第一篇:高二數(shù)學(xué)《雙曲線的定義及其標(biāo)準(zhǔn)方程》說課稿
一、教材分析與處理
1、教材的地位與作用
學(xué)生初步認(rèn)識圓錐曲線是從橢圓開始的,雙曲線的學(xué)習(xí)是對其研究內(nèi)容的進(jìn)一步深化和提高。如果雙曲線研究的透徹、清楚,那么拋物線的學(xué)習(xí)就會順理成章。所以說本節(jié)課的作用就是縱向承接橢圓定義和標(biāo)準(zhǔn)方程的研究,橫向為雙曲線的簡單性質(zhì)的學(xué)習(xí)打下基礎(chǔ)。
2、學(xué)生狀況分析:
學(xué)生在學(xué)習(xí)這節(jié)課之前,已掌握了橢圓的定義和標(biāo)準(zhǔn)方程,也曾經(jīng)嘗試過探究式的學(xué)習(xí)方式,所以說從知識和學(xué)習(xí)方式上來說學(xué)生已具備了自行探索和推導(dǎo)方程的基礎(chǔ)。另外,高二學(xué)生思維活躍,敢于表現(xiàn)自己,不喜歡被動地接受別人現(xiàn)成的觀點,但同時也缺乏發(fā)現(xiàn)問題和提出問題的意識。
根據(jù)以上對教材和學(xué)生的分析,考慮到學(xué)生已有的認(rèn)知規(guī)律我希望學(xué)生能達(dá)到以下三個教學(xué)目標(biāo)。
3、教學(xué)目標(biāo)
(1)知識與技能:理解雙曲線的定義并能獨立推導(dǎo)標(biāo)準(zhǔn)方程;
(2)過程與方法:通過定義及標(biāo)準(zhǔn)方程的挖掘與探究,使學(xué)生進(jìn)一步體驗類比及數(shù)形結(jié)合等思想方法的運用,提高學(xué)生的觀察與探究能力;
(3)情感態(tài)度與價值觀:通過教師指導(dǎo)下的學(xué)生交流探索活動,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生用聯(lián)系的觀點認(rèn)識問題。
4.教學(xué)重點、難點
依據(jù)教學(xué)目標(biāo),根據(jù)學(xué)生的認(rèn)知規(guī)律,確定本節(jié)課的重點是理解和掌握雙曲線的定義及其標(biāo)準(zhǔn)方程。難點是雙曲線標(biāo)準(zhǔn)方程的推導(dǎo)。
5、教材處理:
我對教學(xué)內(nèi)容作了一點調(diào)整:教材中是借用細(xì)繩畫出的雙曲線圖形,而我改用幾何畫板畫出雙曲線圖形。因為相比之下,幾何畫板更為形象直觀。通過幾何畫板,學(xué)生不僅可看到雙曲線形成的過程,而且較易看出橢圓與雙曲線形成的聯(lián)系和區(qū)別。
二、教學(xué)方法與教學(xué)手段
1、教學(xué)方法
著名數(shù)學(xué)家波利亞認(rèn)為:“學(xué)習(xí)任何東西最好的途徑是自己去發(fā)現(xiàn)。”
雙曲線的定義和標(biāo)準(zhǔn)方程與橢圓很類似,學(xué)生已經(jīng)有了一些學(xué)習(xí)橢圓的經(jīng)驗,所以本節(jié)課我采用了“啟發(fā)探究”式的教學(xué)方法,重點突出以下兩點:
(1)以類比思維作為教學(xué)的主線
(2)以自主探究作為學(xué)生的學(xué)習(xí)方法
2、教學(xué)手段
采用多媒體輔助教學(xué)。體現(xiàn)在用幾何畫板畫雙曲線。但不是單純用動畫演示給學(xué)生看,而是用動畫啟發(fā)引導(dǎo)學(xué)生思考,調(diào)動學(xué)生學(xué)習(xí)的積極性。
三、教學(xué)過程與設(shè)計
為達(dá)到本節(jié)課的教學(xué)目標(biāo),更好地突出重點,分散難點,我把教學(xué)過程分為四個階段。
(一)知識引入----知識回顧、觀察動畫、概括定義
在課的開始我設(shè)置了這樣幾個問題,以幫助學(xué)生進(jìn)行知識回顧:
(1)橢圓的第一定義是什么?定義中哪些字非常關(guān)鍵?
(2)橢圓的標(biāo)準(zhǔn)方程是什么?
第二篇:《雙曲線及其標(biāo)準(zhǔn)方程》說課稿
《雙曲線及其標(biāo)準(zhǔn)方程》說課稿
《雙曲線及其標(biāo)準(zhǔn)方程》說課稿1
一、教材分析
1、教材地位
本節(jié)課是新課程人教A版選修2-1第2章第三節(jié)第一課時。它是在學(xué)生學(xué)習(xí)了直線、圓和橢圓的基礎(chǔ)上進(jìn)一步研究學(xué)習(xí)的,也為后面的拋物線及其標(biāo)準(zhǔn)方程做鋪墊。
2、教材作用(重要模型,數(shù)形結(jié)合)
圓錐曲線是一個重要的幾何模型,有許多幾何性質(zhì),這些性質(zhì)在日常生活、生產(chǎn)和科學(xué)技術(shù)中有著廣泛的應(yīng)用。同時,圓錐曲線也是體現(xiàn)數(shù)形結(jié)合思想的重要素材。
3、設(shè)計理念:體現(xiàn)素質(zhì)教育的要求和新課程理念,融合“知識與技能”、“過程與方法”、“情感態(tài)度與價值觀”三維教學(xué)目標(biāo),注重學(xué)生學(xué)習(xí)過程的體驗,體現(xiàn)自主、合作、探究的學(xué)習(xí)方式;注重數(shù)學(xué)基本能力的培養(yǎng)和基礎(chǔ)知識的掌握,又注重數(shù)學(xué)思想與方法的教育,同時反映數(shù)學(xué)學(xué)科前沿以及與科學(xué)、技術(shù)、社會的聯(lián)系;教學(xué)過程中體現(xiàn)過程性評價對學(xué)生發(fā)展的作用,體現(xiàn)教師的有效指導(dǎo)作用。
二、目標(biāo)分析
1、知識與技能目標(biāo)
①理解雙曲線的定義
②能根據(jù)已知條件求雙曲線的標(biāo)準(zhǔn)方程。
③進(jìn)一步感受曲線方程的概念,了解建立曲線方程的基本方法。
2、過程與方法目標(biāo)
①提高運用坐標(biāo)法解決幾何問題的能力及運算能力。
②培養(yǎng)學(xué)生利用數(shù)形結(jié)合這一思想方法研究問題。
③培養(yǎng)學(xué)生的類比推理能力、觀察能力、歸納能力、探索發(fā)現(xiàn)能力。
3、情感、態(tài)度與價值觀目標(biāo)
①親身經(jīng)歷雙曲線及其標(biāo)準(zhǔn)方程的獲得過程,感受數(shù)學(xué)美的熏陶。
②通過主動探索,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學(xué)的理性和嚴(yán)謹(jǐn)。
③養(yǎng)成實事求是的科學(xué)態(tài)度和契而不舍的鉆研精神,形成學(xué)習(xí)數(shù)學(xué)知識的積極態(tài)度。
4、重點難點
基于以上分析,我將本課的教學(xué)重點、難點確定為:
①重點:感受建立曲線方程的基本過程,掌握雙曲線的標(biāo)準(zhǔn)方程及其推導(dǎo)方法。
②難點:雙曲線的標(biāo)準(zhǔn)方程的推導(dǎo)。
三、學(xué)情分析:
1、知識方面:學(xué)生已經(jīng)學(xué)習(xí)直線、圓和橢圓,基本掌握了求曲線方程的一般方法,能對含有兩個根式的方程進(jìn)行化簡,對數(shù)形結(jié)合、類比推理的思想方法有一定的體會。
2、能力方面:學(xué)生對基本的計算機(jī)操作較為熟練、有一定的學(xué)習(xí)基礎(chǔ)和分析問題、解決問題的能力,且有一定的群體性小組交流能力與協(xié)同討論學(xué)習(xí)能力。
四、教法學(xué)法分析
在教法上,主要采用探究性教學(xué)法和啟發(fā)式教學(xué)法。探究性學(xué)習(xí)就是充分利用了青少年學(xué)生富有創(chuàng)造性和好奇心,敢想敢為,對新事物具有濃厚的興趣的特點。讓學(xué)生根據(jù)教學(xué)目標(biāo)的要求和題目中的已知條件,自覺主動地創(chuàng)造性地去分析問題、討論問題、解決問題。
啟發(fā)式教學(xué)法就是以啟發(fā)、引導(dǎo)為主,采用設(shè)疑的形式,逐步讓學(xué)生進(jìn)行探究性的學(xué)習(xí)。通過創(chuàng)設(shè)情境,充分調(diào)動學(xué)生已有的學(xué)習(xí)經(jīng)驗,讓學(xué)生經(jīng)歷“觀察——猜想——證明——應(yīng)用”的過程,發(fā)現(xiàn)新的知識,把學(xué)生的潛意識狀態(tài)的好奇心變?yōu)樽杂X求知的創(chuàng)新意識。又通過實際操作,使剛產(chǎn)生的數(shù)學(xué)知識得到完善,提高了學(xué)生動手動腦的能力和增強了研究探索的綜合素質(zhì)。
新課程倡導(dǎo)“自主、合作、探究”學(xué)習(xí),引導(dǎo)學(xué)生自主探索、發(fā)現(xiàn)知識;通過設(shè)計問題,以支撐學(xué)生積極的學(xué)習(xí)活動,幫助他們成為學(xué)習(xí)活動的主體;創(chuàng)設(shè)真實的問題情境,誘發(fā)他們進(jìn)行探索與解決問題。并注意培養(yǎng)學(xué)生的動手實踐能力。
五、說教學(xué)過程
教學(xué)環(huán)節(jié)教學(xué)過程設(shè)計意圖
復(fù)習(xí)引入
這一環(huán)節(jié)既可以使學(xué)生溫故而知新,也為后面的學(xué)習(xí)做好鋪墊。
雙曲線的定義通過課本的實驗探究(以動畫形式展示),引入雙曲線的定義:平面內(nèi)與兩定點的距離的差的絕對值等于常數(shù)(小于)的點的集合。
符號表示:xx
其中:焦點——;焦距——(設(shè)為);
設(shè)常數(shù)
思考:
1、去掉“絕對值”后,點M的軌跡為什么?(用動畫展示)
2、若常數(shù),則點M的軌跡是什么?(用動畫展示)
1、讓學(xué)生在具體的問題情境中經(jīng)歷知識的形成和發(fā)展,將實際問題抽象為數(shù)學(xué)模型,并進(jìn)行解釋與運用的過程。課堂教學(xué)的關(guān)鍵是要激發(fā)學(xué)生的求知欲,讓學(xué)生主動參與,發(fā)現(xiàn)學(xué)習(xí)。
2、通過設(shè)問,把學(xué)生逐步引入問題情景中,通過師生互動等形式,讓學(xué)生在問題中學(xué)會思考,學(xué)會學(xué)習(xí),最終使問題得以解決。同時,問題具有一定的梯度,對學(xué)生的思考有一定的引導(dǎo)和啟發(fā)作用。
雙曲線的標(biāo)準(zhǔn)方程1、復(fù)習(xí)求曲線方程的一般步驟:建系、設(shè)點——列式——化簡——檢驗
2、推導(dǎo)焦點在x軸和y軸上的雙曲線的標(biāo)準(zhǔn)方程
學(xué)生分成兩大組,一組推導(dǎo)焦點在x軸上的雙曲線的標(biāo)準(zhǔn)方程,另一組推導(dǎo)焦點在y軸上的雙曲線的標(biāo)準(zhǔn)方程,最后交換結(jié)論。
3、比較兩種標(biāo)準(zhǔn)方程。
兩點說明:
①關(guān)系:
②如何判斷焦點的位置:看前的系數(shù)的正負(fù),哪一項為正,則在相應(yīng)的軸上。(口訣:焦點看正負(fù)?。?/p>
1、在比較如何化簡方程簡單后,我選擇放手讓學(xué)生化簡,讓學(xué)生體驗化簡方程的艱辛,經(jīng)受鍛煉,嘗試成功,提高學(xué)生參與教學(xué)過程的積極性。
2、在得到雙曲線的標(biāo)準(zhǔn)方程之后,我和學(xué)生共同總結(jié)推導(dǎo)雙曲線標(biāo)準(zhǔn)方程的步驟,其目的是進(jìn)一步強化求曲線方程的一般步驟,同時也讓學(xué)生享受成功的喜悅。
3、體現(xiàn)類比推理的思想.培養(yǎng)學(xué)生歸納總結(jié)和類比推理的能力.
4、在推導(dǎo)過程中我令,一是為了美化方程,使方程具有對稱性,二是為后面幾何性質(zhì)的學(xué)習(xí)做鋪墊。
例題解析
例1的教學(xué)是為了讓學(xué)生清楚:求雙曲線的焦點坐標(biāo)(或者是方程當(dāng)中的),必須要把方程化為標(biāo)準(zhǔn)方程。
通過例2讓學(xué)生明白,求雙曲線的標(biāo)準(zhǔn)方程主要是確定兩個要素:一是雙曲線的位置,由焦點來決定;二是雙曲線的形狀,由來決定。
例3是雙曲線的實際應(yīng)用,關(guān)鍵是利用雙曲線的定義來解題,要注意焦點的位置。
課堂小結(jié)
為了讓學(xué)生建構(gòu)自己的知識體系,我讓學(xué)生自己概括所學(xué)的內(nèi)容。我認(rèn)為這樣既能培養(yǎng)了學(xué)生的概括能力,又能營造民主和諧的師生關(guān)系。
作業(yè)布置上交:人教版高中數(shù)學(xué)選修2--1
P61習(xí)題2、3A組第2,5題
進(jìn)一步鞏固本節(jié)課所學(xué)內(nèi)容
六、板書設(shè)計:
一、雙曲線的定義
二、雙曲線的標(biāo)準(zhǔn)方程
1、焦點在x軸上
2、焦點在y軸上
三、例題解析
例1
例2
例3
我選擇這樣的板書設(shè)計,其目的是讓學(xué)生清楚的認(rèn)識到本節(jié)課的重要內(nèi)容。
《雙曲線及其標(biāo)準(zhǔn)方程》說課稿2
一、教材分析與處理
(一)教材的地位與作用
學(xué)生初步認(rèn)識圓錐曲線是從橢圓開始的,雙曲線的學(xué)習(xí)是對其研究內(nèi)容的進(jìn)一步深化和提高。如果雙曲線研究的透徹、清楚,那么拋物線的學(xué)習(xí)就會順理成章。所以說本節(jié)課的作用就是縱向承接橢圓定義和標(biāo)準(zhǔn)方程的研究,橫向為雙曲線的簡單性質(zhì)的學(xué)習(xí)打下基礎(chǔ)。
(二)學(xué)生狀況分析
學(xué)生在學(xué)習(xí)本節(jié)課之前,已掌握了橢圓的定義和標(biāo)準(zhǔn)方程,也曾經(jīng)嘗試過探究式的學(xué)習(xí)方式,所以說從知識和學(xué)習(xí)方式上來說學(xué)生已具備了自行探索和推導(dǎo)方程的基礎(chǔ)。另外,高二學(xué)生思維活躍,敢于表現(xiàn)自己,不喜歡被動地接受別人現(xiàn)成的觀點,但同時也缺乏發(fā)現(xiàn)問題和提出問題的意識。
根據(jù)以上對教材和學(xué)生的分析,考慮到學(xué)生已有的認(rèn)知規(guī)律,我希望學(xué)生能達(dá)到以下三個教學(xué)目標(biāo)。
(三)教學(xué)目標(biāo)
1、知識與技能:理解雙曲線的定義并能獨立推導(dǎo)標(biāo)準(zhǔn)方程;
2、過程與方法:通過定義及標(biāo)準(zhǔn)方程的挖掘與探究 ,使學(xué)生進(jìn)一步體驗類比、數(shù)形結(jié)合等思想方法的運用,提高學(xué)生的觀察與探究能力;
3、情感態(tài)度與價值觀:通過教師指導(dǎo)下的學(xué)生交流探索活動,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生用聯(lián)系的觀點認(rèn)識問題。
(四)教學(xué)重點、難點依據(jù)教學(xué)目標(biāo),根據(jù)學(xué)生的認(rèn)知規(guī)律,確定本節(jié)課的重點為理解和掌握雙曲線的定義及其標(biāo)準(zhǔn)方程。
難點為雙曲線標(biāo)準(zhǔn)方程的推導(dǎo)。
(五)教材處理
我對教學(xué)內(nèi)容作了一點調(diào)整:教材中是借用細(xì)繩畫出的雙曲線圖形,而我改用幾何畫板畫出雙曲線圖形。因為相比之下,幾何畫板更為形象直觀。通過幾何畫板,學(xué)生不僅可看到雙曲線形成的過程,而且較易看出橢圓與雙曲線的聯(lián)系和區(qū)別。
二、教學(xué)方法與教學(xué)手段
(一)教學(xué)方法
著名數(shù)學(xué)家波利亞認(rèn)為:“學(xué)習(xí)任何東西最好的途徑是自己去發(fā)現(xiàn)?!彪p曲線的定義和標(biāo)準(zhǔn)方程與橢圓很類似,學(xué)生已經(jīng)有了一些學(xué)習(xí)橢圓的經(jīng)驗,所以本節(jié)課我采用了“啟發(fā)探究”式的教學(xué)方式。
重點突出以下兩點:
1、以類比思維作為教學(xué)的主線
2、以自主探究作為學(xué)生的學(xué)習(xí)方式
(二)教學(xué)手段
采用多媒體輔助教學(xué),體現(xiàn)在用幾何畫板畫雙曲線。但不是單純用動畫給學(xué)生看,而是通過動畫啟發(fā)引導(dǎo)學(xué)生進(jìn)行思考,調(diào)動學(xué)生學(xué)習(xí)的積極性。
三、教學(xué)過程與設(shè)計
為達(dá)到本節(jié)課的`教學(xué)目標(biāo),更好地突出重點,分散難點,我將教學(xué)過程分為四個階段。
(一) 知識引入---- 知識回顧、觀察動畫、概括定義在課的開始我設(shè)置了這樣幾個問題,以幫助學(xué)生進(jìn)行知識回顧:
1、橢圓的第一定義是什么?定義中哪些字非常關(guān)鍵?
2、橢圓的標(biāo)準(zhǔn)方程是什么?
3、如何判斷焦點位置?a、b、c是何種關(guān)系?
通過回顧,既檢測了學(xué)生對前面知識的掌握情況,同時又為下面雙曲線的學(xué)習(xí)做好鋪墊。之后,告訴學(xué)生:今天要學(xué)習(xí)一種新的曲線。打開幾何畫板,首先通過動畫讓學(xué)生再一次回顧橢圓的生成過程,然后改變圖中的條件,將F1,F2距離變大,動畫生成一種新的曲線,學(xué)生易看出該曲線為雙曲線。雙曲線的定義其實就是動點所滿足的關(guān)系,那么雙曲線的定義是什么?也就是動點所滿足的關(guān)系是什么?這個問題可讓學(xué)生進(jìn)行探究。解決這個問題有兩個難點:一是距離的運算關(guān)系的得出;二是運算關(guān)系的簡化。在探究中,學(xué)生類比橢圓會想到動點到兩定點的距離差為定值,會認(rèn)為這個定值必是正值,而會忽視距離差為負(fù)值的情況,其實這只能得到雙曲線的一支。對于這種情況,我會采取啟發(fā)引導(dǎo),把P從一支移到另一支,然后讓學(xué)生再次思考自己得到的關(guān)系是否正確。在引導(dǎo)下,學(xué)生會想到動點到兩定點的距離差為正值或正值的相反數(shù)。但這個關(guān)系能不能加以簡化?學(xué)生這個時候會聯(lián)想到可利用絕對值進(jìn)行簡化。這樣就得到了動點所滿足的較為精煉的關(guān)系,也就是得到了雙曲線的定義。這一設(shè)計讓學(xué)生先形象直觀地看到橢圓與雙曲線的形成過程,在此基礎(chǔ)上,再通過教師的引導(dǎo),生就可在觀察思考中一步一步地由感性認(rèn)識上升到理性認(rèn)識,最終得到雙曲線定義,從而培養(yǎng)了學(xué)生的觀察能力及概括能力。另外,這一設(shè)計也在形的方面實現(xiàn)了橢圓與雙曲線的比較,也為下面雙曲線定義的挖掘及兩種曲線的對比打下基礎(chǔ)。隨著雙曲線定義的得出,教學(xué)進(jìn)入第二階段---知識探索
(二) 知識探索---- 定義的挖掘、標(biāo)準(zhǔn)方程的推導(dǎo)、方程的對比
1、定義的挖掘
在這一環(huán)節(jié)中,我們要認(rèn)識到定義中的絕對值和兩點間距離與常數(shù)的大小關(guān)系二者對曲線的影響。
首先,我設(shè)置了這樣兩個問題:
(1)類比橢圓尋找雙曲線定義中的關(guān)鍵字;
(2)若分別去掉這幾個關(guān)鍵字曲線會發(fā)生怎樣變化?
《雙曲線及其標(biāo)準(zhǔn)方程》說課稿3
一、教材分析與處理
1、教材的地位與作用
學(xué)生初步認(rèn)識圓錐曲線是從橢圓開始的,雙曲線的學(xué)習(xí)是對其研究內(nèi)容的進(jìn)一步深化和提高。如果雙曲線研究的透徹、清楚,那么拋物線的學(xué)習(xí)就會順理成章。所以說本節(jié)課的作用就是縱向承接橢圓定義和標(biāo)準(zhǔn)方程的研究,橫向為雙曲線的簡單性質(zhì)的學(xué)習(xí)打下基礎(chǔ)。
2、學(xué)生狀況分析:
學(xué)生在學(xué)習(xí)這節(jié)課之前,已掌握了橢圓的定義和標(biāo)準(zhǔn)方程,也曾經(jīng)嘗試過探究式的學(xué)習(xí)方式,所以說從知識和學(xué)習(xí)方式上來說學(xué)生已具備了自行探索和推導(dǎo)方程的基礎(chǔ)。另外,高二學(xué)生思維活躍,敢于表現(xiàn)自己,不喜歡被動地接受別人現(xiàn)成的觀點,但同時也缺乏發(fā)現(xiàn)問題和提出問題的意識。
根據(jù)以上對教材和學(xué)生的分析,考慮到學(xué)生已有的認(rèn)知規(guī)律我希望學(xué)生能達(dá)到以下三個教學(xué)目標(biāo)。
3、教學(xué)目標(biāo)
(1)知識與技能:理解雙曲線的定義并能獨立推導(dǎo)標(biāo)準(zhǔn)方程;
(2)過程與方法:通過定義及標(biāo)準(zhǔn)方程的挖掘與探究 ,使學(xué)生進(jìn)一步體驗類比及數(shù)形結(jié)合等思想方法的運用,提高學(xué)生的觀察與探究能力;
(3)情感態(tài)度與價值觀:通過教師指導(dǎo)下的學(xué)生交流探索活動,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生用聯(lián)系的觀點認(rèn)識問題。
4.教學(xué)重點、難點
依據(jù)教學(xué)目標(biāo),根據(jù)學(xué)生的認(rèn)知規(guī)律,確定本節(jié)課的重點是理解和掌握雙曲線的定義及其標(biāo)準(zhǔn)方程。難點是雙曲線標(biāo)準(zhǔn)方程的推導(dǎo)。
5、教材處理:
我對教學(xué)內(nèi)容作了一點調(diào)整:教材中是借用細(xì)繩畫出的雙曲線圖形,而我改用幾何畫板畫出雙曲線圖形。因為相比之下,幾何畫板更為形象直觀。通過幾何畫板,學(xué)生不僅可看到雙曲線形成的過程,而且較易看出橢圓與雙曲線形成的聯(lián)系和區(qū)別。
二、教學(xué)方法與教學(xué)手段
1、教學(xué)方法
著名數(shù)學(xué)家波利亞認(rèn)為:“學(xué)習(xí)任何東西最好的途徑是自己去發(fā)現(xiàn)。”
雙曲線的定義和標(biāo)準(zhǔn)方程與橢圓很類似,學(xué)生已經(jīng)有了一些學(xué)習(xí)橢圓的經(jīng)驗, 所以本節(jié)課我
采用了“啟發(fā)探究”式的教學(xué)方法,重點突出以下兩點:
(1)以類比思維作為教學(xué)的主線
(2)以自主探究作為學(xué)生的學(xué)習(xí)方法
2、教學(xué)手段
采用多媒體輔助教學(xué)。體現(xiàn)在用幾何畫板畫雙曲線。但不是單純用動畫演示給學(xué)生看,而是用動畫啟發(fā)引導(dǎo)學(xué)生思考,調(diào)動學(xué)生學(xué)習(xí)的積極性。
三、教學(xué)過程與設(shè)計
為達(dá)到本節(jié)課的教學(xué)目標(biāo),更好地突出重點,分散難點,我把教學(xué)過程分為四個階段。
(一)知識引入---- 知識回顧、觀察動畫、概括定義
在課的開始我設(shè)置了這樣幾個問題,以幫助學(xué)生進(jìn)行知識回顧:
(1)橢圓的第一定義是什么?定義中哪些字非常關(guān)鍵?
(2)橢圓的標(biāo)準(zhǔn)方程是什么?
第三篇:雙曲線的定義及其標(biāo)準(zhǔn)方程教案
3eud教育網(wǎng) http://www.3edu.net 百萬教學(xué)資源,完全免費,無須注冊,天天更新!
圓錐曲線教案 雙曲線的定義及其標(biāo)準(zhǔn)方程教案
教學(xué)目標(biāo)
1.通過教學(xué),使學(xué)生熟記雙曲線的定義及其標(biāo)準(zhǔn)方程,理解雙曲線的定義,雙曲線的標(biāo)準(zhǔn)方程的探索推導(dǎo)過程.
2.在與橢圓的類比中獲得雙曲線的知識,培養(yǎng)學(xué)生會合情猜想,進(jìn)一步提高分析、歸納、推理的能力.
3.培養(yǎng)學(xué)生濃厚的學(xué)習(xí)興趣,獨立思考、勇于探索精神及實事求是的科學(xué)態(tài)度.
教學(xué)重點與難點
雙曲線的定義和標(biāo)準(zhǔn)方程及其探索推導(dǎo)過程是本課的重點.定義中的“差的絕對值”,a與c的關(guān)系的理解是難點.
教學(xué)過程
師:橢圓的定義是什么?橢圓的標(biāo)準(zhǔn)方程是什么?
(學(xué)生口述橢圓的兩個定義,標(biāo)準(zhǔn)方程,教師利用投影儀把橢圓的定義、標(biāo)準(zhǔn)方程和圖象放出來.)師:橢圓的兩個定義雖然都是由軌跡的問題引出來的,但所采用的方法是不同的.定義二是在認(rèn)識上已經(jīng)把橢圓和方程統(tǒng)一起來,在掌握了坐標(biāo)法基礎(chǔ)上利用坐標(biāo)方法建立軌跡方程.這是通過方程去認(rèn)識軌跡曲線.定義中設(shè)定的常數(shù)2a,|F1F2|=2c,它們之間的變化對橢圓有什么影響?
生:當(dāng)a=c時,相應(yīng)的軌跡是線段F1F2.當(dāng)a<c時,軌跡不存在.這是因為a、c的關(guān)系違背了三角形中邊與邊之間的關(guān)系.
師:如果把橢圓定義中的“平面內(nèi)與兩個定點F1、F2的距離的和”改寫為“平面內(nèi)與兩個定點F1、F2的距離的差”,那么點的軌跡會怎樣?它的方程又是怎樣的呢?
(師生共同做一個簡單的實驗,請同學(xué)們把準(zhǔn)備好的實驗用具拿出來,一起做實驗.教師把教具掛在黑板上,同時板書:平面內(nèi)與兩個定點F1、F2的距離之差為常數(shù)的點的軌跡是什么曲線?邊畫、邊操作、邊說明.)師:做法是:適當(dāng)選取兩定點F1、F2,將拉鎖拉開一段,其中一邊的端點固定在F1處,在另一邊上截取一段AF2(<F1F2),作為動點M到兩定點F1和F2距離之3eud教育網(wǎng) http://www.3edu.net 教學(xué)資源集散地??赡苁亲畲蟮拿赓M教育資源網(wǎng)!3eud教育網(wǎng) http://www.3edu.net 百萬教學(xué)資源,完全免費,無須注冊,天天更新!
差.而后把它固定在F2處.這時將鉛筆(粉筆)置于P處,于是隨著拉鎖的逐漸打開鉛筆就徐徐畫出一條曲線;同理可畫出另一支.如圖2-36.
師:通過這個實驗,你們發(fā)現(xiàn)了什么?
生:所畫的曲線不是橢圓,是兩條相同的曲線,只是位置不同.其原因都是應(yīng)用“平面內(nèi)與兩個定點的距離之差|MF1|-|MF2|(或|MF2|-|MF1|)是同一常數(shù)的條件畫圖的.
師:所畫出圖象與橢圓完全不同,能說出屬于哪一類曲線嗎? 生:屬于雙曲型曲線.
師:很好!我們把這類曲線就叫做雙曲線.我們思考以下幾個問題: 1.|MF1|和|MF2|哪個大?
生:不一定.當(dāng)點M在雙曲線右支時,有|MF1|>|MF2|,當(dāng)點M在雙曲線左支時,|MF1|<|MF2|.
師:2.點M與點F1、F2距離之差是否就應(yīng)是|MF1|-|MF2|? 生:未必是.也可以是|MF2|-|MF1|. 師:如何表示這兩種情況?
生:若要同時表示這兩種情況,正確的表示是應(yīng)||MF1|-|MF2||.無論哪種情況總是成立的.
師:3.點M與點F1、F2的距離之差的絕對值與|F1F2|的大小關(guān)系怎樣? 生:由三角形的兩邊之差小于第三邊可知,應(yīng)是小于|F1F2|.否則作不出圖形.
在上述討論的基礎(chǔ)上,引導(dǎo)學(xué)生概括出雙曲線的定義,教師板書課題.
3eud教育網(wǎng) http://www.3edu.net 教學(xué)資源集散地??赡苁亲畲蟮拿赓M教育資源網(wǎng)!3eud教育網(wǎng) http://www.3edu.net 百萬教學(xué)資源,完全免費,無須注冊,天天更新!
(學(xué)生試敘述,教師協(xié)助完成.)
一、雙曲線的定義
平面內(nèi)與兩個定點F1、F2的距離的差的絕對值是常數(shù)2a(a>0且小于|F1F2|)的點的軌跡叫做雙曲線.這兩個定點叫做雙曲線的焦點,這兩個焦點間的距離叫做焦距,記作2c(c>0).
通過學(xué)生自己動手畫圖,得到了雙曲線定義,同時進(jìn)一步讓學(xué)生在實驗中觀察定義中兩個常數(shù)間大小關(guān)系對于動點M的軌跡的影響.激發(fā)學(xué)生探求知識的興趣,調(diào)動學(xué)生的求知的渴望.師生共同歸納:
師:由定義知||MF1|-|MF2||=2a,|F1F2|=2c,并設(shè)動點為M,請大家討論以下幾個問題:
(1)當(dāng)0<a<c時,動點M的軌跡是什么? 學(xué)生略思考一下,回答出是雙曲線.(2)當(dāng)a=c時,動點M的軌跡是什么?
分析
若a=c,也就是||MF1|-|MF2||=2a=2c,如圖2-37所示:
可以看出,動點M的軌跡是分別以點F1、F2為端點,方向指向F1F2外側(cè)的兩條射線.
(3)當(dāng)a>c>0時,動點M的軌跡是什么?
由前面歸納已知動點M的軌跡不存在.這是因為a、c的關(guān)系違背了三角形中兩邊之差小于第三邊的性質(zhì).
二、雙曲線的標(biāo)準(zhǔn)方程
師:現(xiàn)在來研究雙曲線的方程.我們可以參照求橢圓的方程的方法來求雙曲線的方程.首先建立直角坐標(biāo)系,即以兩定點連線為x軸,兩定點的垂直平分線為y軸.然后,觀察雙曲線的特征,猜測雙曲線方程的結(jié)構(gòu)與橢圓方程的結(jié)構(gòu)是否有類似之處?(如圖2-38)3eud教育網(wǎng) http://www.3edu.net 教學(xué)資源集散地??赡苁亲畲蟮拿赓M教育資源網(wǎng)!3eud教育網(wǎng) http://www.3edu.net 百萬教學(xué)資源,完全免費,無須注冊,天天更新!
當(dāng)點M移動到x軸上點A1、A2時,如何求點A1、A2的坐標(biāo)? 生:點A1、A2是關(guān)于原點對稱的,所以|A1A2|=|F1F2|-|F1A1|-|F2A2|=|F1F2|-2|F2A2|=|F1A2|-|F2A2|=2a.
所以點A1和A2的坐標(biāo)分別是(-a,0)和(a,0).
師:請同學(xué)們對照橢圓的定義及其標(biāo)準(zhǔn)方程推導(dǎo)過程導(dǎo)出雙曲線的標(biāo)準(zhǔn)方程.
生:1.建立直角坐標(biāo)系.
2.設(shè)雙曲線上任意一點的坐標(biāo)為M(x、y),|F1F2|=2c,并設(shè)F1(-c,0),F(xiàn)2(c,0).
3.由兩點間距離公式,得
4.由雙曲線定義,得 |MF1|-|MF2|=±2a,即
5.化簡方程
兩邊平方,得
化簡得:
3eud教育網(wǎng) http://www.3edu.net 教學(xué)資源集散地。可能是最大的免費教育資源網(wǎng)!3eud教育網(wǎng) http://www.3edu.net 百萬教學(xué)資源,完全免費,無須注冊,天天更新!
兩邊再平方,整理得(c2-a2)x2-a2y2=a2(c2-a2).
(為使方程簡化,更為對稱和諧起見.)由2c-2a>0,即c>a,所以c2-a2>0. 設(shè)c2-a2=b2(b>0),代入上式,得 b2x2-a2y2=a2b2,也就是
師:利用橢圓標(biāo)準(zhǔn)方程推導(dǎo)類比地推導(dǎo)出雙曲線的標(biāo)準(zhǔn)方程,它同樣具有方程簡單、對稱,具有和諧美的特點,便于我們今后研究雙曲線的有關(guān)性質(zhì).這一簡化的方程稱為雙曲線的標(biāo)準(zhǔn)方程.
結(jié)合圖形再一次理解方程中a>b>0的條件是不可缺少的.b的選取不僅使方程得到了簡化、和諧,也有實際的幾何意義.具有c2=a2+b2與橢圓中a2=b2+c2的不同之處.
師:與橢圓方程一樣,如果雙曲線的焦點在y軸上,這時雙曲線的標(biāo)準(zhǔn)方程形式又怎樣呢?我們可以從所畫的圖形上觀察,對比來看一看互相間的轉(zhuǎn)化.(圖2-
39、圖2-40)
生:從圖形的對稱來看,只要交換一下x軸、y軸的名稱,然后逆時針翻轉(zhuǎn)90°使之y軸向上、下,x軸水平放置即可得到焦點在y軸上的雙曲線.
師:從方程上來分析,只要將方程(1)的x、y互換就可以得到它的方程
3eud教育網(wǎng) http://www.3edu.net 教學(xué)資源集散地??赡苁亲畲蟮拿赓M教育資源網(wǎng)!3eud教育網(wǎng) http://www.3edu.net 百萬教學(xué)資源,完全免費,無須注冊,天天更新!
此方程也是雙曲線的標(biāo)準(zhǔn)方程. 師:如何記憶這兩個標(biāo)準(zhǔn)方程?
生:雙曲線的方程右邊為1,左邊是兩個完全平方項,符號一正一負(fù),為正的項相應(yīng)的坐標(biāo)軸為實軸,焦點在該軸上,且分母為a2.負(fù)項相應(yīng)的坐標(biāo)軸為虛軸,且分母為b2.
師:用一句話概括“以正負(fù)定實虛”.
三、舉例
例1 已知兩點F1(-4,0)和F2(4,0),曲線上的點到兩個焦點的距離之差為6,求曲線方程.
解
由焦點坐標(biāo)可知c=4,2a=6,所以a=3,而b2=c2-a2=16-9=7. 所以,所求的雙曲線方程為
例2 求滿足下列條件的雙曲線方程 1.若a=4,b=3,焦點在x軸上;
解
(1)因為a=4,b=3,并且焦點在x軸上,所以所求的雙曲線方程為
(2)由題意設(shè)雙曲線的標(biāo)準(zhǔn)方程為:
3eud教育網(wǎng) http://www.3edu.net 教學(xué)資源集散地??赡苁亲畲蟮拿赓M教育資源網(wǎng)!3eud教育網(wǎng) http://www.3edu.net 百萬教學(xué)資源,完全免費,無須注冊,天天更新!
所以代入雙曲線方程得
所以
b2=16,所以所求的雙曲線的標(biāo)準(zhǔn)方程為
例1和例2可由學(xué)生自行解答,黑板上板演,并對照檢查對錯.
四、小結(jié)(師生共同參與完成)1.知識方面
雙曲線的定義和雙曲線的標(biāo)準(zhǔn)方程;方程中的3個常數(shù)a、b、c間的關(guān)系:c2=a2+b2.
理解“以正負(fù)定實虛”的意義,會確定實軸、虛軸、焦點所在位置,會求雙曲線的標(biāo)準(zhǔn)方程.
2.在教學(xué)中體會到數(shù)學(xué)知識的和諧美,幾何圖形的對稱美.
五、作業(yè):第89頁習(xí)題七1,2.
六、課后思考題
2.結(jié)合圖形的演示,試討論||MF1|-|MF2||=2a,在2a趨近于零的過程中雙曲線的變化趨勢.
設(shè)計說明
3eud教育網(wǎng) http://www.3edu.net 教學(xué)資源集散地。可能是最大的免費教育資源網(wǎng)!3eud教育網(wǎng) http://www.3edu.net 百萬教學(xué)資源,完全免費,無須注冊,天天更新!
1.關(guān)于教學(xué)目標(biāo)
(1)由于雙曲線的定義及其標(biāo)準(zhǔn)方程是本章的重點之一,因而作為本節(jié)課的教學(xué)目標(biāo)之一.
(2)MM教育方式的基本要求,其課堂教學(xué)要師生共同參與.每個環(huán)節(jié)都應(yīng)給學(xué)生創(chuàng)設(shè)一種思維情境,一種動腦、動手、動口的機(jī)會.運用教具的演示,增強了數(shù)學(xué)教學(xué)的直觀性,有助于培養(yǎng)學(xué)生觀察、比較、分析、抽象、歸納及數(shù)學(xué)語言的運用能力.對全面提高學(xué)生素質(zhì)起著十分重要作用,待此制定了教學(xué)目標(biāo)2和3.
2.關(guān)于教學(xué)重點
為實現(xiàn)教學(xué)目標(biāo),把充分展現(xiàn)雙曲線的定義及其標(biāo)準(zhǔn)方程的探索、發(fā)現(xiàn)、推理的思維過程和知識形成過程作為本節(jié)課的重點.
3.關(guān)于教學(xué)方法
按照MM教育方式“學(xué)習(xí)、教學(xué)、研究同步協(xié)調(diào)原則”和“二主方針”,在教學(xué)中充分發(fā)揮教師的主導(dǎo)作用和學(xué)生的主體作用.運用問題性,給學(xué)生創(chuàng)造一種思維情境,一種動腦、動手、動口的機(jī)會,使學(xué)生在開放、民主、愉悅和諧的教學(xué)氛圍中獲取新知識,提高能力,促進(jìn)思維發(fā)展.因此,采用討論式、啟發(fā)式的教學(xué)方法.
4.關(guān)于教學(xué)過程
(1)利用學(xué)生已清楚的知識,轉(zhuǎn)換條件提出問題,通過自己動手和聯(lián)想,為類比地探索雙曲線的定義奠定基礎(chǔ),最后推出雙曲線的定義.
(2)在雙曲線的標(biāo)準(zhǔn)方程的推導(dǎo)過程中,揭示科學(xué)實驗的規(guī)律,巧妙地把學(xué)生從舊知識引向新知識,使知識過渡那么自然,學(xué)生學(xué)起來不感到困難.體現(xiàn)數(shù)學(xué)發(fā)現(xiàn)的本質(zhì),培養(yǎng)學(xué)生合情推理能力、邏輯思維能力、科學(xué)思維方式、實事求是的科學(xué)態(tài)度及勇于探索的精神.
(3)例題比較簡單,由學(xué)生自行解答,同時由學(xué)生板演,在解題過程中培養(yǎng)學(xué)生合理地思考問題,清楚地表達(dá)思想和有條不紊的學(xué)習(xí)習(xí)慣.同時隨時注意糾正學(xué)生在學(xué)習(xí)過程中的偏差.
(4)以學(xué)生為主,教師協(xié)助的方式進(jìn)行本節(jié)課的小結(jié),充分發(fā)揮學(xué)生的主觀能動性,提高學(xué)生分析、概括、綜合、抽象能力,注意把學(xué)生本節(jié)課所學(xué)到的新知識納入學(xué)生已有知識體系中,使學(xué)生學(xué)習(xí)解析幾何內(nèi)容形成一個知識結(jié)構(gòu),對學(xué)生掌握解析幾何的學(xué)習(xí)是大
3eud教育網(wǎng) http://www.3edu.net 教學(xué)資源集散地??赡苁亲畲蟮拿赓M教育資源網(wǎng)!
第四篇:雙曲線及其標(biāo)準(zhǔn)方程教案
雙曲線及其標(biāo)準(zhǔn)方程(第一課時)
教學(xué)目標(biāo):
1.掌握雙曲線的定義,能說出其焦點、焦距的意義;
2.能根據(jù)定義,按照求曲線方程的步驟推導(dǎo)出雙曲線的標(biāo)準(zhǔn)方程,熟練掌握兩類標(biāo)
準(zhǔn)方程;
3.能解決較簡單的求雙曲線標(biāo)準(zhǔn)方程的問題; 4.培養(yǎng)學(xué)生觀察、分析、歸納和邏輯推理能力。
教學(xué)重點:雙曲線的定義和標(biāo)準(zhǔn)方程。
教學(xué)難點:雙曲線標(biāo)準(zhǔn)方程的推導(dǎo)過程。
教學(xué)過程:
一、創(chuàng)設(shè)情景,引入新課: 師:我們先來思考這樣一個問題:(打開幾何畫板)已知定點F1(?1,0)和F2(1,0),定圓C1的圓心為F1,且半徑為r,動圓C2過定點F2,且與定圓相切。
(1)若r?4,試求動圓圓心的軌跡;(2)若r?1,試求動圓圓心的軌跡。(教師結(jié)合幾何畫板演示分析):
師:當(dāng)r?4時,我們得到的軌跡是什么?
生:是橢圓。
是:為什么?
生:因為當(dāng)r?4時動圓C2內(nèi)切于定圓C1,所以兩個圓的圓心距MF1滿足
MF1?4?MF2,移項后可以得到:MF1?MF2?4滿足橢圓的定義,所以得到的軌跡是一個以F1、F2為定點,4為定長的橢圓。
師:很好。那么,當(dāng)r?1呢,此時動圓C2與定圓C1相切有幾種情況?
生:有兩種情況:內(nèi)切和外切。
師:我們先來考察兩圓外切時的情況(演示),我們得到的軌跡滿足什么條件?
生(同時教師板書):由于兩圓外切,所以兩個圓的圓心距MF1滿足 MF1?1?MF2,移項后可以得到:MF1?MF2?1。(教師演示軌跡)師:我們再來考察兩圓內(nèi)切時的情況(演示),我們得到的軌跡又滿足什么條件?
生(同時教師板書):由于兩圓內(nèi)切,所以兩個圓的圓心距MF1滿足 MF1?MF2?1,移項后可以得到:MF1?MF2??1。(教師演示軌跡)師(同時演示兩種情況下的軌跡):我們可以得到與定圓相切且過定點的動圓的圓心滿足MF1?MF2??1即MF1?MF2?1,圓心的軌跡我們稱之為雙曲線。
二、新課講解:
1、定義給出
師:今天我們來學(xué)習(xí)雙曲線。同學(xué)們能否結(jié)合剛才的問題給雙曲線下個一般定義?
生:雙曲線是到平面上兩個定點F1、F2的距離的差的絕對值等于常數(shù)的點的軌跡。這兩個定點叫做雙曲線的焦點,兩焦點的距離叫做雙曲線的焦距。
師:由橢圓的定義,一般情況下,我們設(shè)該常數(shù)為2a。那么什么情況下表示的是雙曲線的右支,什么情況下表示的是雙曲線的左支?
生:當(dāng)MF1?MF2?2a時,表示的是雙曲線的右支,當(dāng)MF1?MF2??2a時,表示的是雙曲線的左支。
2、定義探究
(教師引導(dǎo)學(xué)生分情況討論): 師:這個常數(shù)2a有沒有限制條件?
生:有。這個常數(shù)2a要比焦距F1F2小。師:很好。為什么要有這個限制條件呢?其他情況會是怎樣的呢?我們一起來分析一下:
(1)若a=0,則有MF1?MF2?0即MF1?MF2,此時軌跡為線段F1F2的中垂線;
(2)若2a=F1F2,則有MF1?MF2??F1F2,此時軌跡為直線F1F2上除去線段F1F2中間部分,以F1、F2為端點的兩條射線;
(3)若2a>F1F2,則根據(jù)三角形的性質(zhì),軌跡不存在。
3、雙曲線標(biāo)準(zhǔn)方程的推導(dǎo)過程:
師:我們學(xué)過求曲線的方程的一般步驟,現(xiàn)在我們一起根據(jù)定義求雙曲線的標(biāo)準(zhǔn)方程。(師生互動,共同推導(dǎo)之)
第一步:建立直角坐標(biāo)系;
第二步:設(shè)點:設(shè)M(x,y),焦點分別為F1(?c,0)和F2(c,0),M到焦點的距離差的絕對值等于2a;
第三步:啟發(fā)學(xué)生根據(jù)定義寫出M點的軌跡構(gòu)成的點集: P?MMF1?MF2??2a;
第四步:建立方程:(x?c)2?y2?(x?c)2?y2??2a;
ab教師強調(diào):我們得到了焦點在x軸上,且焦點是F1(?c,0)和F2(c,0)的雙曲線標(biāo)準(zhǔn)方程為x2a2b2 師:那么如果焦點在y軸上呢?(學(xué)生練習(xí))
y2x2 生(練習(xí)后):此時的標(biāo)準(zhǔn)方程應(yīng)該是2?2?1(a?0,b?0)。
ab 4.雙曲線標(biāo)準(zhǔn)方程的探討:
師:剛才我們共同推導(dǎo)了雙曲線的標(biāo)準(zhǔn)方程。請同學(xué)想一下,雙曲線標(biāo)準(zhǔn)方程中字母a、b、c的關(guān)系如何?是不是a?b? ?y2?1(a?0,b?0),這里c2?a2?b2 ?? 第五步:化簡,得到
x22?y22?1(a?0,b?0)
生:a、b、c滿足等式c2?a2?b2,所以有a2?c2?b2,可以得到a,b?c,但不能判斷a?b。師:很好。我們在求雙曲線標(biāo)準(zhǔn)方程過程中還發(fā)現(xiàn),確定焦點對求雙曲線方程很重要。那么如何根據(jù)方程判定焦點在哪個坐標(biāo)軸上呢?
y2x2x2y2 生:由于焦點在x軸和y軸上標(biāo)準(zhǔn)方程分別為2?2?1和2?2?1,我們發(fā)現(xiàn)焦點所在軸相
abab關(guān)的未知數(shù)的分母總是a,所以可以由a來判定。
x2y2??1,那么你如何尋找a?
師:很好。如果我們知道的方程是32 生:因為a所在的這一項未知數(shù)的系數(shù)是正的,所以只要找正的系數(shù)就可以了。
x2y2???1呢?
師:如果方程是32 生:先化成標(biāo)準(zhǔn)方程。
師:請同學(xué)總結(jié)一下。生:化標(biāo)準(zhǔn),找正號。5.運用新知:
y2x2??1表示雙曲線,則m的取值范圍是__________,此時
【練習(xí)】已知方程9m?1雙曲線的焦點坐標(biāo)是________________,焦距是________________;
【變式】若將9改成2?m,則m的取值范圍是________________________。
【例1】已知雙曲線兩個焦點的坐標(biāo)為F1(?5,0)、F2(5,0),雙曲線上一點P到F1、F2的距離的差的絕對值等于6,求雙曲線的標(biāo)準(zhǔn)方程。
解:因為雙曲線的焦點再x軸上,所以設(shè)它的標(biāo)準(zhǔn)方程為 x22ab 因為2a=6,2c=10,所以a=3,c=5。?y22?1(a?0,b?0),所以b2?52?32?16,x2y2??1。
所以所求雙曲線的標(biāo)準(zhǔn)方程為916 【變式】已知兩個定點的坐標(biāo)為F1(?5,0)、F2(5,0),動點P到F1、F2的距離的差
等于6,求P點的軌跡方程。
解:因為PF1?PF2?6,所以P的軌跡是雙曲線的右支,設(shè)雙曲線標(biāo)準(zhǔn)方程為??1(a?0,b?0),a2b2 因為2a=6,2c=10,所以a=3,c=5。x2y2 所以b2?52?32?16,x2y2??1(x?3)。
所以所求P點的軌跡方程為916【例2】已知雙曲線的焦點在y軸上,并且雙曲線上兩點P1、P2的坐標(biāo)分別為
9(3,?42)、(,5),求雙曲線的標(biāo)準(zhǔn)方程。
4解:因為雙曲線的焦點在y軸上,所以設(shè)所求雙曲線的標(biāo)準(zhǔn)方程為
y2x2 2?2?1(a?0,b?0),ab 因為點P1、P2在雙曲線上,所以點P1、P2的坐標(biāo)適合方程,代入得: ?(?42)232?2?1?2ab2????a?162 ?可解得:?。?9?2?????b?9425????2?12?b?ay2x2??1。
所以所求雙曲線得標(biāo)準(zhǔn)方程為:169【變式】已知雙曲線的焦點在坐標(biāo)軸上,并且雙曲線上兩點P1、P2的坐標(biāo)分別為
9(分情況討論)(3,?42)、(,5),求雙曲線的標(biāo)準(zhǔn)方程。4 【練習(xí)】(1)?ABC一邊兩個端點是B(0,6)和C(0,?6),頂點A滿足AB?AC?8,求A的軌跡方程。
(2)?ABC一邊的兩個端點是B(0,6)和C(0,?6),另兩邊所在直線的斜率之積是
4,求頂點9A的軌跡。
三、本課小結(jié):
師:我們總結(jié)一下本節(jié)課我們學(xué)了什么?
生:
1、雙曲線的定義;
2、雙曲線標(biāo)準(zhǔn)方程推導(dǎo)過程;
3、運用已有知識解決一些
簡單的問題。
四、作業(yè):
課本P108:2、3、4 問題:一炮彈在M處爆炸,在F1、F2處聽到爆炸聲。已知兩地聽到爆炸聲的時間差為2s,又知兩地相距800m,并且此時的聲速為340m/s,那么M點一定在哪條曲線上?
第五篇:高二直線方程數(shù)學(xué)說課稿
教學(xué)目標(biāo)
(1)掌握由一點和斜率導(dǎo)出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程.
(2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程.
(3)掌握直線方程各種形式之間的互化.
(4)通過直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問題的能力.
(5)通過直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點.
(6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.
教學(xué)建議1.教材分析
(1)知識結(jié)構(gòu)
由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點斜式;由直線方程的點斜式分別導(dǎo)出直線方程的斜截式和兩點式;再由兩點式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時一般式也可以轉(zhuǎn)化成特殊式.
(2)重點、難點分析
①本節(jié)的重點是直線方程的點斜式、兩點式、一般式,以及根據(jù)具體條件求出直線的方程.
解析幾何有兩項根本性的任務(wù):一個是求曲線的方程;另一個就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對以后學(xué)習(xí)用方程討論直線起著直接的作用,同時也對曲線方程的學(xué)習(xí)起著重要的作用.
直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學(xué)生對點斜式學(xué)習(xí)的效果將直接影響后繼知識的學(xué)習(xí).
②本節(jié)的難點是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明.
2.教法建議
(1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學(xué)中各部分知識之間過渡要自然流暢,不生硬.
(2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)“曲線方程”打下基礎(chǔ).
直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時,還需要進(jìn)行正反兩方面的分析論證.教學(xué)中應(yīng)重點分析思路,還應(yīng)抓住這一有利時使學(xué)生學(xué)會嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時培養(yǎng)學(xué)生辯證唯物主義觀點
(3)在強調(diào)幾種形式互化時要向?qū)W生充分揭示各種形式的特點,它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對各種形式的理解.
(4)教學(xué)中要使學(xué)生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學(xué)中應(yīng)突出點斜式、兩點式和一般式三個教學(xué)高潮.
求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個條件運用待定系數(shù)法和方程思想求直線方程.
(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個實數(shù);距離是線段的長度,是一個正實數(shù)(或非負(fù)實數(shù)).
(6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問題,是函數(shù)、不等式、三角與直線的重要知識交匯點之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力.
(7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實際和其它學(xué)科,教師要注意引導(dǎo),增強學(xué)生用數(shù)學(xué)的意識和能力.
(8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上.
教學(xué)設(shè)計示例
直線方程的一般形式教學(xué)目標(biāo):
(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.
(2)理解直線與二元一次方程的關(guān)系及其證明
(3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點.
高二直線方程數(shù)學(xué)說課稿教學(xué)重點、難點:直線方程的一般式.直線與二元一次方程(、不同時為0)的對應(yīng)關(guān)系及其證明.
教學(xué)用具:計算機(jī)
教學(xué)方法:啟發(fā)引導(dǎo)法,討論法
教學(xué)過程:
下面給出教學(xué)實施過程設(shè)計的簡要思路:
教學(xué)設(shè)計思路:
(一)引入的設(shè)計
前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問題:
問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是,屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次.
肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個問題:
問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次.
肯定學(xué)生回答后強調(diào)“也是二元一次方程,都是因為未知數(shù)有兩個,它們的最高次數(shù)為一次”.
啟發(fā):你在想什么(或你想到了什么)?誰來談?wù)?各小組可以討論討論.
學(xué)生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識統(tǒng)一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
(二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計
這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.
學(xué)生或獨立研究,或合作研究,教師巡視指導(dǎo).
經(jīng)過一定時間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案:
思路一:…
思路二:…
……
教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:
按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在.
當(dāng)存在時,直線
的截距也一定存在,直線的方程可表示為,它是二元一次方程.
當(dāng)不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?
學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時教師引導(dǎo)學(xué)生,逐步認(rèn)識到把它看成二元一次方程的合理性:
平面直角坐標(biāo)系中直線上點的坐標(biāo)形式,與其它直線上點的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的
綜合兩種情況,我們得出如下結(jié)論:
在平面直角坐標(biāo)系中,對于任何一條直線,都有一條表示這條直線的關(guān)于、的二元一次方程.至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成或的形式,準(zhǔn)確地說應(yīng)該是“要么形如這樣,要
么形如這樣的方程”.同學(xué)們注意:這樣表達(dá)起來是不是很啰嗦,能不能有一個更好的表達(dá)?
學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.
這樣上邊的結(jié)論可以表述如下:
在平面直角坐標(biāo)系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程.
啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問題呢?
【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?
不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢?
師生共同討論,評價不同思路,達(dá)成共識:
回顧上邊解決問題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程(其中、不同時為0)系數(shù)是否為0恰好對應(yīng)斜率是否存在,即
(1)當(dāng)時,方程可化為這是表示斜率為、在軸上的截距為的直線.
(2)當(dāng)時,由于、不同時為0,必有,方程可化為
這表示一條與軸垂直的直線.因此,得到結(jié)論:在平面直角坐標(biāo)系中,任何形如(其中、不同時為0)的二元一次方程都表示一條直線.為方便,我們把(其中、不同時為0)稱作直線方程的一般式是合理的【動畫演示】
演示“直線各參數(shù).gsp”文件,體會任何二元一次方程都表示一條直線.
至此,我們的第二個問題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應(yīng)關(guān)系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉(zhuǎn)化關(guān)系.
(三)練習(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計在此從略