欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      2.2.1 提公因式法(一) -數(shù)學(xué)教案

      時(shí)間:2019-05-15 02:33:03下載本文作者:會(huì)員上傳
      簡(jiǎn)介:寫寫幫文庫小編為你整理了多篇相關(guān)的《2.2.1 提公因式法(一) -數(shù)學(xué)教案》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《2.2.1 提公因式法(一) -數(shù)學(xué)教案》。

      第一篇:2.2.1 提公因式法(一) -數(shù)學(xué)教案

      第二課時(shí)

      ●課 題

      §2.2.1 提公因式法

      (一)●教學(xué)目標(biāo)

      (一)教學(xué)知識(shí)點(diǎn)

      讓學(xué)生了解多項(xiàng)式公因式的意義,初步會(huì)用提公因式法分解因式.(二)能力訓(xùn)練要求

      通過找公因式,培養(yǎng)學(xué)生的觀察能力.(三)情感與價(jià)值觀要求

      在用提公因式法分解因式時(shí),先讓學(xué)生自己找公因式,然后大家討論結(jié)果的正確性,讓學(xué)生養(yǎng)成獨(dú)立思考的習(xí)慣,同時(shí)培養(yǎng)學(xué)生的合作交流意識(shí),還能使學(xué)生初步感到因式分解在簡(jiǎn)化計(jì)算中將會(huì)起到很大的作用.●教學(xué)重點(diǎn)

      能觀察出多項(xiàng)式的公因式,并根據(jù)分配律把公因式提出來.●教學(xué)難點(diǎn)

      讓學(xué)生識(shí)別多項(xiàng)式的公因式.●教學(xué)方法

      獨(dú)立思考——合作交流法.●教具準(zhǔn)備 投影片兩張

      第一張(記作§2.2.1 A)第二張(記作§2.2.1 B)●教學(xué)過程

      Ⅰ.創(chuàng)設(shè)問題情境,引入新課

      投影片(§2.2.1 A)

      一塊場(chǎng)地由三個(gè)矩形組成,這些矩形的長(zhǎng)分別為,,寬都是 ,求這塊場(chǎng)地的面積.解法一:S= × + × + × = + + =2 解法二:S= × + × + × =(+ +)= ×4=2 [師]從上面的解答過程看,解法一是按運(yùn)算順序:先算乘,再算和進(jìn)行的,解法二是先逆用分配律算和,再計(jì)算一次乘,由此可知解法二要簡(jiǎn)單一些.這個(gè)事實(shí)說明,有時(shí)我們需要將多項(xiàng)式化為積的形式,而提取公因式就是化積的一種方法.Ⅱ.新課講解

      1.公因式與提公因式法分解因式的概念.[師]若將剛才的問題一般化,即三個(gè)矩形的長(zhǎng)分別為a、b、c,寬都是m,則這塊場(chǎng)地的面積為ma+mb+mc,或m(a+b+c),可以用等號(hào)來連接.ma+mb+mc=m(a+b+c)

      從上面的等式中,大家注意觀察等式左邊的每一項(xiàng)有什么特點(diǎn)?各項(xiàng)之間有什么聯(lián)系?等式右邊的項(xiàng)有什么特點(diǎn)?

      [生]等式左邊的每一項(xiàng)都含有因式m,等式右邊是m與多項(xiàng)式(a+b+c)的乘積,從左邊到右邊是分解因式.[師]由于m是左邊多項(xiàng)式ma+mb+mc的各項(xiàng)ma、mb、mc的一個(gè)公共因式,因此m叫做這個(gè)多項(xiàng)式的各項(xiàng)的公因式.由上式可知,把多項(xiàng)式ma+mb+mc寫成m與(a+b+c)的乘積的形式,相當(dāng)于把公因式m從各項(xiàng)中提出來,作為多項(xiàng)式ma+mb+mc的一個(gè)因式,把m從多項(xiàng)式ma+mb+mc各項(xiàng)中提出后形成的多項(xiàng)式(a+b+c),作為多項(xiàng)式ma+mb+mc的另一個(gè)因式,這種分解因式的方法叫做提公因式法.2.例題講解

      [例1]將下列各式分解因式:(1)3x+6;(2)7x-21x;323(3)8ab-12abc+abc(4)-24x3-12x2+28x.分析:首先要找出各項(xiàng)的公因式,然后再提取出來.[師]請(qǐng)大家互相交流.[生]解:(1)3x+6=3x+3×2=3(x+2);(2)7x2-21x=7x·x-7x·3=7x(x-3);(3)8a3b2-12ab3c+abc

      =8a2b·ab-12b2c·ab+ab·c =ab(8ab-12bc+c)(4)-24x3-12x2+28x =-4x(6x2+3x-7)

      3.議一議

      [師]通過剛才的練習(xí),下面大家互相交流,http://jiaoan.cnkjz.com/Article/Index.html>總結(jié)出找公因式的一般步驟.[生]首先找各項(xiàng)系數(shù)的最大公約數(shù),如8和12的最大公約數(shù)是4.其次找各項(xiàng)中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指數(shù)取次數(shù)最低的.4.想一想

      [師]大家http://jiaoan.cnkjz.com/Article/Index.html>總結(jié)得非常棒.從例1中能否看出提公因式法分解因式與單項(xiàng)式乘以多項(xiàng)式有什么關(guān)系?

      [生]提公因式法分解因式就是把一個(gè)多項(xiàng)式化成單項(xiàng)式與多項(xiàng)式相乘的形式.Ⅲ.課堂練習(xí)

      (一)隨堂練習(xí)

      1.寫出下列多項(xiàng)式各項(xiàng)的公因式.(1)ma+mb(m)

      (2)4kx-8ky(4k)(3)5y3+20y2(5y2)(4)a2b-2ab2+ab(ab)2.把下列各式分解因式(1)8x-72=8(x-9)(2)a2b-5ab=ab(a-5)(3)4m-6m=2m(2m-3)

      (4)a2b-5ab+9b=b(a2-5a+9)

      (5)-a2+ab-ac=-(a2-ab+ac)=-a(a-b+c)

      (6)-2x3+4x2-2x=-(2x3-4x2+2x)=-2x(x2-2x+1)

      (二)補(bǔ)充練習(xí)322222投影片(§2.2.1 B)

      把3x-6xy+x分解因式

      [生]解:3x2-6xy+x=x(3x-6y)[師]大家同意他的做法嗎? [生]不同意.改正:3x-6xy+x=x(3x-6y+1)

      [師]后面的解法是正確的,出現(xiàn)錯(cuò)誤的原因是受到1作為項(xiàng)的系數(shù)通??梢允÷缘挠绊?,而在本題中是作為單獨(dú)一項(xiàng),所以不能省略,如果省略就少了一項(xiàng),當(dāng)然不正確,所以多項(xiàng)式中某一項(xiàng)作為公因式被提取后,這項(xiàng)的位置上應(yīng)是1,不能省略或漏掉.在分解因式時(shí)應(yīng)如何減少上述錯(cuò)誤呢?

      將x寫成x·1,這樣可知提出一個(gè)因式x后,另一個(gè)因式是1.Ⅳ.課時(shí)小結(jié)

      1.提公因式法分解因式的一般形式,如: ma+mb+mc=m(a+b+c).這里的字母a、b、c、m可以是一個(gè)系數(shù)不為1的、多字母的、冪指數(shù)大于1的單項(xiàng)式.2.提公因式法分解因式,關(guān)鍵在于觀察、發(fā)現(xiàn)多項(xiàng)式的公因式.3.找公因式的一般步驟

      (1)若各項(xiàng)系數(shù)是整系數(shù),取系數(shù)的最大公約數(shù);(2)取相同的字母,字母的指數(shù)取較低的;(3)取相同的多項(xiàng)式,多項(xiàng)式的指數(shù)取較低的.(4)所有這些因式的乘積即為公因式.4.初學(xué)提公因式法分解因式,最好先在各項(xiàng)中將公因式分解出來,如果這項(xiàng)就是公因式,也要將它寫成乘1的形式,這樣可以防范錯(cuò)誤,即漏項(xiàng)的錯(cuò)誤發(fā)生.5.公因式相差符號(hào)的,如(x-y)與(y-x)要先統(tǒng)一公因式,同時(shí)要防止出現(xiàn)符號(hào)問題.Ⅴ.課后作業(yè)

      習(xí)題2.2 1.解:(1)2x2-4x=2x(x-2);(2)8m2n+2mn=2mn(4m+1);222(3)axy-axy=axy(ax-y);(4)3x3-3x2-9x=3x(x2-x-3);(5)-24xy-12xy+28y =-(24x2y+12xy2-28y3)=-4y(6x2+3xy-7y2);(6)-4a3b3+6a2b-2ab =-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1);(7)-2x2-12xy2+8xy3 =-(2x+12xy 222

      322

      第二篇:提公因式法(一)教案2份

      第四章

      因式分解

      2.提公因式法

      (一)教學(xué)目標(biāo):

      1、知識(shí)技能:讓學(xué)生會(huì)確定多項(xiàng)式中各項(xiàng)的公因式,會(huì)用提公因式法進(jìn)行因式分解。

      2、過程方法:通過與提公因數(shù)的類比,讓學(xué)生感悟數(shù)學(xué)中數(shù)與式的共同點(diǎn),體驗(yàn)數(shù)學(xué)的類比思想。

      3、情感態(tài)度:通過觀察能合理地進(jìn)行分解因式的推導(dǎo)。教學(xué)重點(diǎn):因式分解的概念及提公因式法的應(yīng)用。教學(xué)難點(diǎn):正確找出多項(xiàng)式中各項(xiàng)的公因式并能分解因式。第一環(huán)節(jié)

      溫故知新 活動(dòng)內(nèi)容:計(jì)算:

      555?15-?9??2采用什么方法?依據(jù)是什么? 888活動(dòng)目的:旨在讓學(xué)生通過乘法分配律的逆運(yùn)算這一特殊算法,使學(xué)生通過類比的思想自然地過渡到理解提公因式法的概念上,從而為提公因式法的掌握埋下伏筆。第二環(huán)節(jié)

      想一想 活動(dòng)內(nèi)容:

      多項(xiàng)式 ab+ac中,各項(xiàng)有相同的因式嗎?多項(xiàng)式 3x2+x呢?多項(xiàng)式mb2+nb–b呢? 結(jié)論:多項(xiàng)式中各項(xiàng)都含有的相同因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式.

      活動(dòng)目的:在學(xué)生能順利地尋找數(shù)的公因數(shù)之后,再引導(dǎo)學(xué)生采用類比的方法在多項(xiàng)式中尋找相同的因式. 第三環(huán)節(jié)

      議一議 活動(dòng)內(nèi)容:

      多項(xiàng)式2x2+6x3中各項(xiàng)的公因式是什么?那多項(xiàng)式2x2y+6x3y2中各項(xiàng)的公因式是什么? 結(jié)論:(1)各項(xiàng)系數(shù)是整數(shù),系數(shù)的最大公約數(shù)是公因式的系數(shù);

      (2)各項(xiàng)都含有的字母的最低次冪的積是公因式的字母部分;

      (3)公因式的系數(shù)與公因式字母部分的積是這個(gè)多項(xiàng)式的公因式. 活動(dòng)目的:公因式由簡(jiǎn)單到復(fù)雜,由于第一個(gè)多項(xiàng)式提供的比較簡(jiǎn)單,尋找的公因式不具備歸納的條件,而后面所提供的尋找多項(xiàng)式2x2y+6x3y2中各項(xiàng)的公因式只是多了 含字母y的因式,對(duì)比前一個(gè)公因式,通過尋找多項(xiàng)式2x2y+6x3y2中各項(xiàng)的公因式,可順利的歸納出確定多項(xiàng)式各項(xiàng)公因式的方法,培養(yǎng)學(xué)生的初步歸納能力 具備了歸納出怎樣尋找多項(xiàng)式各項(xiàng)公因式的條件,培養(yǎng)學(xué)生的初步歸納能力. 第四環(huán)節(jié)

      試一試 活動(dòng)內(nèi)容:

      將以下多項(xiàng)式寫成幾個(gè)因式的乘積的形式:

      (1)ab+ac

      (2)x2+4x

      (3)mb2+nb–b

      如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種分解因式的方法叫做提公因式法. 活動(dòng)目的:

      讓學(xué)生嘗試著使用因式分解的意義以及提公因式法的定義進(jìn)行幾個(gè)簡(jiǎn)單的多項(xiàng)式的分解,為過渡到較為復(fù)雜的多項(xiàng)式的分解提供必要的準(zhǔn)備. 第五環(huán)節(jié)

      做一做

      活動(dòng)內(nèi)容:將下列多項(xiàng)式進(jìn)行分解因式:

      (1)3x+x(2)7x3–21x(3)8a3b2–12ab3c+ab

      (4)–24x3+12x2-28x 先讓學(xué)生思考這些問題,然后教師在教學(xué)中注意講清確定公因式的具體步驟,從系數(shù)、字母和字母的次數(shù)3個(gè)方面進(jìn)行分析;講完后要分析公因式和另一個(gè)因式之間的關(guān)系,并思考:如果提出公因式,另一個(gè)因式是否還有公因式?從而把提取公因式的“提”的具體含意深刻化。

      最后學(xué)生歸納:提取公因式的步驟:

      (1)找公因式;

      (2)提公因式.

      易出現(xiàn)的問題:(1)第二題只提出7x作為公因式

      (2)第(3)題中的最后一項(xiàng)提出ab后,漏掉了“+1”;

      (3)第(4)題提出“–”時(shí),后面的因式不是每一項(xiàng)都變號(hào). 教師提醒:(1)各項(xiàng)都含有的字母的最低次冪的積是公因式的字母部分;

      (2)因式分解后括號(hào)內(nèi)的多項(xiàng)式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)是否相同;

      (3)如果多項(xiàng)式的首項(xiàng)為“–”時(shí),則先提取“–”號(hào),然后提取其它公因式;

      (4)將分解因式后的式子再進(jìn)行單項(xiàng)式與多項(xiàng)式相乘,其積是否與原式相等. 活動(dòng)目的:根據(jù)用提公因式法進(jìn)行因式分解時(shí)出現(xiàn)的問題,在教師的啟發(fā)與指導(dǎo)下,學(xué)生自己歸納出提公因式的步驟及怎樣預(yù)防提取公因式時(shí)出現(xiàn)類似問題,為提取公因式積 累經(jīng)驗(yàn).

      第六環(huán)節(jié):想一想:提公因式法因式分解與單項(xiàng)式乘多項(xiàng)式有什么關(guān)系?

      活動(dòng)目的:通過學(xué)生的回顧與思考,強(qiáng)化學(xué)生對(duì)確定公因式的方法及提公因式法的步驟的理解,進(jìn)一步清楚地了解提公因式法與單項(xiàng)式乘多項(xiàng)式的互逆關(guān)系,加深對(duì)類比的數(shù)學(xué)思想的理解。第七環(huán)節(jié):反饋練習(xí)

      活動(dòng)內(nèi)容:

      1、找出下列各多項(xiàng)式的公因式:

      (1)4x+8y

      (2)am+an

      (3)48mn–24m2n

      3(4)a2b–2ab2+ab 2.把下列各式因式分解:(隨堂練習(xí))

      活動(dòng)目的:通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)公因式概念的理解是否到位,提取公因式的方法與步驟是否掌握,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏.通過查缺補(bǔ)漏強(qiáng)化學(xué)生確定公因式的方法及提公因式法的步驟,能熟練地利用提公因式法分解因式。教學(xué)反思:

      由于因式分解的主要目的是對(duì)多項(xiàng)式進(jìn)行恒等變形,它的作用更多的是應(yīng)用于多項(xiàng)式的計(jì)算和化簡(jiǎn),比如在以后將要學(xué)習(xí)的分式運(yùn)算、解分式方程、二次根式化簡(jiǎn)等中都要用到因式分解的知識(shí)。因此應(yīng)該注重因式分解的概念和方法的教學(xué)。

      本節(jié)運(yùn)用類比的數(shù)學(xué)方法,在新概念提出、新知識(shí)點(diǎn)的講授過程中,可以使學(xué)生易于理解和掌握.如學(xué)生在接受提取公因式法時(shí),由提公因數(shù)到找公因式,由整式的乘法的逆運(yùn)算到提取公因式的概念,都是利用了類比的數(shù)學(xué)思想,從而使得學(xué)生接受新的概念時(shí)顯得輕松自然,容易理解。

      第三篇:提公因式法教案

      §1.2.2 提公因式法

      (二)●教學(xué)目標(biāo)

      (一)教學(xué)知識(shí)點(diǎn)

      進(jìn)一步讓學(xué)生掌握用提公因式法進(jìn)行因式分解的方法.(二)能力訓(xùn)練要求

      進(jìn)一步培養(yǎng)學(xué)生的觀察能力和類比推理能力.(三)情感與價(jià)值觀要求

      通過觀察能合理地進(jìn)行因式分解的推導(dǎo),并能清晰地闡述自己的觀點(diǎn).●教學(xué)重點(diǎn)

      能觀察出公因式是多項(xiàng)式的情況,并能合理地進(jìn)行因式分解.●教學(xué)難點(diǎn)

      準(zhǔn)確找出公因式,并能正確進(jìn)行因式分解.●教學(xué)方法 類比學(xué)習(xí)法 ●教學(xué)過程

      Ⅰ.創(chuàng)設(shè)問題情境,引入新課 [師]上節(jié)課我們學(xué)習(xí)了用提公因式法因式分解,知道了一個(gè)多項(xiàng)式可以分解為一個(gè)單項(xiàng)式與一個(gè)多項(xiàng)式的積的形式,那么是不是所有的多項(xiàng)式分解以后都是同樣的結(jié)果呢?本節(jié)課我們就來揭開這個(gè)謎.Ⅱ.新課講解

      請(qǐng)?jiān)谙铝懈魇降忍?hào)右邊的括號(hào)前填入“+”或“-”號(hào),使等式成立:(1)2-a=__________(a-2);(2)y-x=__________(x-y);(3)b+a=__________(a+b);(4)(b-a)2=__________(a-b)2;(5)-m-n=__________-(m+n);(6)-s2+t2=__________(s2-t2).一、例題講解

      [例1]下列多項(xiàng)中各項(xiàng)的公因式是什么? a(x-3)+2b(x-3)a(x-3)+2b(3-x)

      (a?c)(a?b)2?(a?c)(b?a)2

      6(m-n)3-12(n-m)2.?12xy2(x?y)?18x2y(x?y)

      分析:雖然a(x-y)與b(y-x)看上去沒有公因式,但仔細(xì)觀察可以看出(x-y)與(y-x)是互為相反數(shù),如果把其中一個(gè)提取一個(gè)“-”號(hào),則可以出現(xiàn)公因式,如y-x=-(x-y).(m-n)3與(n-m)2也是如此.[例2]把a(bǔ)(x-3)+2b(x-3)分解因式.分析:這個(gè)多項(xiàng)式整體而言可分為兩大項(xiàng),即a(x-3)與2b(x-3),每項(xiàng)中都含有(x-3),因此可以把(x-3)作為公因式提出來.解:a(x-3)+2b(x-3)=(x-3)(a+2b)[師]從分解因式的結(jié)果來看,是不是一個(gè)單項(xiàng)式與一個(gè)多項(xiàng)式的乘積呢? [生]不是,是兩個(gè)多項(xiàng)式的乘積.[例3]把下列各式分解因式:(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2(3)(a?c)(a?b)2?(a?c)(b?a)2(4)?12xy2(x?y)?18x2y(x?y)

      Ⅲ.課堂練習(xí)

      把下列各式分解因式: 解:(1)x(a+b)+y(a+b)=(a+b)(x+y);(2)3a(x-y)-(x-y)=(x-y)(3a-1);(3)6(p+q)2-12(q+p)=6(p+q)2-12(p+q)=6(p+q)(p+q-2);(4)a(m-2)+b(2-m)=a(m-2)-b(m-2)=(m-2)(a-b);(5)2(y-x)2+3(x-y)=2[-(x-y)]2+3(x-y)=2(x-y)2+3(x-y)=(x-y)(2x-2y+3);(6)mn(m-n)-m(n-m)2 =mn(m-n)-m(m-n)2 =m(m-n)[n-(m-n)] =m(m-n)(2n-m).Ⅳ.課時(shí)小結(jié)

      本節(jié)課進(jìn)一步學(xué)習(xí)了用提公因式法分解因式,公因式可以是單項(xiàng)式,也可以是多項(xiàng)式,要認(rèn)真觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),從而能準(zhǔn)確熟練地進(jìn)行多項(xiàng)式的分解因式.Ⅴ.課后作業(yè)習(xí)題1.2 活動(dòng)與探究 把(a+b-c)(a-b+c)+(b-a+c)·(b-a-c)分解因式.解:原式=(a+b-c)(a-b+c)-(b-a+c)(a-b+c)=(a-b+c)[(a+b-c)-(b-a+c)] =(a-b+c)(a+b-c-b+a-c)=(a-b+c)(2a-2c)=2(a-b+c)(a-c)教學(xué)后記:

      第四篇:提公因式法教案

      15.4

      15.4.1因式分解提公因式法

      教學(xué)目標(biāo):

      1、了解因式分解的意義,了解因式分解和整式乘法是整式的兩種相反方向的變形。

      2、會(huì)確定多項(xiàng)式中各項(xiàng)的公因式,會(huì)用提取公因式法分解

      多項(xiàng)式的因式。

      3、會(huì)利用因式分解進(jìn)行簡(jiǎn)便計(jì)算。

      4、通過與質(zhì)因數(shù)分解的類比,讓學(xué)生感悟數(shù)學(xué)中數(shù)與式的共同點(diǎn),體驗(yàn)數(shù)學(xué)的類比思想;通過對(duì)公因式是多項(xiàng)式時(shí)的因式分解的學(xué)習(xí),培養(yǎng)換元的意識(shí)。

      教學(xué)重難點(diǎn)

      教學(xué)重點(diǎn):因式分解的概念及提取公因式法。

      教學(xué)難點(diǎn):多項(xiàng)式中公因式的確定和當(dāng)公因式是多項(xiàng)式時(shí)的因式分解。

      教學(xué)準(zhǔn)備:多媒體課件。

      教學(xué)設(shè)計(jì):

      (一)新課引入:

      1、問題:把15和18分解質(zhì)因數(shù)。

      2、回憶:運(yùn)用所學(xué)知識(shí)填空

      (3)2ab(a2

      反之:(1)x2(2)x2-1=

      (3)2a3b+2ab2

      觀察以下式子的特點(diǎn):

      (1)15=3×5

      (2)18=2×32

      (3)X2+X=X(X+1)

      (4)X2-1=(X+1)(X-1)

      (5)2a3b+2ab2+2ab=2ab(a2+b+1)

      由分解質(zhì)因數(shù)類比到分解因式。

      (二)新知學(xué)習(xí):

      1、分解因式的概念,與整式乘法的關(guān)系。

      鞏固概念:判斷下列各式從左到右哪些是因式分解?

      (1)m(a+b)=ma+mb

      (2)2a+4=2(a+2)

      (3)4a2-6ab2+2a=2a(2a-3b2+1)

      (4)a2-2a+1=a(a-2)+1

      (5)yy?y??10(?10)???100?xx?x?22、確定公因式。

      問題:ma+mb+mc 這個(gè)多項(xiàng)式有什么特征? 引入公因式

      概念。

      例1:找出6x3y5-3x2y4的公因式

      歸納找公因式的辦法。

      課堂練習(xí)一:找出下列各多項(xiàng)式中的公因式填在后面括號(hào)內(nèi)。

      (1)3mx-6nx2()

      (2)x4y3+x3y4()

      (3)12x2yz-9x2y2()

      (4)5a2-15a3+25a()

      3、用提公因式法分解因式。

      m(a+b+c)=ma+mb+mc 可得ma+mb+mc=m(a+b+c),觀察構(gòu)成乘積的兩個(gè)因式分別是怎樣形成的?

      m是這個(gè)多項(xiàng)式的公因式,而另一個(gè)因式是原多項(xiàng)式除以公因式所得的商式。像這種分解因式的方法叫做提公因式法。

      想一想:提公因式法的理論依據(jù)是什么?

      4、知識(shí)運(yùn)用:

      例2:把8a3b2+12ab3c分解因式

      解:(略).例3:把-24x3-12x2+28x分解因式。

      解:(略)

      判斷下列各式分解因式是否正確?如果不對(duì),請(qǐng)加以改正。

      (1)2a2+4a+2=2(a2+2a)

      (2)3x2y3-6xy2z=3xy(xy2-2yz)

      課堂練習(xí)二:把下列各式分解因式。

      (1)x2+x6(2)12xyz-9x2y2

      (3)-6x2-18xy+3x(4)2an+2-4an+1-6an-

      1例4:把3a(b+c)-3(b+c)分解因式

      判斷正誤:我班一位同學(xué)在昨天預(yù)習(xí)了提公因式法分解因式后做了兩道練習(xí)題,請(qǐng)你幫他檢查一下他的解題過程是否正確。如不正確,應(yīng)怎樣改正。

      (1)2x(x+y)2-(x+y)3

      解:原式=(x+y)2[2x-(x+y)]

      =(x+y)2(2x-x-y)

      (2)(y+2)(y+1)-3(y+2)

      解:原式=(y+2)(y+1-3)

      =(y+2)(y-2)

      =y2-4

      課堂練習(xí)三:將下列各式分解因式。

      (1)p(a2+b2)-q(a2+b2)

      (2)2a2(y-z)2-4a(z-y)2

      例5:先分解因式,再求值。

      4a2(x+7)-3(x+7),其中a=-5,x=3.解(略)

      5、拓展與提高:

      (1)、20112+2011能被2012整除嗎?

      (2)、已知2x-y=8,xy=2,求多項(xiàng)式2x4y3-x3y4的值。

      (3)、利用因式分解進(jìn)行計(jì)算:23.1×24-46.2×7

      (4)、將2a(a+b-c)-3b(a+b-c)+5c(c-a-b)分解因式。

      97962?29998

      (5)、計(jì)算:

      課堂小結(jié):

      ⑴什么叫因式分解?

      ⑵確定公因式的方法:

      ⑶提公因式法分解因式的步驟: ⑷提公因式法分解因式的步驟: 課后作業(yè):課本P170習(xí)題15.4 : 題

      課后反思:

      第1題;第4題的(1);第6

      第五篇:提公因式法教案

      提供因法因式分解

      教學(xué)流程:

      一、導(dǎo)入及板書課題:

      復(fù)習(xí)鞏固整式的乘法。板書課題:提公因式法因式分解

      二、學(xué)習(xí)目標(biāo):

      ? 1.了解因式分解的概念;

      ? 2.理解公因式的概念,會(huì)用提公因式法對(duì)多項(xiàng)式進(jìn)行因式分解。

      三、教學(xué)過程:

      (一)自學(xué)指導(dǎo):

      ?

      1、自己認(rèn)真看課本第42頁到第43頁的內(nèi)容;

      ?

      2、時(shí)間(5分鐘)

      ?

      3、自學(xué)方法:結(jié)合課本例題和云圖中問題,獨(dú)立思考,標(biāo)出看不懂的地方,可以和同桌小聲交流試一試的圖形意思

      ? 4.你能用嗎提公因式法對(duì)多項(xiàng)式進(jìn)行因式分解嗎?

      (二)自學(xué)檢測(cè)(8分鐘)

      1、找四名學(xué)生書寫兩數(shù)和與兩數(shù)差的公式

      2、挑各組學(xué)生進(jìn)行板演。

      3、兵教兵(2分鐘)

      要求:各小組組長(zhǎng)要切實(shí)負(fù)起責(zé)任,組長(zhǎng)要落實(shí)好組員的學(xué)習(xí)情況,組長(zhǎng)也講不清的可以問教師。

      4、教師點(diǎn)撥(2分鐘)

      ①、公因式的系數(shù)是各項(xiàng)系數(shù)的最大公因數(shù);

      ②、字母是各項(xiàng)中相同的字母,指數(shù)取各字母指數(shù)最低的;

      ③、要善于發(fā)現(xiàn)較隱蔽的公因式,如(X-Y)與(Y-X)是一對(duì)相反數(shù),但它們可以變?yōu)橄嗤囊蚴健?/p>

      課堂作業(yè):活頁試題

      課后作業(yè): 課本45頁練習(xí)題第2題

      下載2.2.1 提公因式法(一) -數(shù)學(xué)教案word格式文檔
      下載2.2.1 提公因式法(一) -數(shù)學(xué)教案.doc
      將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        提公因式法教案

        提公因式法(1) 教學(xué)目標(biāo): 知識(shí)目標(biāo): 1、使學(xué)生理解什么樣的式子是幾個(gè)多項(xiàng)式的公因式; 2、初步會(huì)找出幾個(gè)多項(xiàng)式的公因式; 3、會(huì)用提公因式法分解因式。 情感目標(biāo): 讓學(xué)生養(yǎng)成獨(dú)立......

        提公因式法教學(xué)設(shè)計(jì)

        提公因式法教學(xué)設(shè)計(jì) 一、教材分析 本節(jié)課選自義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書八年級(jí)上冊(cè)第十五單元第四節(jié)因式分解的提公因式法。內(nèi)容包括因式分解的有關(guān)概念,整式乘法與因式分解......

        《因式分解提公因式法》教案

        第一章 因式分解 2.提公因式法 課型:新授課 主備人: 審核人:初三數(shù)學(xué)組 一、教學(xué)目標(biāo): 1.知識(shí)與技能:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,?這種變形叫做把這個(gè)多項(xiàng)式因式分解,也叫......

        提公因式法 教案2

        新課程網(wǎng)校[WWW.XKCWX.COM] 全力打造一流免費(fèi)網(wǎng)校! 6.2提取公因式法 〖教學(xué)目標(biāo)〗 ◆1、會(huì)用提取公因式法分解因式. ◆2、理解添括號(hào)法則. 〖教學(xué)重點(diǎn)與難點(diǎn)〗 ◆教學(xué)重點(diǎn):用提......

        《提公因式法》教學(xué)反思

        本節(jié)課主要內(nèi)容是運(yùn)用提公因式法進(jìn)行因式分解。教學(xué)中,我用速算引入,有效的激發(fā)了學(xué)生的學(xué)習(xí)探究積極性,讓學(xué)生體驗(yàn)到了學(xué)習(xí)的快樂,通過字母表示引入新課,符合從具體到從抽象的認(rèn)......

        【教案】14.3.1提公因式法

        14.3.1提公因式法(一) 教學(xué)目標(biāo) 1.使學(xué)生了解因式分解的意義,理解因式分解的概念及其與整式乘法的區(qū)別和聯(lián)系. 2.使學(xué)生理解提公因式法并能熟練地運(yùn)用提公因式法分解因式. 3.樹立......

        《提公因式法》 教學(xué)設(shè)計(jì)(五篇)

        提公因式法 一、內(nèi)容與分析 教材所處的地位 這節(jié)課是九年制義務(wù)教育教科書八年級(jí)上冊(cè)第一章第二節(jié)《提公因式法》第一課時(shí)。學(xué)習(xí)分解因式一是為解高次方程作準(zhǔn)備,二是學(xué)習(xí)對(duì)......

        4.2.1提公因式法公教案

        4.2提公因式法(第1課時(shí)) 學(xué)習(xí)目標(biāo): 1、經(jīng)過探索、認(rèn)識(shí)多項(xiàng)式各公因式的過程,并在具體問題中,能確定多項(xiàng)式各項(xiàng)的公因式。 2、會(huì)運(yùn)用提公因式法進(jìn)行因式分解。 教學(xué)重點(diǎn):會(huì)確定多項(xiàng)......