合起來進(jìn)行考查,所以要總結(jié)到現(xiàn)在為止,所考查的題型。

      三、方程根的問題

      包括方程根唯一和方程根的個(gè)數(shù)的討論。

      四、不等式的證明

      五、定積分等式和不等式的證明

      主要涉及的方法有微分學(xué)的方法:常數(shù)變異法;積分學(xué)的方法:換元法和分布積分法。

      六、積分與路徑無關(guān)的五個(gè)等價(jià)條件

      這一部分是數(shù)一的考試重點(diǎn),最近幾年沒涉及到,所以要重點(diǎn)關(guān)注。

      以上是容易出證明題的地方,同學(xué)們在復(fù)習(xí)的時(shí)候重點(diǎn)歸納這類題目的解法??佳胁欢牡胤?,可以關(guān)注凱程微信公眾號“凱程考研”,第一時(shí)間發(fā)布考研資訊,精心推送考研經(jīng)驗(yàn),匯聚考研正能量,提供權(quán)威擇校擇專業(yè)指導(dǎo),答疑、求罵醒,你需要的都在這里。

      下載考研數(shù)學(xué)單選題和證明題經(jīng)典解題技巧word格式文檔
      下載考研數(shù)學(xué)單選題和證明題經(jīng)典解題技巧.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        初中數(shù)學(xué)證明題解題技巧與步驟

        初中數(shù)學(xué)證明題解題技巧與步驟(證明:等腰三角形兩底角的平分線相等)為例1. 弄清題意此為“文字型”數(shù)學(xué)證明題,既沒有圖形,也無直觀的已知與求證。如何弄清題意呢?根據(jù)命題的定義......

        2018考研:數(shù)學(xué)綜合題解題技巧

        2018考研:數(shù)學(xué)綜合題解題技巧 來源:智閱網(wǎng) 綜合題是考研數(shù)學(xué)中的一大題型,所占分值高,并且用到的解題方法和步驟較多,因此大家要予以重視,下面對綜合題的解題技巧和方法,進(jìn)行了總......

        考研證明題

        翻閱近十年的數(shù)學(xué)真題,同學(xué)可以發(fā)現(xiàn):幾乎每一年的試題中都會有一道證明題,而且基本上都可以用中值定理來解決,重點(diǎn)考察同學(xué)的邏輯推理分析能力,但是參加研究生數(shù)學(xué)考試的同學(xué)所學(xué)......

        數(shù)學(xué)證明題解題技巧與步驟(小編整理)

        數(shù)學(xué)證明題解題技巧與步驟北師大版初中數(shù)學(xué)教材中《證明》占三章節(jié),教材這樣安排的目地是想:通過對《證明》的學(xué)習(xí),讓學(xué)生通過對圖形的性質(zhì)及相互關(guān)系進(jìn)行大量的探索,在探索的同......

        考研數(shù)學(xué)證明題題目11

        今天還是討論關(guān)于不等式的問題。 這次的這個(gè)不等式大家看見了一定不會陌生,因?yàn)樗悸泛苋菀拙湍贸鰜砹?。就是轉(zhuǎn)化成求一個(gè)函數(shù)的極值問題。然后解法一就誕生了。 上面的方法估......

        考研數(shù)學(xué)證明題三步走

        數(shù)學(xué)證明三步走 縱觀近十年考研數(shù)學(xué)真題,大家會發(fā)現(xiàn):幾乎每一年的試題中都會有一個(gè)證明題,而且基本上都是應(yīng)用中值定理來解決問題的。但是要參加碩士入學(xué)數(shù)學(xué)統(tǒng)一考試的同學(xué)所......

        考研數(shù)學(xué)證明題題目10

        今天來看看不等式的題目。不等式對于我們來說應(yīng)該是再熟悉不過的了,初中的時(shí)候?qū)W過一次二次不等式,高中更是系統(tǒng)學(xué)習(xí)了不等式,在考研試題里面,也不乏不等式的題目。不等式的題目......

        2018考研數(shù)學(xué) 中值定理證明題技巧

        為學(xué)生引路,為學(xué)員服務(wù) 2018考研數(shù)學(xué) 中值定理證明題技巧 在考研數(shù)學(xué)中,有關(guān)中值定理的證明題型是一個(gè)重要考點(diǎn),也是一個(gè)讓很多同學(xué)感到比較困惑的考點(diǎn),不少同學(xué)在讀完題目后......