欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      幾何證明

      時(shí)間:2019-05-15 13:32:06下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《幾何證明》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《幾何證明》。

      第一篇:幾何證明

      龍文教育浦東分校學(xué)生個(gè)性化教案

      學(xué)生:錢寒松教師:周亞新時(shí)間:2010-11-27

      學(xué)生評價(jià)◇特別滿意◇滿意◇一般◇不滿意

      【教材研學(xué)】

      一、命題

      1.概念:對事情進(jìn)行判斷的句子叫做命題.

      2.組成部分:命題由題設(shè)和結(jié)論兩部分組成.每個(gè)命題都可以寫成“如果??,那么??”的形式,“如果”的內(nèi)容部分是題設(shè),“那么”的內(nèi)容部分是結(jié)論.

      3.分類:命題分為真命題和假命題兩種.判斷正確的命題稱為真命題,反之稱為假命題.驗(yàn)證一個(gè)命題是真命題,要經(jīng)過證明;驗(yàn)證一個(gè)命題是假命題,可以舉出一個(gè)反例.

      二、互逆命題

      1.概念:在兩個(gè)命題中,如果第一個(gè)命題的題設(shè)是第二個(gè)命題的結(jié)論,而第一個(gè)

      命題的結(jié)論是第二個(gè)命題的題設(shè),那么這兩個(gè)命題叫做互逆命題,其中一個(gè)叫做原命題,則另一個(gè)就叫做它的逆命題.

      2.說明:

      (1)任何一個(gè)命題都有逆命題,它們互為逆命題,“互逆”是指兩個(gè)命題之間的關(guān)系;

      (2)把一個(gè)命題的題設(shè)和結(jié)論交換,就得到它的逆命題;

      (3)原命題成立,它的逆命題不一定成立,反之亦然.

      三、互逆定理

      1.概念:如果一個(gè)定理的逆命題也是定理(即真命題),那么這兩個(gè)定理叫做互逆定理,其中一個(gè)定理叫做另一個(gè)定理的逆定理.

      2.說明:

      (1)不是所有的定理都有逆定理,如“對頂角相等”的逆命題是“如果兩個(gè)角相等,那么這兩個(gè)角是對頂角”,這是一個(gè)假命題,所以“對頂角相等”沒有逆定理.

      (2)互逆定理和互逆命題的關(guān)系:互逆定理首先是互逆命題,是互逆命題中要求更為嚴(yán)謹(jǐn)?shù)囊活悾椿ツ婷}包含互逆定理.

      所以∠C=∠C’=90°,即△ABC是直角三角形.

      【點(diǎn)石成金】

      例1. 指出下列命題的題設(shè)和結(jié)論,并寫出它們的逆命題.

      (1)兩直線平行,同旁內(nèi)角互補(bǔ);

      (2)直角三角形的兩個(gè)銳角互余;

      (3)對頂角相等.

      分析:解題的關(guān)鍵是找出原命題的題設(shè)和結(jié)論,然后再利用互逆命題的特征寫出它們的逆命題.

      (1)題設(shè)是“兩條平行線被第三條直線所截”,結(jié)論是“同旁內(nèi)角互補(bǔ)”;逆命題是“如果兩條直線被第三條直線所截,同旁內(nèi)角互補(bǔ),那么這兩條直線平行”.

      (2)題設(shè)是“如果一個(gè)三角形是直角三角形”,結(jié)論是“那么這個(gè)三角形的兩個(gè)銳角互余”;逆命題是“如果一個(gè)三角形中兩個(gè)銳角互余,那么這個(gè)三角形是直角三角形”.

      (3)題設(shè)是“如果兩個(gè)角是對頂角”,結(jié)論是“那么這兩個(gè)角相等”;逆命題是“如果有兩個(gè)角相等,那么它們是課題:幾何證明

      對頂角”.

      名師點(diǎn)金:當(dāng)一個(gè)命題的逆命題不容易寫時(shí),可以先把這個(gè)命題寫成“如果??,那么??”的形式,然后再把題設(shè)和結(jié)論倒過來即可.

      例2.某同學(xué)寫出命題“直角三角形斜邊上的中線等于斜邊的一半”的逆命題是“如果一個(gè)三角形斜邊上的中線等于斜邊的一半,那么這個(gè)三角形是直角三角形”,你認(rèn)為他寫得對嗎?

      分析:寫出一個(gè)命題的逆命題,是把原命題的題設(shè)和結(jié)論互換,但有時(shí)需要適當(dāng)?shù)淖兺?,例如“等腰三角形的兩底角相等”的逆命題不能寫成“兩底角相等的三角形是等腰三角形”,因?yàn)槲覀冞€沒有判斷出是等腰三角形,所以不能有“底角”這個(gè)概念.

      解:上面的寫法不對.原命題條件是直角三角形,斜邊是直角三角形的邊的特有稱呼,該同學(xué)寫的逆命題的條件中提到了斜邊,就已經(jīng)承認(rèn)了直角三角形,就不需要再得這個(gè)結(jié)論了.因此,逆命題應(yīng)寫成“如果一個(gè)三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形”.

      名師點(diǎn)金:在寫一個(gè)命題的逆命題時(shí),千萬要注意一些專用詞的用法.

      例3.如圖,在△ABD和△ACE中,有下列四個(gè)等式:① AB=AC;②AD=AE;③ ∠1=∠2;④BD=CE.請你以其中三個(gè)等式作為題設(shè),余下的作為結(jié)論,寫出一個(gè)真命題(要求寫出已知,求證及證明過程)

      解:選①②③作為題設(shè),④作為結(jié)論.

      已知:如圖19—4—103,AB=AC,AD=AE,∠1=∠2.

      求證:BD=CE,證明:∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD.

      即∠BAD=∠CAE.

      在△BAD和△CAE中,AB=AC.∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(S.A.S.)∴BD=CE.

      名師點(diǎn)金:本題考查的是證明三角形的全等,但條件較為開放.當(dāng)然,此題的條件還可以任選其他三個(gè).

      【練習(xí)】

      1.“兩直線平行,內(nèi)錯(cuò)角相等”的題設(shè)是____________________,結(jié)論是_________________________

      2.判斷:(1)任何一個(gè)命題都有逆命題.()

      (2)任何一個(gè)定理都有逆定理.()

      【升級演練】

      一、基礎(chǔ)鞏固

      1.下列語言是命題的是()

      A.畫兩條相等的線段B.等于同一個(gè)角的兩個(gè)角相等嗎

      C.延長線段AD到C,使OC=OAD.兩直線平行,內(nèi)錯(cuò)角相等

      2.下列命題的逆命題是真命題的是()

      A.直角都相等B.鈍角都小于180。

      龍文教育浦東分校個(gè)性化教案ABDEC.cn

      C.如果x+y=0,那么x=y=0D.對頂角相等

      3.下列說法中,正確的是()

      A.一個(gè)定理的逆命題是正確的B.命題“如果x<0,y>0,那么xy<0”的逆命題是正確的C.任何命題都有逆命題

      D.定理、公理都應(yīng)經(jīng)過證明后才能用

      4.下列這些真命題中,其逆命題也真的是()

      A.全等三角形的對應(yīng)角相等

      B.兩個(gè)圖形關(guān)于軸對稱,則這兩個(gè)圖形是全等形

      C.等邊三角形是銳角三角形

      D.直角三角形中,如果一個(gè)銳角等于30°,那么它所對的直角邊等于斜邊的一半

      5.證明一個(gè)命題是假命題的方法有__________.

      6.將命題“所有直角都相等”改寫成“如果??那么?”的形式為___________。

      7.舉例說明“兩個(gè)銳角的和是銳角”是假命題。

      二、探究提高

      8.下列說法中,正確的是()

      A.每個(gè)命題不一定都有逆命題B.每個(gè)定理都有逆定理

      c.真命題的逆命題仍是真命題D.假命題的逆命題未必是假命題

      9.下列定理中,沒有逆定理的是()

      A.內(nèi)錯(cuò)角相等,兩直線平行B.直角三角形中兩銳角互余

      c.相反數(shù)的絕對值相等D.同位角相等,兩直線平行

      三、拓展延伸

      10.下列命題中的真命題是()

      A.銳角大于它的余角B.銳角大于它的補(bǔ)角

      c.鈍角大于它的補(bǔ)角D.銳角與鈍角之和等于平角

      11.已知下列命題:①相等的角是對頂角;②互補(bǔ)的角就是平角;③互補(bǔ)的兩個(gè)角一定是一個(gè)銳角,另一個(gè)為鈍角;④平行于同一條直線的兩直線平行;⑤鄰補(bǔ)角的平分線互相垂直.其中,正確命題的個(gè)數(shù)為()

      A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

      龍文教育浦東分校個(gè)性化教案

      第二篇:幾何證明

      1.平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段_________.推論1: 經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線必______________.推論2: 經(jīng)過梯形一腰的中點(diǎn),且與底邊平行的直線________________.2.平行線分線段成比例定理:三條平行線截兩條直線,所得的________________成比例.推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應(yīng)線段___________.3.相似三角形的性質(zhì)定理:相似三角形對應(yīng)高的比、對應(yīng)中線的比、對應(yīng)角平分線的比都等于______;相似三角形周長的比、外接圓的直徑比、外接圓的周長比都等于

      _________________;

      相似三角形面積的比、外接圓的面積比都等于____________________;

      4.直角三角形的射影定理:直角三角形斜邊上的高是______________________的比例中項(xiàng);兩直角邊分別是它們在斜邊上_______與_________的比例中項(xiàng).5.圓周角定理:圓上一條弧所對的圓周角等于它所對的____________的一半.圓心角定理:圓心角的度數(shù)等于_______________的度數(shù).推論1:同弧或等弧所對的圓周角_________;同圓或等圓中,相等的圓周角所對的弧_______.o推論2:半圓(或直徑)所對的圓周角是____;90的圓周角所對的弦是________.弦切角定理:弦切角等于它所夾的弧所對的______________.6.圓內(nèi)接四邊形的性質(zhì)定理與判定定理:

      圓的內(nèi)接四邊形的對角______;圓內(nèi)接四邊形的外角等于它的內(nèi)角的_____.如果一個(gè)四邊形的對角互補(bǔ),那么這個(gè)四邊形的四個(gè)頂點(diǎn)______;如果四邊形的一個(gè)外角等于它的內(nèi)角的對角,那么這個(gè)四邊形的四個(gè)頂點(diǎn)_________.7.切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的__________.推論:經(jīng)過圓心且垂直于切線的直線必經(jīng)過_______;經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過______.切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的________.8.相交弦定理:圓內(nèi)兩條相交弦,_____________________的積相等.割線定理:從圓外一點(diǎn)引圓的兩條割線,_____________的兩條線段長的積相等.切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長是__________的比例中項(xiàng).切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長____;

      圓心和這點(diǎn)的連線平分_____的夾角.

      第三篇:幾何證明

      幾何證明

      1.如圖,AD是∠EAC的平分線,AD∥BC,∠B=30 o,求∠EAD、∠DAC、∠C的度數(shù)

      2.已知∠BED=∠B+∠D,試說明AB與CD的位置關(guān)系

      3.如圖,EB∥DC,∠C=∠E,請你說出∠A=∠ADE的理由。

      4.如圖,已知AB//CD,AE//CF,求證:?BAE??DCF

      AEFCD B

      5.如圖,AB//CD,AE平分?BAD,CD與AE相交于F,?CFE??E。求證:

      AD//BC。

      6.如圖,已知AB//CD,?B?40,CN是?BCE的平分線,?

      A

      D

      F

      B

      C

      E

      CM?CN,求?BCM的度數(shù)。

      7.如圖若FD//BE,求?1??2??3的度數(shù)

      A

      N

      M

      C

      D

      E

      第三題

      o

      8.如圖已知?C??AOC,OC平分?AOD,OC?OE?C?63求?D,?BOF的度

      數(shù)

      第四題

      9.已知如圖DB//FG//EC,若?ABD?60,?ACE?36AP平分?BAC求?PAG的度數(shù)

      第五題

      10.,已知如圖AC//DE,DC//FE,CD平分?BCA,那么EF平分?BED?為什么?

      B

      11.1)已知三角形三邊長分別是4,5,6-x,求x的取值范圍

      (2)已知三角形三邊長分別是m,m-1,m+1,求m的取值范圍

      oo

      12.在?ABC中,?B?70?BAC:?BCA?3:2,CD?AD垂足為D且?ACD?35

      oo

      求?BAE的度數(shù)

      ?A?50o?D?44 13.已知AC,BD交與O,BE,CE分別平分?ABD,?ACD且交與E,o

      求?E的度數(shù)。

      E

      o

      14.?ACE?90AC=CE,B為AE上的一點(diǎn),ED?CB于D,AF?CB交CB的延長

      線于F,求證:AF=CD

      第22題

      15,已知AB=CD,BC=DA,E,F(xiàn)為AC上的兩個(gè)點(diǎn),且AE=CF,求證BF//DE

      第23題

      16.AD,BC交于D,BE?AD于E,DF?BC于F且AO=CO,BE=DF,求證 AB=CD

      o

      17.中AB=AC,?BAC?90分別過BC做過A點(diǎn)的直線的垂線,垂足為D,E,求證DE=BD+CE

      第25題

      第四篇:空間幾何證明

      立體幾何中平行、垂直關(guān)系證明的思路

      平行垂直的證明主要利用線面關(guān)系的轉(zhuǎn)化:

      線∥線???線∥面???面∥面性質(zhì)

      ?判定???線⊥線???線⊥面???面⊥面????

      線∥線???線⊥面???面∥面

      線面平行的判定:

      a∥b,b?面?,a???a∥面?

      a b ??

      線面平行的性質(zhì):

      ?∥面?,??面?,????b?a∥b

      三垂線定理(及逆定理):

      PA⊥面?,AO為PO在?內(nèi)射影,a?面?,則

      a⊥OA?a⊥PO;a⊥PO?a⊥AO

      P ??O a

      線面垂直:

      a⊥b,a⊥c,b,c??,b?c?O?a⊥?

      a O α b c

      面面垂直:

      a⊥面?,a?面???⊥?

      面?⊥面?,????l,a??,a⊥l?a⊥?

      α a l β

      a⊥面?,b⊥面??a∥b

      面?⊥a,面?⊥a??∥?

      a b ??

      定理:

      1.如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)。作用:判斷直線是否在平面內(nèi);證明點(diǎn)在平面內(nèi);檢驗(yàn)平面。2.過不在一條直線上的三點(diǎn),有且只有一個(gè)平面。

      作用:確定平面;判斷兩個(gè)平面是否重合;證明點(diǎn)線共面。推論:a.經(jīng)過一條直線和這條直線外的一點(diǎn),有且只有一個(gè)平面;

      b.經(jīng)過兩相交直線,有且只有一個(gè)平面;

      c.經(jīng)過兩條平行直線,有且只有一個(gè)平面。

      3.如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。

      作用:a.判定兩個(gè)不重合平面是否相交;

      b.判斷點(diǎn)在直線上。

      4.平行于同一條直線的兩條直線互相平行。(平行線的傳遞性)。5.等角定理:空間中如果兩個(gè)角的兩邊分別對應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)。6.(直線與平面平行的判定定理)

      平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與該平面平行。條件:a.一條直線在平面外;

      b.一條直線在平面內(nèi);

      c..這兩條直線互相平行。7.(平面與平面平行的判定定理)

      一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面平行,則這兩個(gè)平面平行。條件:a.兩條相交直線;

      b.相交直線在一個(gè)平面內(nèi);

      c.對應(yīng)平行。

      8.(直線與平面平行的性質(zhì)定理)

      一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。

      條件:a.一條直線與一個(gè)平面平行;

      b.過這條直線的任一個(gè)平面與此平面相交;

      c.交線與直線平行。9.(平面與平面平行的性質(zhì)定理)

      如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行。條件:a.兩個(gè)平行平面:平面1和平面2和第三個(gè)平面:平面3

      b.平面1與3相交,平面2與3相交

      c.交線平行

      點(diǎn)、線、面的相關(guān)證明

      一.多點(diǎn)共線和多線共點(diǎn)問題證明

      方法:公理3的熟練應(yīng)用;兩個(gè)相交平面有且只有一條公共直線。

      1.如下圖,在四邊形ABCD中,已知AB//CD,直線AB,BC,AD,DC分別與平面α相交于點(diǎn)E,F(xiàn),G,H。求證:E,F(xiàn),G,H四點(diǎn)必定共線。

      2.如圖所示,在正方體ABCD-A1B1C1D1中,設(shè)線段A1C與平面ABC1D1交于Q.求證:B,Q,D1三點(diǎn)共線。

      3.在正方體ABCD-A1B1C1D1中,E為AB 的中點(diǎn),F(xiàn)為AA1的中點(diǎn),求證:

      a.E,C,D1,F(xiàn)四點(diǎn)共面;

      b.CE,D1F,DA三線共點(diǎn)。

      二.計(jì)算異面直線所成角度

      方法:平移法和輔助線(中位線)構(gòu)造角度

      1.直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=AA1,則異面直線BA1與AC1所成的角度為______________.2.如圖所示,正四棱錐P-ABCD的底面面積為3,體積為√2/2,E為側(cè)棱PC的中點(diǎn),則PA與BE 所成的角為____________.3.如圖所示,正三棱錐S-ABC(側(cè)面為全等的等腰三角形,底面為正三角形)的側(cè)棱長與底面邊長相等,E、F分別是SC、AB的中點(diǎn),異面直線EF與SA所成的角為____________.4.如下圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中點(diǎn),已知AB=2,AD=2√2,PA=2.求:(1)三角形PCD的面積;

      (2)異面直線BC與AE所成的角的大小.5.在正方體ABCD—A1B1C1D1中,M、N、P、Q分別是棱AB、BC、CD、CC1的中點(diǎn),直線MN與PQ所成的度數(shù)_______________.

      第五篇:幾何證明定理

      幾何證明定理

      一.直線與平面平行的(判定)

      1.判定定理.平面外一條直線如果平行于平面內(nèi)的一條直線,那么這條直線與這個(gè)平面平行.2.應(yīng)用:反證法(證明直線不平行于平面)

      二.平面與平面平行的(判定)

      1.判定定理:一個(gè)平面上兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行

      2.關(guān)鍵:判定兩個(gè)平面是否有公共點(diǎn)

      三.直線與平面平行的(性質(zhì))

      1.性質(zhì):一條直線與一個(gè)平面平行,則過該直線的任一與此平面的交線與該直線平行2.應(yīng)用:過這條直線做一個(gè)平面與已知平面相交,那么交線平行于這條直線

      四.平面與平面平行的(性質(zhì))

      1.性質(zhì):如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么他們的交線平行

      2.應(yīng)用:通過做與兩個(gè)平行平面都相交的平面得到交線,實(shí)現(xiàn)線線平行

      五:直線與平面垂直的(定理)

      1.判定定理:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直

      2.應(yīng)用:如果一條直線與一個(gè)平面垂直,那么這條直線垂直于這個(gè)平面內(nèi)所有的直線(線面垂直→線線垂直)

      六.平面與平面的垂直(定理)

      1.一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直

      (或者做二面角判定)

      2.應(yīng)用:在其中一個(gè)平面內(nèi)找到或做出另一個(gè)平面的垂線,即實(shí)現(xiàn)線面垂直證面面垂直的轉(zhuǎn)換

      七.平面與平面垂直的(性質(zhì))

      1.性質(zhì)一:垂直于同一個(gè)平面的兩條垂線平行

      2.性質(zhì)二:如果兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直

      3.性質(zhì)三:如果兩個(gè)平面互相垂直,那么經(jīng)過第一個(gè)平面內(nèi)的一點(diǎn)垂直于第二個(gè)平面內(nèi)的直線,在第一個(gè)平面內(nèi)(性質(zhì)三沒什么用,可以不用記)

      以上,是立體幾何的定理和性質(zhì)整理.是一定要記住的基本!

      31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

      32等腰三角形的頂角平分線、底邊上的中線和高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)

      35推論1三個(gè)角都相等的三角形是等邊三角形

      36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

      37在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半

      38直角三角形斜邊上的中線等于斜邊上的一半

      39定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

      40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

      41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線對稱的兩個(gè)圖形是全等形

      43定理2如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線

      44定理3兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上

      45逆定理如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱

      46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a+b=c

      47勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a+b=c,那么這個(gè)三角形是直角三角形

      48定理四邊形的內(nèi)角和等于360°

      49四邊形的外角和等于360°

      50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°

      51推論任意多邊的外角和等于360°

      52平行四邊形性質(zhì)定理1平行四邊形的對角相等

      53平行四邊形性質(zhì)定理2平行四邊形的對邊相等

      54推論夾在兩條平行線間的平行線段相等

      55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

      56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形

      57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形

      58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形

      59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

      60矩形性質(zhì)定理1矩形的四個(gè)角都是直角

      61矩形性質(zhì)定理2矩形的對角線相等

      62矩形判定定理1有三個(gè)角是直角的四邊形是矩形。

      下載幾何證明word格式文檔
      下載幾何證明.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        淺談幾何證明

        西華師范大學(xué)文獻(xiàn)信息檢索課綜合實(shí)習(xí)報(bào)告檢索課題(中英文):淺談幾何證明 On the geometric proof 一、課題分析 幾何是研究空間結(jié)構(gòu)及性質(zhì)的一門學(xué)學(xué)科。它是數(shù)學(xué)中最基本的研......

        幾何證明測試題(★)

        第一章測試題1. 半徑為1的圓中,長度為1的弦所對的圓周角度數(shù)為:2. ⊙O半徑為5,弦AB=8,CD=6,且AB∥CD,則AB、CD間的距離是.3. 過⊙O內(nèi)一點(diǎn)P,的最長弦是10,最短的弦是6,那么OP的長為___......

        幾何證明計(jì)算題

        幾何證明與綜合應(yīng)用1、 如圖1,四邊形ABCD是正方形,G是BC上任意一點(diǎn)(點(diǎn)G與B、C不重合),AE⊥DG于E,2、 CF∥AE交DG于F.(1)在圖中找出一對全等三角形,并加以證明;(2)求證:AE=FC+EF.2、如圖2,......

        2013幾何證明

        2013幾何證明1.(2013年普通高等學(xué)校招生統(tǒng)一考試重慶數(shù)學(xué)(理)試題(含答案))如圖,在ABC中,?C?900,?A?600,AB?20,過C作ABC的外接圓的切線CD,BD?CD,BD與外接圓交于點(diǎn)E,則DE的長為__________......

        高中幾何證明

        高中幾何證明一、已知平行四邊形ABCD,過ABC三點(diǎn)的圓O1,分別交AD.BD于E.F、過CDF三點(diǎn)的圓O2交AD于G。設(shè)圓O1.O2半徑分別為R,r。1.求證AC^2=AG*AD2.AD:EG=R^2:r^2連接AC、GC。利......

        幾何證明練習(xí)題

        幾何證明1、 已知:在⊿ABC中,AB=AC,延長AB到D,使AB=BD,E是AB的中點(diǎn)。求證:CD=2CE。C2、 已知:在⊿ABC中,作∠FBC=∠ECB=2∠A。求證:BE=CF。BC3、 已知:在⊿ABC中,∠A=900,AB=AC,在BC上任......

        幾何證明(一)

        幾何證明(一)例1. 已知:A,B,C三點(diǎn)在同一直線上,△ABD和△BCE都是等邊三角形,AE交BD于M,CD交BE于N求證:MN∥ACC例2.已知:AD是Rt△ABC斜邊上的高,角平分線BE交AD于F,EG⊥BC交BC于G求證:FG∥......

        幾何證明6

        ☆☆☆☆☆ 初二數(shù)學(xué)課內(nèi)練習(xí)☆☆☆☆☆ 初二數(shù)學(xué)課內(nèi)練習(xí)☆☆☆☆☆幾何證明練習(xí)(六)一、如圖,AD為△ABC的角平分線,過C作AD的垂線交AB于E點(diǎn),O為垂足,EF∥BC,求證:CE平分∠DEF.二......