第一篇:考研數(shù)學(xué)如何讓證明題迎刃而解 中公考研
給人改變未來的力量
考研數(shù)學(xué)高分秘籍:讓證明題迎刃而解
針對考研數(shù)學(xué)考生證明題得分率低、“談證明色變”的現(xiàn)狀,總結(jié)了攻克證明題的基本思路:首先總結(jié)證明題的主要考點(diǎn);然后根據(jù)考點(diǎn)要求掌握基本的定理內(nèi)容,尤其要掌握核心定理的證明過程;最后,再總結(jié)出題思路和證明“套路”,專項(xiàng)突破。
證明題是可以說是考研數(shù)學(xué)中最讓考生頭疼的題型了,很多考生幾乎是“談證明題色變”,在考試中遇到證明題時(shí)甚至?xí)x擇主動(dòng)放棄。而從實(shí)際考試情況來看,證明題在每年的考試中也確實(shí)起到了“壓軸題”的作用,試卷中綜合得分率最低的考題往往都是證明題。其實(shí)只要方法得當(dāng),相較于其他題目,證明題是較容易得分的。下面,我們就簡單介紹一下證明題的著手點(diǎn),供考生們參考。
證明題可以分三步走:
第一步:分析考題,找出證明的主要考點(diǎn)。證明題的考題量較少,出題點(diǎn)相對比較固定,所以首要的任務(wù)是總結(jié)出題點(diǎn),明確方向,再進(jìn)行定向突破。從歷年真題來看,高等數(shù)學(xué)證明題的主要出題點(diǎn)有兩個(gè):中值定理證明和不等式證明。
第二步:結(jié)合幾何意義記住零點(diǎn)存在定理、中值定理等基本原理,包括條件及結(jié)論以及核心定理證明過程。了解基本原理是證明的基礎(chǔ),了解的程度不同會(huì)導(dǎo)致不同的推理能力。這些定理中,三大中值定理本身的證明過程就是很重要的考點(diǎn)。在2009年真題中就直接考查到了拉格朗日中值定理的證明過程,這道考題的答案在任何一本高等數(shù)學(xué)的教材上都可以找到,但實(shí)際得分率卻不足20%。這說明很多時(shí)候考生在證明題上的丟分并不是因?yàn)轭}目太難、太刁,而是考生自己沒有按照考試要求打好基礎(chǔ),掌握常用的方法和基本的考點(diǎn)。
第三步:分析歷年真題,專項(xiàng)突破。對歷年真題中的試題進(jìn)行歸類、整理,總結(jié)??嫉念愋秃突镜淖C明思路??佳械淖C明題往往都是有一定證明“套路”的,只要能分析清楚命題方向,總結(jié)出聯(lián)系不同題目形式背后共通的思路,這類問題就能迎刃而解。例如對不等式證明,盡管題目形式千變?nèi)f化,但起證明思路大多數(shù)卻都是統(tǒng)一的:都是根據(jù)要證明的不等式構(gòu)造輔助函數(shù)(一般是兩邊相減或化簡后相減),再通過求導(dǎo)分析輔助函數(shù)的單調(diào)性,進(jìn)而找到輔助函數(shù)在所給區(qū)間上的最值。只要掌握了這個(gè)基本方向,再通過適量針對性的訓(xùn)練以熟悉常見的處理方法,攻克這類問題并不是難事。
中公考研網(wǎng) http://004km.cn
給人改變未來的力量
其實(shí),很多考生并不是做不好證明題,而是在遇到證明題首先心里就怯懦了,希望通過上面的三步走,能夠幫助考生建立起自信,一舉攻克證明題。
中公考研網(wǎng) http://004km.cn
第二篇:考研證明題
翻閱近十年的數(shù)學(xué)真題,同學(xué)可以發(fā)現(xiàn):幾乎每一年的試題中都會(huì)有一道證明題,而且基本上都可以用中值定理來解決,重點(diǎn)考察同學(xué)的邏輯推理分析能力,但是參加研究生數(shù)學(xué)考試的同學(xué)所學(xué)專業(yè)要么是理工要么是經(jīng)管,同學(xué)們在大學(xué)學(xué)習(xí)數(shù)學(xué)的時(shí)候?qū)τ谶壿嬐评矸矫娴挠?xùn)練大多是不夠的,這就導(dǎo)致你們數(shù)學(xué)考試中遇到證明推理題就發(fā)怵,根本不想去想,以致簡單的證明題得分率卻極低。下面給同學(xué)們總結(jié)了一些方法步驟或思路,以后在遇到證明題時(shí)不妨試一試。
第一步:首先要記住零點(diǎn)存在定理,介值定理,中值定理、極限存在的兩個(gè)準(zhǔn)則等基本原理,包括條件及結(jié)論,中值定理最好能記住他們的推到過程,有時(shí)可以借助幾何意義去記憶。因?yàn)橹阑驹硎亲C明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會(huì)導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因?yàn)閿?shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個(gè)題目非常簡單,只用了極限存在的兩個(gè)準(zhǔn)則之一:單調(diào)有界數(shù)列必有極限。只要知道這個(gè)準(zhǔn)則,該問題就能輕松解決,因?yàn)閷τ谠擃}中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗(yàn)證的。再比如2009年直接讓考生證明拉格朗日中值定理;但是像這樣直接可以利用基本原理的證明題在考研真題中并不是很多見,更多的是要用到第二步。
第二步:可以試著借助幾何意義尋求證明思路,以構(gòu)造出所需要的輔助函數(shù)。一個(gè)證明題,大多時(shí)候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個(gè)關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個(gè)函數(shù)除兩個(gè)端點(diǎn)外還有一個(gè)函數(shù)值相等的點(diǎn),那就是兩個(gè)函數(shù)分別取最大值的點(diǎn)(正確審題:兩個(gè)函數(shù)取得最大值的點(diǎn)不一定是同一個(gè)點(diǎn))之間的一個(gè)點(diǎn)。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個(gè)零點(diǎn),兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點(diǎn)存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個(gè)函數(shù)圖形有交點(diǎn),這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個(gè)端點(diǎn)處大小關(guān)系恰好相反,也就是差函數(shù)在兩個(gè)端點(diǎn)的值是異號的,零點(diǎn)存在定理保證了區(qū)間內(nèi)有零點(diǎn),這就證得所需結(jié)果。如果第二步實(shí)在無法完滿解決問題的話,轉(zhuǎn)第三步。
第三步:從要證的結(jié)論出發(fā),去尋求我們所需要的構(gòu)造輔助函數(shù),我們稱之為“逆推”如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時(shí)需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時(shí)需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。
第三篇:考研數(shù)學(xué)證明題題目11
今天還是討論關(guān)于不等式的問題。
這次的這個(gè)不等式大家看見了一定不會(huì)陌生,因?yàn)樗悸泛苋菀拙湍贸鰜砹恕>褪寝D(zhuǎn)化成求一個(gè)函數(shù)的極值問題。然后解法一就誕生了。
上面的方法估計(jì)是絕大多數(shù)人都會(huì)采用的方法,算是一種通法了。也是必須得掌握的重要思想方法之一。
然而,是不是這個(gè)題目除了這種方法就沒有其他的辦法來做了呢?答案是否定的。
注意到需要證明的不等式可以先化成e^x>x^2-2ax+1,而左邊的式子要和冪函數(shù)聯(lián)系起來,很容易想到的就是馬克勞林展開。于是可以嘗試著看看是否能夠利用這個(gè)來做。
首先可以試著將e^x展開到二階的,然后看看是否能夠證明需要的不等式。發(fā)現(xiàn)不行,然后再繼續(xù)多展開一階。于是,解法二橫空出世。
說句實(shí)話,就這道題而言,這種方法確實(shí)挺復(fù)雜的,而且還沒有求導(dǎo)的方法精確。不過,這種思想方法對于一些題目來說,卻可能是重要的突破口!下面看看一道習(xí)題吧。
由于這道題目比較難,所以直接給出解答。
這個(gè)題目可以說相當(dāng)于反用冪級數(shù)的展開,然后利用馬克老林余項(xiàng)的估值最后證明出結(jié)論。這個(gè)看似很一般的題目,中間卻蘊(yùn)含著無限的思想,需要大家細(xì)細(xì)品味!
第四篇:考研數(shù)學(xué)證明題三步走
數(shù)學(xué)證明三步走
縱觀近十年考研數(shù)學(xué)真題,大家會(huì)發(fā)現(xiàn):幾乎每一年的試題中都會(huì)有一個(gè)證明題,而且基本上都是應(yīng)用中值定理來解決問題的。但是要參加碩士入學(xué)數(shù)學(xué)統(tǒng)一考試的同學(xué)所學(xué)專業(yè)要么是理工要么是經(jīng)管,同學(xué)們在大學(xué)學(xué)習(xí)數(shù)學(xué)的時(shí)候?qū)τ谶壿嬐评矸矫娴挠?xùn)練大多是不夠的,這就導(dǎo)致數(shù)學(xué)考試中遇到證明推理題就發(fā)怵,以致簡單的證明題得分率卻極低。除了個(gè)別考研輔導(dǎo)書(如蔡子華老師的《歷年真題精析》對真題中的證明題的解析及講評)中有一些證明思路之外,大多數(shù)考研輔導(dǎo)書在這一方面沒有花太大力氣,本人自認(rèn)為在推理證明方面有不凡的效績,在此給大家簡單介紹一些解決數(shù)學(xué)證明題的入手點(diǎn),希望對有此隱患的同學(xué)有所幫助。
我把這樣的方法稱為證明題三步走。
第一步:結(jié)合幾何意義記住零點(diǎn)存在定理、中值定理、泰勒公式、極限存在的兩個(gè)準(zhǔn)則等基本原理,包括條件及結(jié)論。知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會(huì)導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因?yàn)閿?shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個(gè)題目非常簡單,只用了極限存在的兩個(gè)準(zhǔn)則之一:單調(diào)有界數(shù)列必有極限。只要知道這個(gè)準(zhǔn)則,該問題就能輕松解決,因?yàn)閷τ谠擃}中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗(yàn)證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
第二步:借助幾何意義尋求證明思路。一個(gè)證明題,大多時(shí)候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個(gè)關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個(gè)函數(shù)除兩個(gè)端點(diǎn)外還有一個(gè)函數(shù)值相等的點(diǎn),那就是兩個(gè)函數(shù)分別取最大值的點(diǎn)(正確審題:兩個(gè)函數(shù)取得最大值的點(diǎn)不一定是同一個(gè)點(diǎn))之間的一個(gè)點(diǎn)。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個(gè)零點(diǎn),兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點(diǎn)存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個(gè)函數(shù)圖形有交點(diǎn),這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個(gè)端點(diǎn)處大小關(guān)系恰好相反,也就是差函數(shù)在兩個(gè)端點(diǎn)的值是異號的,零點(diǎn)存在定理保證了區(qū)間內(nèi)有零點(diǎn),這就證得所需結(jié)果。如果第二步實(shí)在無法完滿解決問題的話,轉(zhuǎn)第三步。
第三步:逆推。從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時(shí)需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時(shí)需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。
對于那些經(jīng)常使用如上方法的同學(xué)來說,利用三步走就能輕松收獲數(shù)學(xué)證明的12分,但對于從心理上就不自信能解決證明題的同學(xué)來說,卻常常輕易丟失12分,后一部分同學(xué)請按“證明三步走”來建立自信心,以阻止考試分?jǐn)?shù)的白白流失。
第五篇:考研數(shù)學(xué)證明題題目10
今天來看看不等式的題目。不等式對于我們來說應(yīng)該是再熟悉不過的了,初中的時(shí)候?qū)W過一次二次不等式,高中更是系統(tǒng)學(xué)習(xí)了不等式,在考研試題里面,也不乏不等式的題目。不等式的題目相對比較靈活,綜合性很強(qiáng),是考察數(shù)學(xué)能力的一個(gè)很好的方式。雖然很活,不過對于考研來說,這些題目也都有一定的方法和思想,是大家可以掌握的。這里就大家比較容易忽略的某些方法說說自己的理解。
看到題目應(yīng)該有一種很相似的感覺。因?yàn)椴坏仁降闹虚g部分貌似就是拉格朗日中值定理。于是,有一種沖動(dòng),試試這種方法是否可行。
嘗試了一下,發(fā)現(xiàn)左邊已經(jīng)證明出來了。這時(shí)應(yīng)該比較欣慰,因?yàn)轭}目做出了一半。于是心想著,右邊應(yīng)該同理也可以證明吧。不管三七二十一,先試一下。
試完以后,悲劇了!居然無法證明出來。怎么辦?只有另找一種出路。
很多參考書上給的解答都是構(gòu)造一個(gè)輔助函數(shù),這個(gè)輔助函數(shù)就是將b換成x,成為一個(gè)關(guān)于x的函數(shù),然后利用導(dǎo)數(shù)工具研究這個(gè)函數(shù)的性質(zhì)從而得出最終的證明結(jié)果。這種方法很典型,需要大家比較熟練運(yùn)用。不過,對于這道題來說,這種方法有點(diǎn)復(fù)雜了,因?yàn)闃?gòu)造的函數(shù)很長一串兒,看起來也不大舒服。于是可以嘗試下其他的方法。
對于這道題而言,a,b都是成對的出現(xiàn)的,而且a,b出現(xiàn)的次數(shù)都一樣,亦即齊次式。所以,我們總可以通過一定變形,使得這個(gè)表達(dá)式成為一個(gè)關(guān)于a/b或者b/a的式子。
然后產(chǎn)生了下面的解法
這個(gè)解法對于有經(jīng)驗(yàn)的人來說是很自然的,因?yàn)樽C明不等式有三化,齊次化,線性化和局部化,這里體現(xiàn)的就是齊次化思想。
這道題目本身不難,但是題目中蘊(yùn)含的思想?yún)s不少。
1拉格朗日中值定理也可以用來證明不等式,不過放縮的范圍比較大,不夠精確!
2對于齊次式,我們可以將其轉(zhuǎn)變成單變元問題(多變元化單變元),然后研究一個(gè)一元函數(shù)的性質(zhì)就能夠知道相應(yīng)的一些關(guān)系。
3要充分利用夠題目的條件!比如此題中b>a,則b/a=t>1!如果不用的話就會(huì)出問題的!然后看看練習(xí)吧