欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      余弦定理的三個(gè)無(wú)字證明

      時(shí)間:2019-05-14 15:47:08下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫(xiě)寫(xiě)幫文庫(kù)小編為你整理了多篇相關(guān)的《余弦定理的三個(gè)無(wú)字證明》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫(xiě)寫(xiě)幫文庫(kù)還可以找到更多《余弦定理的三個(gè)無(wú)字證明》。

      第一篇:余弦定理的三個(gè)無(wú)字證明

      余弦定理的三個(gè)無(wú)字證明

      無(wú)需任何廢話,三張圖片即可說(shuō)明一切!證明一:

      證明二:

      證明三:

      來(lái)源:http://books.google.com/books?id=Kx2cjyzTIYkC&lpg=PP1&dq=Proofs%20without%20words&pg=PA31#v=onepage&q=&f=false

      第二篇:余弦定理的三個(gè)無(wú)字證明

      余弦定理的三個(gè)無(wú)字證明

      無(wú)需任何廢話,三張圖片即可說(shuō)明一切!證明一:

      證明二:

      證明三:

      來(lái)源:http://books.google.com/books?id=Kx2cjyzTIYkC&lpg=PP1&dq=Proofs%20without%20words&pg=PA31#v=onepage&q=&f=false

      第三篇:怎么證明余弦定理

      怎么證明余弦定理

      證明余弦定理:

      因?yàn)檫^(guò)C作CD垂直于AB,AD=bcosA;所以(c-bcosA)^2+(bsinA)^2=a^2。

      又因?yàn)閎^2-(bcosA)^2=(bsinA)^2,所以(c-x)^2+b^2-(bcosA)^2=a^2,所以c^2-2cbcosA+(bcosA)^2+b^2-(bcosA)^2=a^2,所以c^2-2cbcosA+b^2=a^2,所以c^2+b^2-a^2=2cbcosA,所以cosA=(c^2+b^2-a^2)/2bc

      同理cosB=(a^2+c^2-b^2)/2ac,cosC=(a^2+b^2-c^2)/2ab

      2在任意△ABC中,作AD⊥BC.∠C對(duì)邊為c,∠B對(duì)邊為b,∠A對(duì)邊為a-->

      BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

      勾股定理可知:

      AC2=AD2+DC2

      b2=(sinB*c)2+(a-cosB*c)2

      b2=sin2B*c2+a2+cos2B*c2-2ac*cosB

      b2=(sin2B+cos2B)*c2-2ac*cosB+a2

      b2=c2+a2-2ac*cosB

      所以,cosB=(c2+a2-b2)/2ac

      2如右圖,在ABC中,三內(nèi)角A、B、C所對(duì)的邊分別是a、b、c.以A為原點(diǎn),AC所在的直線為x軸建立直角坐標(biāo)系,于是C點(diǎn)坐標(biāo)是(b,0),由三角函數(shù)的定義得B點(diǎn)坐標(biāo)是(ccosA,csinA).∴CB=(ccosA-b,csinA).現(xiàn)將CB平移到起點(diǎn)為原點(diǎn)A,則AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根據(jù)三角函數(shù)的定義知D點(diǎn)坐標(biāo)是(acos(π-C),asin(π-C))即D點(diǎn)坐標(biāo)是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可證asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可證b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理證明完畢。3△ABC的三邊分別為a,b,c,邊BC,CA,AB上的中線分別為ma.mb,mc,應(yīng)用余弦定理證明:

      mb=(1/2)

      mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB)

      =(1/2)√(4c^2+a^2-4ac*cosB)

      由b^2=a^2+c^2-2ac*cosB

      得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達(dá)式:

      ma=(1/2)√

      =(1/2)√(2b^2+2c^2-a^2)

      同理可得:

      mb=

      mc=

      ma=√(c^2+(a/2)^2-ac*cosB)

      =(1/2)√(4c^2+a^2-4ac*cosB)

      由b^2=a^2+c^2-2ac*cosB

      得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達(dá)式:

      ma=(1/2)√

      =(1/2)√(2b^2+2c^2-a^2)

      證畢。

      第四篇:余弦定理證明

      余弦定理證明

      在任意△ABC中,作AD⊥BC.∠C對(duì)邊為c,∠B對(duì)邊為b,∠A對(duì)邊為a-->

      BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

      勾股定理可知:

      AC2=AD2+DC2

      b2=(sinB*c)2+(a-cosB*c)2

      b2=sin2B*c2+a2+cos2B*c2-2ac*cosB

      b2=(sin2B+cos2B)*c2-2ac*cosB+a2

      b2=c2+a2-2ac*cosB

      所以,cosB=(c2+a2-b2)/2ac

      2如右圖,在ABC中,三內(nèi)角A、B、C所對(duì)的邊分別是a、b、c.以A為原點(diǎn),AC所在的直線為x軸建立直角坐標(biāo)系,于是C點(diǎn)坐標(biāo)是(b,0),由三角函數(shù)的定義得B點(diǎn)坐標(biāo)是(ccosA,csinA).∴CB=(ccosA-b,csinA).現(xiàn)將CB平移到起點(diǎn)為原點(diǎn)A,則AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根據(jù)三角函數(shù)的定義知D點(diǎn)坐標(biāo)是(acos(π-C),asin(π-C))即D點(diǎn)坐標(biāo)是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可證asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可證b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理證明完畢。3△ABC的三邊分別為a,b,c,邊BC,CA,AB上的中線分別為ma.mb,mc,應(yīng)用余弦定理證明:

      mb=(1/2)

      mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB)

      =(1/2)√(4c^2+a^2-4ac*cosB)

      由b^2=a^2+c^2-2ac*cosB

      得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達(dá)式:

      ma=(1/2)√

      =(1/2)√(2b^2+2c^2-a^2)

      同理可得:

      mb=

      mc=

      ma=√(c^2+(a/2)^2-ac*cosB)

      =(1/2)√(4c^2+a^2-4ac*cosB)

      由b^2=a^2+c^2-2ac*cosB

      得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達(dá)式:

      ma=(1/2)√

      =(1/2)√(2b^2+2c^2-a^2)

      證畢。

      第五篇:余弦定理證明過(guò)程

      在△ABC中,設(shè)BC=a,AC=b,AB=c,試根據(jù)b,c,A來(lái)表示a。 分析:由于初中平面幾何所接觸的是解直角三角形問(wèn)題,所以應(yīng)添加輔助線構(gòu)造直角三角形,在直角三角形內(nèi)通過(guò)邊角關(guān)系作進(jìn)一步的轉(zhuǎn)化工作,故作CD垂直于AB于D,那么在Rt△BDC中,邊a可利用勾股定理用CD、DB表示,而CD可在Rt△ADC中利用邊角關(guān)系表示,DB可利用AB-AD轉(zhuǎn)化為AD,進(jìn)而在Rt△ADC內(nèi)求解。

      解:過(guò)C作CD⊥AB,垂足為D,則在Rt△CDB中,根據(jù)勾股定理可得: a2=CD2+BD2

      ∵在Rt△ADC中,CD2=b2-AD2

      又∵BD2=(c-AD)2=c2-2c·AD+AD2

      ∴a2=b2-AD2+c2-2c·AD+AD2=b2+c2

      -2c·AD 又∵在Rt△ADC中,AD=b·cosA ∴a2=b2+c2-2bccosA類(lèi)似地可以證明b2=a2+c2-2accosB,c2=a2+b2-2abcosC

      下載余弦定理的三個(gè)無(wú)字證明word格式文檔
      下載余弦定理的三個(gè)無(wú)字證明.doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        余弦定理證明過(guò)程

        余弦定理證明過(guò)程ma=√(c^2+(a/2)^2-ac*cosB)=(1/2)√(4c^2+a^2-4ac*cosB)由b^2=a^2+c^2-2ac*cosB得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達(dá)式:ma=(1/2)√=(1/2)√(2b^2+2c^2......

        余弦定理及其證明(精選5篇)

        余弦定理及其證明1.三角形的正弦定理證明:步驟1.在銳角△ABC中,設(shè)三邊為a,b,c。作CH⊥AB垂足為點(diǎn)HCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/sinB......

        3.2勾股定理的“無(wú)字證明”

        學(xué)英語(yǔ)報(bào)社http://全新課標(biāo)理念,優(yōu)質(zhì)課程資源 ·勾股定理的“無(wú)字證明”·教學(xué)目標(biāo)知識(shí)目標(biāo): 了解勾股定理的“無(wú)字證明”法,能通過(guò)拼圖并根據(jù)面積等驗(yàn)證勾股定。能力目標(biāo): 通......

        余弦定理的多種證明

        余弦定理是揭示三角形邊角關(guān)系的重要定理,直接運(yùn)用它可解決一類(lèi)已知三角形兩邊及夾角求第三邊或者是已知三個(gè)邊求角的問(wèn)題,若對(duì)余弦定理加以變形并適當(dāng)移于其它知識(shí),則使用起來(lái)......

        用復(fù)數(shù)證明余弦定理

        用復(fù)數(shù)證明余弦定理法一:證明:建立如下圖所示的直角坐標(biāo)系,則A=(0,0)、B=(c,0),又由任意角三角函數(shù)的定義可得:C=(bcos A,bsin A),以AB、BC為鄰邊作平行四邊形ABCC′,則∠BAC′=π-......

        敘述并證明余弦定理

        敘述并證明余弦定理余弦定理(第二余弦定理)余弦定理是揭示三角形邊角關(guān)系的重要定理,直接運(yùn)用它可解決一類(lèi)已知三角形兩邊及夾角求第三邊或者是已知三個(gè)邊求角的問(wèn)題,若對(duì)余弦......

        余弦定理的證明方法

        余弦定理的證明方法在△ABC中,AB=c、BC=a、CA=b則c^2=a^2+b^2-2ab*cosCa^2=b^2+c^2-2bc*cosAb^2=a^2+c^2-2ac*cosB下面在銳角△中證明第一個(gè)等式,在鈍角△中證明以此類(lèi)推。過(guò)A......

        球面正弦,余弦定理證明

        §4球面余弦定理和正弦定理平面幾何中的三角形全等判定條件說(shuō)明了平面三角形的唯一性,到了平面三角學(xué),把這種唯一性定理提升到有效能算的角邊函數(shù)關(guān)系。其中最基本的就是三角......