第一篇:一元二次方程單元備課
第四章 一元二次方程單元備課
單元名稱:一元二次方程
一、本單元的地位和作用
1.本單元教學(xué)的主要內(nèi)容.
一元二次方程概念;解一元二次方程的方法;一元二次方程應(yīng)用題.
2.本單元在教材中的地位與作用.
一元二次方程是在學(xué)習(xí)《一元一次方程》、《二元一次方程》、分式方程等基礎(chǔ)之上學(xué)習(xí)的,它也是一種數(shù)學(xué)建模的方法.學(xué)好一元二次方程是學(xué)好二次函數(shù)不可或缺的,是學(xué)好高中數(shù)學(xué)的奠基工程.應(yīng)該說,一元二次方程是本書的重點(diǎn)內(nèi)容.
二、單元教學(xué)目標(biāo)
1.知識與技能
了解一元二次方程及有關(guān)概念;掌握通過配方法、公式法、因式分解法降次──解一元二次方程;掌握依據(jù)實(shí)際問題建立一元二次方程的數(shù)學(xué)模型的方法;應(yīng)用熟練掌握以上知識解決問題.
2.過程與方法
(1)通過豐富的實(shí)例,讓學(xué)生合作探討,老師點(diǎn)評分析,建立數(shù)學(xué)模型.?根據(jù)數(shù)學(xué)模型恰如其分地給出一元二次方程的概念.
(2)結(jié)合八冊上整式中的有關(guān)概念介紹一元二次方程的派生概念,如二次項(xiàng)等.
(3)通過掌握缺一次項(xiàng)的一元二次方程的解法──直接開方法,?導(dǎo)入用配方法解一元二次方程,又通過大量的練習(xí)鞏固配方法解一元二次方程.
(4)通過用已學(xué)的配方法解ax2+bx+c=0(a≠0)導(dǎo)出解一元二次方程的求根公式,接著討論求根公式的條件:b2-4ac>0,b2-4ac=0,b2-4ac<0.
(5)通過復(fù)習(xí)八年級上冊《整式》的第5節(jié)因式分解進(jìn)行知識遷移,解決用因式分解法解一元二次方程,并用練習(xí)鞏固它.
(6)提出問題、分析問題,建立一元二次方程的數(shù)學(xué)模型,?并用該模型解決實(shí)際問題.
3.情感、態(tài)度與價值觀
經(jīng)歷由事實(shí)問題中抽象出一元二次方程等有關(guān)概念的過程,使同學(xué)們體會到通過一元二次方程也是刻畫現(xiàn)實(shí)世界中的數(shù)量關(guān)系的一個有效數(shù)學(xué)模型;經(jīng)歷用配方法、公式法、分解因式法解一元一次方程的過程,使同學(xué)們體會到轉(zhuǎn)化等數(shù)學(xué)思想;經(jīng)歷設(shè)置豐富的問題情景,使學(xué)生體會到建立數(shù)學(xué)模型解決實(shí)際問題的過程,從而更好地理解方程的意義和作用,激發(fā)學(xué)生的學(xué)習(xí)興趣.
三、單元知識點(diǎn)分析
四、教學(xué)與難點(diǎn) 教學(xué)重點(diǎn)
1.一元二次方程及其它有關(guān)的概念.
2.用配方法、公式法、因式分解法降次──解一元二次方程.
3.利用實(shí)際問題建立一元二次方程的數(shù)學(xué)模型,并解決這個問題.
教學(xué)難點(diǎn)
1.一元二次方程配方法解題.
2.用公式法解一元二次方程時的討論.
3.建立一元二次方程實(shí)際問題的數(shù)學(xué)模型;方程解與實(shí)際問題解的區(qū)別.
五、教學(xué)措施:
1.分析實(shí)際問題如何建立一元二次方程的數(shù)學(xué)模型.
2.用配方法解一元二次方程的步驟.
3.解一元二次方程公式法的推導(dǎo).
六、課時安排:
本單元教學(xué)時間約需14課時,具體分配如下:
一元二次方程
2課時
用配方法解一元二次方程
3課時 用公式法解一元二次方程
2課時 4.用分解因式法解一元二次方程
1課時
5、一元二次方程根的判別式
1課時
6、一元二次方程根與系數(shù)的關(guān)系
1課時
7、一元二次方程的應(yīng)用
2課時
回顧與復(fù)習(xí)
2課時
考試與講評
2課時
總計
14課時
第二篇:一元二次方程單元備課
第二十二章一元二次方程
單元要點(diǎn)分析
教材內(nèi)容
1.本單元教學(xué)的主要內(nèi)容.
一元二次方程概念;解一元二次方程的方法;一元二次方程應(yīng)用題.2.本單元在教材中的地位與作用.
一元二次方程是在學(xué)習(xí)《一元一次方程》、《二元一次方程》、分式方程等基礎(chǔ)之上學(xué)習(xí)的,它也是一種數(shù)學(xué)建模的方法.學(xué)好一元二次方程是學(xué)好二次函數(shù)不可或缺的,是學(xué)好高中數(shù)學(xué)的奠基工程.應(yīng)該說,一元二次方程是本書的重點(diǎn)內(nèi)容.
教學(xué)目標(biāo)
1.知識與技能
了解一元二次方程及有關(guān)概念;掌握通過配方法、公式法、因式分解法降次──解一元二次方程;掌握依據(jù)實(shí)際問題建立一元二次方程的數(shù)學(xué)模型的方法;應(yīng)用熟練掌握以上知識解決問題.2.過程與方法
(1)通過豐富的實(shí)例,讓學(xué)生合作探討,老師點(diǎn)評分析,建立數(shù)學(xué)模型.?根據(jù)數(shù)學(xué)模型恰如其分地給出一元二次方程的概念.
(2)結(jié)合八冊上整式中的有關(guān)概念介紹一元二次方程的派生概念,如二次項(xiàng)等.(3)通過掌握缺一次項(xiàng)的一元二次方程的解法──直接開方法,?導(dǎo)入用配方法解一元二次方程,又通過大量的練習(xí)鞏固配方法解一元二次方程.(4)通過用已學(xué)的配方法解ax2+bx+c=0(a≠0)導(dǎo)出解一元二次方程的求根公式,接著討論求根公式的條件:b2-4ac>0,b2-4ac=0,b2-4ac<0.
(5)通過復(fù)習(xí)八年級上冊《整式》的第5節(jié)因式分解進(jìn)行知識遷移,解決用因式分解法解一元二次方程,并用練習(xí)鞏固它.
(6)提出問題、分析問題,建立一元二次方程的數(shù)學(xué)模型,?并用該模型解決實(shí)際問題.
3.情感、態(tài)度與價值觀
經(jīng)歷由事實(shí)問題中抽象出一元二次方程等有關(guān)概念的過程,使同學(xué)們體會到通過一元二次方程也是刻畫現(xiàn)實(shí)世界中的數(shù)量關(guān)系的一個有效數(shù)學(xué)模型;經(jīng)歷用配方法、公式法、分解因式法解一元一次方程的過程,使同學(xué)們體會到轉(zhuǎn)化等數(shù)學(xué)思想;經(jīng)歷設(shè)置豐富的問題情景,使學(xué)生體會到建立數(shù)學(xué)模型解決實(shí)際問題的過程,從而更好地理解方程的意義和作用,激發(fā)學(xué)生的學(xué)習(xí)興趣.
教學(xué)重點(diǎn)
1.一元二次方程及其它有關(guān)的概念.
2.用配方法、公式法、因式分解法降次──解一元二次方程.3.利用實(shí)際問題建立一元二次方程的數(shù)學(xué)模型,并解決這個問題.
教學(xué)難點(diǎn)
1.一元二次方程配方法解題.
2.用公式法解一元二次方程時的討論.
3.建立一元二次方程實(shí)際問題的數(shù)學(xué)模型;方程解與實(shí)際問題解的區(qū)別.
教學(xué)關(guān)鍵
1.分析實(shí)際問題如何建立一元二次方程的數(shù)學(xué)模型.2.用配方法解一元二次方程的步驟.3.解一元二次方程公式法的推導(dǎo).
課時劃分
本單元教學(xué)時間約需16課時,具體分配如下:22.1一元二次方程2課時22.2降次──解一元二次方程5課時22.3實(shí)際問題與一元二次方程4課時教學(xué)活動、習(xí)題課、小結(jié)2課時
第三篇:一元二次方程實(shí)際問題
例3.某商店經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品,?據(jù)市場分析,?若每千克50元銷售,一個月能售出500kg,銷售單價每漲1元,月銷售量就減少10kg,針對這種水產(chǎn)品情況,請解答以下問題:
(1)當(dāng)銷售單價定為每千克55元時,計算銷售量和月銷售利潤.
(2)設(shè)銷售單價為每千克x元,月銷售利潤為y元,求y與x的關(guān)系式.
(3)商品想在月銷售成本不超過10000元的情況下,使得月銷售利潤達(dá)到8000元,銷售單價應(yīng)為多少?
分析:(1)銷售單價定為55元,比原來的銷售價50元提高5元,因此,銷售量就減少5×10kg.
(2)銷售利潤y=(銷售單價x-銷售成本40)×銷售量[500-10(x-50)]
(3)月銷售成本不超過10000元,那么銷售量就不超過10000=250kg,在這個提前下,40
?求月銷售利潤達(dá)到8000元,銷售單價應(yīng)為多少.
解:(1)銷售量:500-5×10=450(kg);銷售利潤:450×(55-40)=450×15=6750元
(2)y=(x-40)[500-10(x-50)]=-10x2+1400x-40000
(3)由于水產(chǎn)品不超過10000÷40=250kg,定價為x元,則(x-40)[500-10(x-50)]=8000解得:x1=80,x2=60
當(dāng)x1=80時,進(jìn)貨500-10(80-50)=200kg<250kg,滿足題意.
當(dāng)x2=60時,進(jìn)貨500-10(60-50)=400kg>250kg,(舍去).
例4.某人將2000元人民幣按一年定期存入銀行,到期后支取1000元用于購物,剩下的1000元及應(yīng)得利息又全部按一年定期存入銀行,若存款的利率不變,到期后本金和利息共1320元,求這種存款方式的年利率.
分析:設(shè)這種存款方式的年利率為x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就變?yōu)?000+2000x·80%,其它依此類推.解:設(shè)這種存款方式的年利率為x
則:1000+2000x·80%+(1000+2000x·8%)x·80%=1320
整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0
解得:x1=-2(不符,舍去),x2=
答:所求的年利率是12.5%.
1=0.125=12.5% 8
第四篇:實(shí)際問題一元二次方程
22.3《實(shí)際問題與一元二次方程(2)》學(xué)案
課型:上課時間:課時:
學(xué)習(xí)目標(biāo):
能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元二次方程,體會方程是刻畫現(xiàn)實(shí)世界的一個有效的數(shù)學(xué)模型.學(xué)習(xí)過程:
一、自主學(xué)習(xí):
(一)復(fù)習(xí)鞏固:
1、某商店銷售一批服裝,每價成本價100元,若想獲得25%,這種服裝的售價應(yīng)為_______________元。
2、某商品原價a元,因需求量大,經(jīng)營者將該商品提價10%,后因市場物價調(diào)整,又降價10%,降價后這種商品的價格是_______________。
(二)、歸納總結(jié):
1、有關(guān)利率問題公式:利息=本金×利率×存期本息和=本金+利息
2、有關(guān)商品利潤的關(guān)系式:(1)利潤=售價-進(jìn)價
(2)利潤率= 利潤售價?進(jìn)價(3)售價=進(jìn)價(1+利潤率)?進(jìn)價進(jìn)價
(三)、自我嘗試:
某商場禮品柜臺春節(jié)期間購進(jìn)大量賀年卡,一種賀年卡平均每天可售出500張,每張盈利0.3元,為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,調(diào)查發(fā)現(xiàn),如果這種賀年卡的售價每降低0.1元,那么商場平均每天可多售出100張,?商場要想平均每天盈利120元,每張賀年卡應(yīng)降價多少元?
(四)例題選講
某商場禮品柜臺春節(jié)期間購進(jìn)甲、乙兩種賀年卡,甲種賀年卡平均每天可售出500張,每張盈利0.3元,乙種賀年卡平均每天可售出200張,每張盈利0.75元,為了盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,調(diào)查發(fā)現(xiàn),如果甲種賀年卡的售價每降價0.1元,那么商場平均每天可多售出100張;如果乙種賀年卡的售價每降價0.25元,?那么商場平均每天可多售出34?張.?如果商場要想每種賀年卡平均每天盈利120元,那么哪種賀年卡每張降價的絕對量大.
二、課堂檢測:
1.一個小組若干人,新年互送賀卡,若全組共送賀卡72張,則這個小組共().
A.12人B.18人C.9人D.10人
2.一個產(chǎn)品原價為a元,受市場經(jīng)濟(jì)影響,先提價20%后又降價15%,現(xiàn)價比原價多_______%.
3.一個容器盛滿純藥液63升,第一次倒出一部分純藥液后用水加滿,?第二次又倒出同樣多的藥液,再加水補(bǔ)滿,這時容器內(nèi)剩下的純藥液是28升,設(shè)每次倒出液體x升,?則列出的方程是________.
4.上海甲商場七月份利潤為100萬元,九月份的利率為121萬元,乙商場七月份利率為200萬元,九月份的利潤為288萬元,那么哪個商場利潤的年平均上升率較大?
5.某果園有100棵桃樹,一棵桃樹平均結(jié)1000個桃子,?現(xiàn)準(zhǔn)備多種一些桃樹以提高產(chǎn)量,試驗(yàn)發(fā)現(xiàn),每多種一棵桃樹,每棵桃樹的產(chǎn)量就會減少2個,?如果要使產(chǎn)量增加15.2%,那么應(yīng)多種多少棵桃樹?
6.某商店經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品,?據(jù)市場分析,?若每千克50元銷售,一個月能售出500kg,銷售單價每漲1元,月銷售量就減少10kg,針對這種水產(chǎn)品情況,請解答以下問題:
(1)當(dāng)銷售單價定為每千克55元時,計算銷售量和月銷售利潤.
(2)設(shè)銷售單價為每千克x元,月銷售利潤為y元,求y與x的關(guān)系式.
(3)商品想在月銷售成本不超過10000元的情況下,使得月銷售利潤達(dá)到8000元,銷售單價應(yīng)為多少?
三、布置作業(yè)
一、選擇題
1.一個小組若干人,新年互送賀卡,若全組共送賀卡72張,則這個小組共().
A.12人B.18人C.9人D.10人
2.某一商人進(jìn)貨價便宜8%,而售價不變,那么他的利潤(按進(jìn)貨價而定)可由目前x增加到(x+10%),則x是().
A.12%B.15%C.30%D.50%
3.育才中學(xué)為迎接香港回歸,從1994年到1997年四年內(nèi)師生共植樹1997棵,已知該校1994年植樹342棵,1995年植樹500棵,如果1996年和1997年植樹的年增長率相同,那么該校1997年植樹的棵數(shù)為().
A.600B.604C.595D.605
二、填空題
1.一個產(chǎn)品原價為a元,受市場經(jīng)濟(jì)影響,先提價20%后又降價15%,現(xiàn)價比原價多_______%.
2.甲用1000元人民幣購買了一手股票,隨即他將這手股票轉(zhuǎn)賣給乙,獲利10%,乙而后又將這手股票返賣給甲,但乙損失了10%,?最后甲按乙賣給甲的價格的九折將這手股票賣出,在上述股票交易中,甲盈了_________元.
3.一個容器盛滿純藥液63L,第一次倒出一部分純藥液后用水加滿,?第二次又倒出同樣多的藥液,再加水補(bǔ)滿,這時容器內(nèi)剩下的純藥液是28L,設(shè)每次倒出液體xL,?則列出的方程是________.
三、綜合提高題
1.上海甲商場七月份利潤為100萬元,九月份的利率為121萬元,乙商場七月份利率為200
萬元,九月份的利潤為288萬元,那么哪個商場利潤的年平均上升率較大?
2.某果園有100棵桃樹,一棵桃樹平均結(jié)1000個桃子,?現(xiàn)準(zhǔn)備多種一些桃樹以提高產(chǎn)量,試驗(yàn)發(fā)現(xiàn),每多種一棵桃樹,每棵桃樹的產(chǎn)量就會減少2個,?如果要使產(chǎn)量增加15.2%,那么應(yīng)多種多少棵桃樹?
3.某玩具廠有4個車間,某周是質(zhì)量檢查周,現(xiàn)每個車間都原有a(a>0)個成品,且每個
車間每天都生產(chǎn)b(b>0)個成品,質(zhì)量科派出若干名檢驗(yàn)員周一、?周二檢驗(yàn)其中兩個車間原有的和這兩天生產(chǎn)的所有成品,然后,周三到周五檢驗(yàn)另外兩個車間原有的和本周生產(chǎn)的所有成品,假定每名檢驗(yàn)員每天檢驗(yàn)的成品數(shù)相同.
(1)這若干名檢驗(yàn)員1天共檢驗(yàn)多少個成品?(用含a、b的代數(shù)式表示)
(2)若一名檢驗(yàn)員1天能檢驗(yàn)
4b個成品,則質(zhì)量科至少要派出多少名檢驗(yàn)員? 5
第五篇:一元二次方程應(yīng)用2010
1、(2009煙臺市)某商場將進(jìn)價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實(shí)施,商場決定采取適當(dāng)?shù)慕祪r措施.調(diào)查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.
(1)假設(shè)每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實(shí)惠,每臺冰箱應(yīng)降價多少元?
2、(2009武漢)某商品的進(jìn)價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品的售價每上漲1元,則每個月少賣10件(每件售價不能高于65元).設(shè)每件商品的售價上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價定為多少元時,每個月的利潤恰為2200元?
3、某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子.現(xiàn)準(zhǔn)備多種一些橙子樹以提高產(chǎn)量,但是如果多種樹,那么樹之間的距離和每一棵樹所接受的陽光就會減少.根據(jù)經(jīng)驗(yàn)估計,每多種一棵樹,平均每棵樹就會少結(jié)5個橙子.⑴利用函數(shù)表達(dá)式描述橙子的總產(chǎn)量與增種橙子樹的棵數(shù)之間的關(guān)系.(2)增種多少棵橙子,可以使橙子的總產(chǎn)量達(dá)到60400個?
4、某商店經(jīng)銷一種銷售成本為每千克40元的水產(chǎn)品.據(jù)市場分析,若按每千克50元銷售,一個月能售出500千克;銷售單價每漲1元,月銷售量就減少10千克.針對這種水產(chǎn)品的銷售情況,請售答以下問題:
(1)當(dāng)銷售單價定為每千克55元時,計算月銷售量和月銷售利潤;
(2)設(shè)銷售單價為每千克x元,月銷售利潤為y元,求y與x函數(shù)關(guān)系式(不必寫出x的取值范圍);(3)商店想在月銷售成本不超過1000元的情況下,使得月銷售利潤達(dá)到8000元,銷售單價應(yīng)定為多少?
5、某化工材料經(jīng)銷公司購進(jìn)了一種化工原料共7000千克,購進(jìn)價格為每千克30元.物價部門規(guī)定其銷售單價不得高于每千克70元,也不得低于30元.市場調(diào)查發(fā)現(xiàn):單價定為70元時,日均銷售60千克;單價每降低1元,日均多售出2千克.在銷售過程中,每天還要支出其他費(fèi)用500元(天數(shù)不足一天時,按整天計算).設(shè)銷售單價為x元,日均獲利為y元.求y關(guān)于x的二次函數(shù)關(guān)系式,并注明x的取值范圍;
6、(2009年貴州省黔東南州)凱里市某大型酒店有包房100間,在每天晚餐營業(yè)時間,每間包房收包房費(fèi)100元時,包房便可全部租出;若每間包房收費(fèi)提高20元,則減少10間包房租出,若每間包房收費(fèi)再提高20元,則再減少10間包房租出,以每次提高20元的這種方法變化下去。
(1)設(shè)每間包房收費(fèi)提高x(元),則每間包房的收入為y1(元),但會減少y2
間包房租出,請分別寫出y1、y2與x之間的函數(shù)關(guān)系式。
(2)為了投資少而利潤大,每間包房提高x(元)后,設(shè)酒店老板每天晚餐包房總收入為y(元),請寫出y與x之間的函數(shù)關(guān)系式。
7、(2009年甘肅慶陽)(8分)某企業(yè)2006年盈利1500萬元,2008年克服全球金融危機(jī)的不利影響,仍實(shí)現(xiàn)盈利2160萬元.從2006年到2008年,如果該企業(yè)每年盈利的年增長率相同,求:(1)該企業(yè)2007年盈利多少萬元?
(2)若該企業(yè)盈利的年增長率繼續(xù)保持不變,預(yù)計2009年盈利多少萬元?
8、(2009年湖州)隨著人民生活水平的不斷提高,我市家庭轎車的擁有量逐年增加.據(jù)統(tǒng)計,某小區(qū)2006年底擁有家庭轎車64輛,2008年底家庭轎車的擁有量達(dá)到100輛.(1)若該小區(qū)2006年底到2009年底家庭轎車擁有量的年平均增長率都相同,求該小區(qū)到2009年底家庭轎車將達(dá)到多少輛?
(2)為了緩解停車矛盾,該小區(qū)決定投資15萬元再建造若干個停車位.據(jù)測算,建造費(fèi)用分別為室內(nèi)車位5000元/個,露天車位1000元/個,考慮到實(shí)際因素,計劃露天車位的數(shù)量不少于室內(nèi)車位的2倍,但不超過室內(nèi)車位的2.5倍,求該小區(qū)最多可建兩種車位各多少個?試寫出所有可能的方案.9.建造一個面積是140平方米的倉庫,要求其一邊靠墻,墻長16米,在與墻平行的一邊開一道2米寬的門?,F(xiàn)人32米長的材料來建倉庫,求這個倉庫的長是多少米?
10、如圖在△ABC中,∠B是直角,AB=6厘米,BC=12厘米。點(diǎn)P從A點(diǎn)開始,沿AB方向以每秒1厘米的速度移動,同時點(diǎn)Q從點(diǎn)B開始,沿BC方向以每秒厘米移動。問幾秒時△PBQ的面積等于8平方厘米?
11.(2009年甘肅慶陽)若關(guān)于x的方程x2
?2x?k?1?0的一個根是0,則k?.
12.、(2009威海)若關(guān)于x的一元二次方程x2
?(k?3)x?k?0的一個根是?2,則另一個根是______.、(2009山西省太原市)某種品牌的手機(jī)經(jīng)過四、五月份連續(xù)兩次降價,每部售價P 13由3200元降到了2500元.設(shè)平均每月降價的百分率為x,根據(jù)題意列出的方程是.