第一篇:高一數(shù)學教案 數(shù)列 -數(shù)學教案
數(shù)列-數(shù)學教案
教學目標
1.使學生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的.
(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第 項 與項數(shù) 的關系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式.
(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項.
2.通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力.
3.通過由 求 的過程,培養(yǎng)學生嚴謹?shù)目茖W態(tài)度及良好的思維習慣.
教學建議
(1)為激發(fā)學生學習數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等.
(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導思想,應及早引導學生發(fā)現(xiàn)數(shù)列與函數(shù)的關系.在教學中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法,教師應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助.
(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結論,如正負相間用 來調(diào)整等.如果學生一時不能寫出通項公式,可讓學生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關系.
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應補充數(shù)列前 項和的概念,用 表示 的問題是重點問題,可先提出一個具體問題讓學生分析 與 的關系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調(diào) 的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況.
(6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學生應提出這一問題,學生運用函數(shù)知識是可以解決的.
教學設計示例
數(shù)列的概念
教學目標
1.通過教學使學生理解數(shù)列的概念,了解數(shù)列的表示法,能夠根據(jù)通項公式寫出數(shù)列的項.
2.通過數(shù)列定義的歸納概括,初步培養(yǎng)學生的觀察、抽象概括能力;滲透函數(shù)思想.
3.通過有關數(shù)列實際應用的介紹,激發(fā)學生學習研究數(shù)列的積極性.
教學重點,難點
教學重點是數(shù)列的定義的歸納與認識;教學難點是數(shù)列與函數(shù)的聯(lián)系與區(qū)別.
教學用具:電腦,http://jiaoan.cnkjz.com/Soft/Index.html>課件(媒體資料),投影儀,幻燈片
教學方法:講授法為主
教學過程
一.揭示課題
今天開始我們研究一個新課題.
先舉一個生活中的例子:場地上堆放了一些圓鋼,最底下的一層有100根,在其上一層(稱作第二層)碼放了99根,第三層碼放了98根,依此類推,問:最多可放多少層?第57層有多少根?從第1層到第57層一共有多少根?我們不能滿足于一層層的去數(shù),而是要但求如何去研究,找出一般規(guī)律.實際上我們要研究的是這樣的一列數(shù)
(板書)象這樣排好隊的數(shù)就是我們的研究對象——數(shù)列.
(板書)第三章 數(shù)列
(一)數(shù)列的概念
二.講解新課
要研究數(shù)列先要知道何為數(shù)列,即先要給數(shù)列下定義,為幫助同學概括出數(shù)列的定義,再給出幾列數(shù):
(幻燈片)①
自然數(shù)排成一列數(shù):
②
3個1排成一列:
③
無數(shù)個1排成一列:
④
的不足近似值,分別近似到 排列起來:
⑤
正整數(shù) 的倒數(shù)排成一列數(shù):
⑥
函數(shù) 當 依次取 時得到一列數(shù):
⑦
函數(shù) 當 依次取 時得到一列數(shù):
⑧
請學生觀察8列數(shù),說明每列數(shù)就是一個數(shù)列,數(shù)列中的每個數(shù)都有自己的特定的位置,這樣數(shù)列就是按一定順序排成的一列數(shù).
(板書)1.數(shù)列的定義:按一定次序排成的一列數(shù)叫做數(shù)列.
為表述方便給出幾個名稱:項,項數(shù),首項(以幻燈片的形式給出).以上述八個數(shù)列為例,讓學生練指出某一個數(shù)列的首項是多少,第二項是多少,指出某一個數(shù)列的一些項的項數(shù).
由此可以看出,給定一個數(shù)列,應能夠指明第一項是多少,第二項是多少,??,每一項都是確定的,即指明項數(shù),對應的項就確定.所以數(shù)列中的每一項與其項數(shù)有著對應關系,這與我們學過的函數(shù)有密切關系.
(板書)2.數(shù)列與函數(shù)的關系
數(shù)列可以看作特殊的函數(shù),項數(shù)是其自變量,項是項數(shù)所對應的函數(shù)值,數(shù)列的定義域是正整數(shù)集,或是正整數(shù)集 的有限子集 .
于是我們研究數(shù)列就可借用函數(shù)的研究方法,用函數(shù)的觀點看待數(shù)列.
遇到數(shù)學概念不單要下定義,還要給其數(shù)學表示,以便研究與交流,下面探討數(shù)列的表示法.
(板書)3.數(shù)列的表示法
數(shù)列可看作特殊的函數(shù),其表示也應與函數(shù)的表示法有聯(lián)系,首先請學生回憶函數(shù)的表示法:列表法,圖象法,解析式法.相對于列表法表示一個函數(shù),數(shù)列有這樣的表示法:用 表示第一項,用 表示第一項,??,用 表示第 項,依次寫出成為
(板書)(1)列舉法
.(如幻燈片上的例子)簡記為 .
一個函數(shù)的直觀形式是其圖象,我們也可用圖形表示一個數(shù)列,把它稱作圖示法.
(板書)(2)圖示法
啟發(fā)學生仿照函數(shù)圖象的畫法畫數(shù)列的圖形.具體方法是以項數(shù) 為橫坐標,相應的項 為縱坐標,即以 為坐標在平面直角坐標系中做出點(以前面提到的數(shù)列 為例,做出一個數(shù)列的圖象),所得的數(shù)列的圖形是一群孤立的點,因為橫坐標為正整數(shù),所以這些點都在 軸的右側,而點的個數(shù)取決于數(shù)列的項數(shù).從圖象中可以直觀地看到數(shù)列的項隨項數(shù)由小到大變化而變化的趨勢.
有些函數(shù)可以用解析式來表示,解析式反映了一個函數(shù)的函數(shù)值與自變量之間的數(shù)量關系,類似地有一些數(shù)列的項能用其項數(shù)的函數(shù)式表示出來,即,這個函數(shù)式叫做數(shù)列的通項公式.
(板書)(3)通項公式法
如數(shù)列 的通項公式為 ;
的通項公式為 ;
的通項公式為 ;
數(shù)列的通項公式具有雙重身份,它表示了數(shù)列的第 項,又是這個數(shù)列中所有各項的一般表示.通項公式反映了一個數(shù)列項與項數(shù)的函數(shù)關系,給了數(shù)列的通項公式,這個數(shù)列便確定了,代入項數(shù)就可求出數(shù)列的每一項.
第二篇:高一數(shù)學教案
高一數(shù)學教案
高一數(shù)學教案1
第一節(jié) 集合的含義與表示
學時:1學時
[學習引導]
一、自主學習
1.閱讀課本 .
2.回答問題:
⑴本節(jié)內(nèi)容有哪些概念和知識點?
⑵嘗試說出相關概念的含義?
3完成 練習
4小結
二、方法指導
1、要結合例子理解集合的概念,能說出常用的數(shù)集的名稱和符號。
2、理解集合元素的特性,并會判斷元素與集合的關系
3、掌握集合的`表示方法,并會正確運用它們表示一些簡單集合。
4、在學習中要特別注意理解空集的意義和記法
[思考引導]
一、提問題
1.集合中的元素有什么特點?
2、集合的常用表示法有哪些?
3、集合如何分類?
4.元素與集合具有什么關系?如何用數(shù)學語言表述?
5集合 和 是否相同?
二、變題目
1.下列各組對象不能構成集合的是( )
A.北京大學級新生
B.26個英文字母
C.著名的藝術家
D.北京奧運會中所設定的比賽項目
2.下列語句:①0與 表示同一個集合;
②由1,2,3組成的集合可表示為 或 ;
③方程 的解集可表示為 ;
④集合 可以用列舉法表示。
其中正確的是( )
A.①和④ B.②和③
C.② D.以上語句都不對
[總結引導]
1.集合中元素的三特性:
2.集合、元素、及其相互關系的數(shù)學符號語言的表示和理解:
3.空集的含義:
[拓展引導]
1.課外作業(yè):習題11第 題;
2.若集合 ,求實數(shù) 的值;
3.若集合 只有一個元素,則實數(shù) 的值為 ;若 為空集,則 的取值范圍是 .
撰稿:程曉杰 審稿:宋慶
高一數(shù)學教案2
學習目標
1.能根據(jù)拋物線的定義建立拋物線的標準方程;
2.會根據(jù)拋物線的標準方程寫出其焦點坐標與準線方程;
3.會求拋物線的標準方程。
一、預習檢查
1.完成下表:
標準方程
圖形
焦點坐標
準線方程
開口方向
2.求拋物線的焦點坐標和準線方程.
3.求經(jīng)過點的拋物線的標準方程.
二、問題探究
探究1:回顧拋物線的定義,依據(jù)定義,如何建立拋物線的標準方程?
探究2:方程是拋物線的標準方程嗎?試將其與拋物線的標準方程辨析比較.
例1.已知拋物線的頂點在原點,對稱軸為坐標軸,焦點在直線上,求拋物線的方程.
例2.已知拋物線的焦點在軸上,點是拋物線上的一點,到焦點的距離是5,求的值及拋物線的標準方程,準線方程.
例3.拋物線的頂點在原點,對稱軸為軸,它與圓相交,公共弦的長為.求該拋物線的方程,并寫出其焦點坐標與準線方程.
三、思維訓練
1.在平面直角坐標系中,若拋物線上的點到該拋物線的焦點的距離為6,則點的橫坐標為.
2.拋物線的焦點到其準線的距離是.
3.設為拋物線的焦點,為該拋物線上三點,若,則=.
4.若拋物線上兩點到焦點的距離和為5,則線段的中點到軸的距離是.
5.(理)已知拋物線,有一個內(nèi)接直角三角形,直角頂點在原點,斜邊長為,一直角邊所在直線方程是,求此拋物線的方程。
四、課后鞏固
1.拋物線的準線方程是.
2.拋物線上一點到焦點的距離為,則點到軸的.距離為.
3.已知拋物線,焦點到準線的距離為,則.
4.經(jīng)過點的拋物線的標準方程為.
5.頂點在原點,以雙曲線的焦點為焦點的拋物線方程是.
6.拋物線的頂點在原點,以軸為對稱軸,過焦點且傾斜角為的直線被拋物線所截得的弦長為8,求拋物線的方程.
7.若拋物線上有一點,其橫坐標為,它到焦點的距離為10,求拋物線方程和點的坐標。
高一數(shù)學教案3
教學目標
1、掌握平面向量的數(shù)量積及其幾何意義;
2、掌握平面向量數(shù)量積的重要性質(zhì)及運算律;
3、了解用平面向量的數(shù)量積可以處理垂直的問題;
4、掌握向量垂直的條件、
教學重難點
教學重點:平面向量的數(shù)量積定義
教學難點:平面向量數(shù)量積的定義及運算律的'理解和平面向量數(shù)量積的應用
教學過程
1、平面向量數(shù)量積(內(nèi)積)的定義:已知兩個非零向量a與b,它們的夾角是θ,
則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)、
并規(guī)定0向量與任何向量的數(shù)量積為0、
×探究:1、向量數(shù)量積是一個向量還是一個數(shù)量?它的符號什么時候為正?什么時候為負?
2、兩個向量的數(shù)量積與實數(shù)乘向量的積有什么區(qū)別?
(1)兩個向量的數(shù)量積是一個實數(shù),不是向量,符號由cosq的符號所決定、
(2)兩個向量的數(shù)量積稱為內(nèi)積,寫成a×b;今后要學到兩個向量的外積a×b,而a×b是兩個向量的數(shù)量的積,書寫時要嚴格區(qū)分、符號“·”在向量運算中不是乘號,既不能省略,也不能用“×”代替、
(3)在實數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0、因為其中cosq有可能為0、
高一數(shù)學教案4
學習目標
1. 根據(jù)具體函數(shù)圖象,能夠借助計算器用二分法求相應方程的近似解;
2. 通過用二分法求方程的近似解,使學生體會函數(shù)零點與方程根之間的聯(lián)系,初步形成用函數(shù)觀點處理問題的意識.
舊知提示 (預習教材P89~ P91,找出疑惑之處)
復習1:什么叫零點?零點的等價性?零點存在性定理?
對于函數(shù) ,我們把使 的實數(shù)x叫做函數(shù) 的零點.
方程 有實數(shù)根 函數(shù) 的圖象與x軸 函數(shù) .
如果函數(shù) 在區(qū)間 上的圖象是連續(xù)不斷的一條曲線,并且有 ,那么,函數(shù) 在區(qū)間 內(nèi)有零點.
復習2:一元二次方程求根公式? 三次方程? 四次方程?
合作探究
探究:有12個小球,質(zhì)量均勻,只有一個是比別的球重的,你用天平稱幾次可以找出這個球的,要求次數(shù)越少越好.
解法:第一次,兩端各放 個球,低的那一端一定有重球;
第二次,兩端各放 個球,低的那一端一定有重球;
第三次,兩端各放 個球,如果平衡,剩下的就是重球,否則,低的就是重球.
思考:以上的方法其實這就是一種二分法的思想,采用類似的方法,如何求 的零點所在區(qū)間?如何找出這個零點?
新知:二分法的思想及步驟
對于在區(qū)間 上連續(xù)不斷且 0的函數(shù) ,通過不斷的把函數(shù)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫二分法(bisection).
反思: 給定精度,用二分法求函數(shù) 的零點近似值的步驟如何呢?
①確定區(qū)間 ,驗證 ,給定精度
②求區(qū)間 的中點 ;[]
③計算 : 若 ,則 就是函數(shù)的零點; 若 ,則令 (此時零點 ); 若 ,則令 (此時零點 );
④判斷是否達到精度即若 ,則得到零點零點值a(或b);否則重復步驟②~④.
典型例題
例1 借助計算器或計算機,利用二分法求方程 的近似解.
練1. 求方程 的解的個數(shù)及其大致所在區(qū)間.
練2.求函數(shù) 的一個正數(shù)零點(精確到 )
零點所在區(qū)間 中點函數(shù)值符號 區(qū)間長度
練3. 用二分法求 的近似值.
課堂小結
① 二分法的概念;②二分法步驟;③二分法思想.
知識拓展
高次多項式方程公式解的探索史料
在十六世紀,已找到了三次和四次函數(shù)的求根公式,但對于高于4次的函數(shù),類似的努力卻一直沒有成功,到了十九世紀,根據(jù)阿貝爾(Abel)和伽羅瓦(Galois)的研究,人們認識到高于4次的代數(shù)方程不存在求根公式,亦即,不存在用四則運算及根號表示的一般的公式解.同時,即使對于3次和4次的代數(shù)方程,其公式解的表示也相當復雜,一般來講并不適宜作具體計算.因此對于高次多項式函數(shù)及其它的.一些函數(shù),有必要尋求其零點近似解的方法,這是一個在計算數(shù)學中十分重要的課題.
學習評價
1. 若函數(shù) 在區(qū)間 上為減函數(shù),則 在 上( ).
A. 至少有一個零點 B. 只有一個零點
C. 沒有零點 D. 至多有一個零點
2. 下列函數(shù)圖象與 軸均有交點,其中不能用二分法求函數(shù)零點近似值的是.
3. 函數(shù) 的零點所在區(qū)間為( ).
A. B. C. D.
4. 用二分法求方程 在區(qū)間[2,3]內(nèi)的實根,由計算器可算得 , , ,那么下一個有根區(qū)間為 .
課后作業(yè)
1.若函數(shù)f(x)是奇函數(shù),且有三個零點x1、x2、x3,則x1+x2+x3的值為()
A.-1 B.0 C.3 D.不確定
2.已知f(x)=-x-x3,x[a,b],且f(a)f(b)0,則f(x)=0在[a,b]內(nèi)()
A.至少有一實數(shù)根 B.至多有一實數(shù)根
C.沒有實數(shù)根 D.有惟一實數(shù)根
3.設函數(shù)f(x)=13x-lnx(x0)則y=f(x)()
A.在區(qū)間1e,1,(1,e)內(nèi)均有零點 B.在區(qū)間1e,1, (1,e)內(nèi)均無零點
C.在區(qū)間1e,1內(nèi)有零點;在區(qū)間(1,e)內(nèi)無零點[]
D.在區(qū)間1e,1內(nèi)無零點,在區(qū)間(1,e)內(nèi)有零點
4.函數(shù)f(x)=ex+x-2的零點所在的一個區(qū)間是()
A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)
5.若方程x2-3x+mx+m=0的兩根均在(0,+)內(nèi),則m的取值范圍是()
A.m1 B.01 D.0
6.函數(shù)f(x)=(x-1)ln(x-2)x-3的零點有()
A.0個 B.1個 C.2個 D.3個
7.函數(shù)y=3x-1x2的一個零點是()
A.-1 B.1 C.(-1,0) D.(1,0)
8.函數(shù)f(x)=ax2+bx+c,若f(1)0,f(2)0,則f(x)在(1,2)上零點的個數(shù)為( )
A.至多有一個 B.有一個或兩個 C.有且僅有一個 D.一個也沒有
9.根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-2=0的一個根所在的區(qū)間為()
x -1 0 1 2 3
ex 0.37 1 2.72 7.39 20.09
A.(-1,0) B.(0,1) C.(1,2) D.(2,3)
10.求函數(shù)y=x3-2x2-x+2的零點,并畫出它的簡圖.
【總結】
20xx年數(shù)學網(wǎng)為小編在此為您收集了此文章高一數(shù)學教案:用二分法求方程的近似解,今后還會發(fā)布更多更好的文章希望對大家有所幫助,祝您在數(shù)學網(wǎng)學習愉快!
高一數(shù)學教案5
教學目標:
1、掌握對數(shù)的運算性質(zhì),并能理解推導這些法則的依據(jù)和過程;
2、能較熟練地運用法則解決問題;
教學重點:
對數(shù)的運算性質(zhì)
教學過程:
一、問題情境:
1、指數(shù)冪的運算性質(zhì);
2、問題:對數(shù)運算也有相應的運算性質(zhì)嗎?
二、學生活動:
1、觀察教材P59的.表2—3—1,驗證對數(shù)運算性質(zhì)、
2、理解對數(shù)的運算性質(zhì)、
3、證明對數(shù)性質(zhì)、
三、建構數(shù)學:
1)引導學生驗證對數(shù)的運算性質(zhì)、
2)推導和證明對數(shù)運算性質(zhì)、
3)運用對數(shù)運算性質(zhì)解題、
探究:
①簡易語言表達:“積的對數(shù)=對數(shù)的和”……
②有時逆向運用公式運算:如
③真數(shù)的取值范圍必須是:不成立;不成立、
④注意:,
四、數(shù)學運用:
1、例題:
例1、(教材P60例4)求下列各式的值:
(1);(2)125;(3)(補充)lg、
例2、(教材P60例4)已知,,求下列各式的值(結果保留4位小數(shù))
(1);(2)、
例3、用,,表示下列各式:
例4、計算:
(1);(2);(3)
2、練習:
P60(練習)1,2,4,5、
五、回顧小結:
本節(jié)課學習了以下內(nèi)容:對數(shù)的運算法則,公式的逆向使用、
六、課外作業(yè):
P63習題5
補充:
1、求下列各式的值:
(1)6—3;(2)lg5+lg2;(3)3+、
2、用lgx,lgy,lgz表示下列各式:
(1)lg(xyz);(2)lg;(3);(4)、
3、已知lg2=0、3010,lg3=0、4771,求下列各對數(shù)的值(精確到小數(shù)點后第四位)
(1)lg6;(2)lg;(3)lg;(4)lg32、
高一數(shù)學教案6
一、教材分析
本節(jié)課選自《普通高中課程標準數(shù)學教科書—必修1》(人教A版)《1。2。1函數(shù)的概念》共3課時,本節(jié)課是第1課時。生活中的許多現(xiàn)象如物體運動,氣溫升降,投資理財?shù)榷伎梢杂煤瘮?shù)的模型來刻畫,是我們更好地了解自己、認識世界和預測未來的重要工具。函數(shù)是數(shù)學的重要的基礎概念之一,是高等數(shù)學重多學科的基礎概念和重要的研究對象。同時函數(shù)也是物理學等其他學科的重要基礎知識和研究工具,教學內(nèi)容中蘊涵著極其豐富的辯證思想。
二、學生學習情況分析
函數(shù)是中學數(shù)學的主體內(nèi)容,學生在中學階段對函數(shù)的認識分三個階段:
(一)初中從運動變化的角度來刻畫函數(shù),初步認識正比例、反比例、一次和二次函數(shù);
(二)高中用集合與對應的觀點來刻畫函數(shù),研究函數(shù)的性質(zhì),學習典型的對、指、冪和三解函數(shù);
(三)高中用導數(shù)工具研究函數(shù)的單調(diào)性和最值。
1、有利條件
現(xiàn)代教育心理學的研究認為,有效的概念教學是建立在學生已有知識結構的基礎上的,因此教師在設計教學的過程中必須注意在學生已有知識結構中尋找新概念的固著點,引導學生通過同化或順應,掌握新概念,進而完善知識結構。
初中用運動變化的觀點對函數(shù)進行定義的,它反映了歷人們對它的一種認識,而且這個定義較為直觀,易于接受,因此按照由淺入深、力求符合學生認知規(guī)律的內(nèi)容編排原則,函數(shù)概念在初中介紹到這個程度是合適的。也為我們用集合與對應的觀點研究函數(shù)打下了一定的基礎。
2、不利條件
用集合與對應的觀點來定義函數(shù),形式和內(nèi)容上都是比較抽象的,這對學生的理解能力是一個挑戰(zhàn),是本節(jié)課教學的一個不利條件。
三、教學目標分析
課標要求:通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型,在此基礎上學習用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用;了解構成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域。
1、知識與能力目標:
⑴能從集合與對應的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性;
⑵理解函數(shù)的三要素的含義及其相互關系;
⑶會求簡單函數(shù)的定義域和值域
2、過程與方法目標:
⑴通過豐富實例,使學生建立起函數(shù)概念的背景,體會函數(shù)是描述變量之間依賴關系的數(shù)學模型;
⑵在函數(shù)實例中,通過對關鍵詞的強調(diào)和引導使學發(fā)現(xiàn)它們的共同特征,在此基礎上再用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用。
3、情感、態(tài)度與價值觀目標:
感受生活中的數(shù)學,感悟事物之間聯(lián)系與變化的辯證唯物主義觀點。
四、教學重點、難點分析
1、教學重點:對函數(shù)概念的理解,用集合與對應的語言來刻畫函數(shù);
重點依據(jù):初中是從變量的角度來定義函數(shù),高中是用集合與對應的`語言來刻畫函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對應關系”。但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對y?1這樣的函數(shù)用運動變化的觀點也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應將函數(shù)定義為兩個數(shù)集之間的一種對應關系,按照這種觀點,使我們對函數(shù)概念有了更深一層的認識,也很容易說明y?1這函數(shù)表達式。因此,分析兩種函數(shù)概念的關系,讓學生融會貫通地理解函數(shù)的概念應為本節(jié)課的重點。
突出重點:重點的突出依賴于對函數(shù)概念本質(zhì)屬性的把握,使學生通過表面的語言描述抓住概念的精髓。
2、教學難點:
第一:從實際問題中提煉出抽象的概念;
第二:符號“y=f(x)”的含義的理解。
難點依據(jù):數(shù)學語言的抽象概括難度較大,對符號y=f(x)的理解會受到以前知識的負遷移。
突破難點:難點的突破要依托豐富的實例,從集合與對應的角度恰當?shù)匾龑?,而對抽象符號的理解則要結合函數(shù)的三要素和小例子進行說明。
五、教法與學法分析
1、教法分析
本節(jié)課我主要采用教師導學法、知識遷移法和知識對比法,從學生熟悉的豐富實例出發(fā),關注學生的原有的知識基礎,注重概念的形成過程,從初中的函數(shù)概念自然過度到函數(shù)的近代定我。
2、學法分析
在教學過程中我注意在教學中引導學生用模型法分析函數(shù)問題、通過自主學習法總結“區(qū)間”的知識。
高一數(shù)學教案7
教學目標 :
①掌握對數(shù)函數(shù)的性質(zhì)。
②應用對數(shù)函數(shù)的性質(zhì)可以解決:對數(shù)的大小比較,求復
合函數(shù)的定義域、值 域及單調(diào)性。
③ 注重函數(shù)思想、等價轉(zhuǎn)化、分類討論等思想的滲透,提高
解題能力。
教學重點與難點:對數(shù)函數(shù)的性質(zhì)的應用。
教學過程 設計:
⒈復習提問:對數(shù)函數(shù)的概念及性質(zhì)。
⒉開始正課
1、比較數(shù)的大小
例 1:比較下列各組數(shù)的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
師:請同學們觀察一下⑴中這兩個對數(shù)有何特征?
生:這兩個對數(shù)底相等。
師:那么對于兩個底相等的對數(shù)如何比大???
生:可構造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調(diào)性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數(shù)函數(shù)的單調(diào)性取決于底的大?。寒?
調(diào)遞減,所以loga5.1>loga5.9 ;當a>1時,函數(shù)y=logax單調(diào)遞
增,所以loga5.1
板書:
解:Ⅰ)當0
∵5.1<5.9 loga5.1=“”>loga5.9
Ⅱ)當a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),
∵5.1<5.9 ∴l(xiāng)oga5.1
師:請同學們觀察一下⑵中這三個對數(shù)有何特征?
生:這三個對數(shù)底、真數(shù)都不相等。
師:那么對于這三個對數(shù)如何比大小?
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,
log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書:略。
師:比較對數(shù)值的大小常用方法:
①構造對數(shù)函數(shù),直接利用對數(shù)函數(shù) 的單調(diào)性比大小
②借用“中間量”間接比大小
③利用對數(shù)函數(shù)圖象的位置關系來比大小。
2、函數(shù)的定義域, 值 域及單調(diào)性。
例 2:
⑴求函數(shù)y=的定義域。
⑵解不等式log0.2(x2+2x—3)>log0.2(3x+3)
師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數(shù)中有對數(shù)的形式,則真數(shù)大于零,如果函數(shù)中同時出現(xiàn)以上幾種情況,就要全部考慮進去,求它們共同作用的.結果。)
生:分母2x—1≠0且偶次根式的被開方式log0.8x—1≥0,且真數(shù)x>0。
板書:
解:∵ 2x—1≠0 x≠0.5
log0.8x—1≥0 , x≤0.8x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
師:接下來我們一起來解這個不等式。
分析:要解這個不等式,首先要使這個不等式有意義,即真數(shù)大于零,再根據(jù)對數(shù)函數(shù)的單調(diào)性求解。
師:請你寫一下這道題的解題過程。
生:<板書>
解: x2+2x—3>0 x<—3 x=“”>1
(3x+3)>0 , x>—1
x2+2x—3<(3x+3) —2
不等式的解為:1
例 3:求下列函數(shù)的值域和單調(diào)區(qū)間。
⑴y=log0.5(x— x2)
⑵y=loga(x2+2x—3)(a>0,a≠1)
師:求例3中函數(shù)的的值域和單調(diào)區(qū)間要用及復合函數(shù)的思想方法。
下面請同學們來解⑴。
生:此函數(shù)可看作是由y=log0。5u, u=x— x2復合而成。
板書:
解:⑴∵u=x— x2>0, ∴0
u=x— x2=—(x—0.5)2+0.25, ∴0
∴y=log0.5u≥log0.50..25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u=x— x2
y=log0.5u
y=log0.5(x— x2)
函數(shù)y=log0.5(x— x2)的單調(diào)遞減區(qū)間(0,0.5],單調(diào)遞 增區(qū)間[0.5,1)
注:研究任何函數(shù)的性質(zhì)時,都應該首先保證這個函數(shù)有意義,否則函數(shù)都不存在,性質(zhì)就無從談起。
師:在⑴的基礎上,我們一起來解⑵。請同學們觀察一下⑴與⑵有什么區(qū)別?
生:⑴的底數(shù)是常值,⑵的底數(shù)是字母。
師:那么⑵如何來解?
生:只要對a進行分類討論,做法與⑴類似。
板書:略。
⒊小結
這堂課主要講解如何應用對數(shù)函數(shù)的性質(zhì)解決一些問題,希望能通過這堂課使同學們對等價轉(zhuǎn)化、分類討論等思想加以應用,提高解題能力。
⒋作業(yè)
⑴解不等式
①lg(x2—3x—4)≥lg(2x+10);②loga(x2—x)≥loga(x+1),(a為常數(shù))
⑵已知函數(shù)y=loga(x2—2x),(a>0,a≠1)
①求它的單調(diào)區(qū)間;②當0
⑶已知函數(shù)y=loga (a>0, b>0, 且 a≠1)
①求它的定義域;②討論它的奇偶性; ③討論它的單調(diào)性。
⑷已知函數(shù)y=loga(ax—1) (a>0,a≠1),
①求它的定義域;②當x為何值時,函數(shù)值大于1;③討論它的單調(diào)性。
5、課堂教學設計說明
這節(jié)課是安排為習題課,主要利用對數(shù)函數(shù)的性質(zhì)解決一些問題,整個一堂課分兩個部分:
一 、比較數(shù)的大小,想通過這一部分的練習,培養(yǎng)同學們構造函數(shù)的思想和分類討論、數(shù)形結合的思想。
二、函數(shù)的定義域, 值 域及單調(diào)性,想通過這一部分的練習,能使同學們重視求函數(shù)的定義域。因為學生在求函數(shù)的值域和單調(diào)區(qū)間時,往往不考慮函數(shù)的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學生做到想法正確,步驟清晰。為了調(diào)動學生的積極性,突出學生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學生獨立完成。但是,每一道題的解題過程,老師都應該給以板書,這樣既讓學生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結,以使好學生掌握地更完善,較差的學生也能夠跟上。
高一數(shù)學教案8
一、指導思想:
使學生在九年義務教育數(shù)學課程的基礎上,進一步提高作為未來公民所必要的數(shù)學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下。
1。獲得必要的數(shù)學基礎知識和基本技能,理解基本的數(shù)學概念、數(shù)學結論的本質(zhì),了解概念、結論等產(chǎn)生的背景、應用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。
2。提高空間想像、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本能力。
3。提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
4。發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學模式進行思考和作出判斷。
5。提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。
6。具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書數(shù)學(a版)》,它在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關系,體現(xiàn)基礎性,時代性,典型性和可接受性等到,具有如下特點:
1。親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學習激情。
2。問題性:以恰時恰點的問題引導數(shù)學活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
3。科學性與思想性:通過不同數(shù)學內(nèi)容的聯(lián)系與啟發(fā),強調(diào)類比,推廣,特殊化,化歸等思想方法的運用,學習數(shù)學地思考問題的方式,提高數(shù)學思維能力,培育理性精神。
4。時代性與應用性:以具有時代性和現(xiàn)實感的'素材創(chuàng)設情境,加強數(shù)學活動,發(fā)展應用意識。
三、教法分析:
1。選取與內(nèi)容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設能夠體現(xiàn)數(shù)學的概念和結論,數(shù)學的思想和方法,以及數(shù)學應用的學習情境,使學生產(chǎn)生對數(shù)學的親切感,引發(fā)學生看個究竟的沖動,以達到培養(yǎng)其興趣的目的。
2。通過觀察,思考,探究等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式。
3。在教學中強調(diào)類比,推廣,特殊化,化歸等數(shù)學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。
四、學情分析:
1、基本情況:12班共人,男生人,女生人;本班相對而言,數(shù)學尖子約人,中上等生約人,中等生約人,中下生約人,后進生約人。
14班共人,男生人,女生人;本班相對而言,數(shù)學尖子約人,中上等生約人,中等生約人,中下生約人,后進生約人。
2、兩個班均屬普高班,學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養(yǎng)學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內(nèi)容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
五、教學措施:
1、激發(fā)學生的學習興趣。由數(shù)學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學生思考。
3、加強培養(yǎng)學生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內(nèi)在聯(lián)系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學應用意識及應用能力的培養(yǎng)。
高一數(shù)學教案9
教學目標:
(1)了解集合的表示方法;
(2)能正確選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;
教學重點:掌握集合的表示方法;
教學難點:選擇恰當?shù)谋硎痉椒?
教學過程:
一、復習回顧:
1.集合和元素的定義;元素的三個特性;元素與集合的關系;常用的數(shù)集及表示。
2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分別是什么?有何關系
二、新課教學
(一).集合的表示方法
我們可以用自然語言和圖形語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。
(1) 列舉法:把集合中的元素一一列舉出來,并用花括號“ ”括起來表示集合的方法叫列舉法。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
說明:1.集合中的元素具有無序性,所以用列舉法表示集合時不必考
慮元素的順序。
2.各個元素之間要用逗號隔開;
3.元素不能重復;
4.集合中的元素可以數(shù),點,代數(shù)式等;
5.對于含有較多元素的集合,用列舉法表示時,必須把元素間的規(guī)律顯示清楚后方能用省略號,象自然數(shù)集N用列舉法表示為
例1.(課本例1)用列舉法表示下列集合:
(1)小于10的所有自然數(shù)組成的集合;
(2)方程x2=x的所有實數(shù)根組成的集合;
(3)由1到20以內(nèi)的所有質(zhì)數(shù)組成的集合;
(4)方程組 的解組成的集合。
思考2:(課本P4的思考題)得出描述法的'定義:
(2)描述法:把集合中的元素的公共屬性描述出來,寫在花括號{ }內(nèi)。
具體方法:在花括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。
一般格式:
如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;
說明:
1.課本P5最后一段話;
2.描述法表示集合應注意集合的代表元素,如{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}是不同的兩個集合,只要不引起誤解,集合的代表元素也可省略,例如:{x|整數(shù)},即代表整數(shù)集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。
例2.(課本例2)試分別用列舉法和描述法表示下列集合:
(1)方程x2—2=0的所有實數(shù)根組成的集合;
(2)由大于10小于20的所有整數(shù)組成的集合;
(3)方程組 的解。
思考3:(課本P6思考)
說明:列舉法與描述法各有優(yōu)點,應該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。
(二).課堂練習:
1.課本P6練習2;
2.用適當?shù)姆椒ū硎炯希捍笥?的所有奇數(shù)
3.集合A={x| ∈Z,x∈N},則它的元素是 。
4.已知集合A={x|-3
歸納小結:
本節(jié)課從實例入手,介紹了集合的常用表示方法,包括列舉法、描述法。
作業(yè)布置:
1.習題1.1,第3.4題;
2. 課后預習集合間的基本關系.
高一數(shù)學教案10
教學目標
1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關證明和判斷的基本方法.
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
(2)能從數(shù)和形兩個角度認識單調(diào)性和奇偶性.
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.
2.通過函數(shù)單調(diào)性的證明,提高學生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學生的觀察,歸納,抽象的能力,同時滲透數(shù)形結合,從特殊到一般的數(shù)學思想.
3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學生對數(shù)學美的體驗,培養(yǎng)樂于求索的精神,形成科學,嚴謹?shù)难芯繎B(tài)度.
教學建議
一、知識結構
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關系.
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
二、重點難點分析
(1)本節(jié)教學的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與認識.教學的難點是領悟函數(shù)單調(diào)性, 奇偶性的.本質(zhì),掌握單調(diào)性的證明.
(2)函數(shù)的單調(diào)性這一性質(zhì)學生在初中所學函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準確的數(shù)學語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調(diào)性的證明是學生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學生在代數(shù)論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調(diào)性的證明自然就是教學中的難點.
三、教法建議
(1)函數(shù)單調(diào)性概念引入時,可以先從學生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性認識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數(shù)值的關系的角度來解釋,引導學生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學語言表示出來.在這個過程中對一些關鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來.
(2)函數(shù)單調(diào)性證明的步驟是嚴格規(guī)定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規(guī)律.
函數(shù)的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學生把看到的用數(shù)學表達式寫出來.經(jīng)歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數(shù)多個等式,是個恒等式.關于定義域關于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象說明定義域關于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
高一數(shù)學教案11
教學目標:
(1)理解交集與并集的概念;
(2)掌握有關集合的術語和符號,并會用它們正確表示一些簡單的集合;
(3)能用圖示法表示集合之間的關系;
(4)掌握兩個較簡單集合的交集、并集的求法;
(5)通過對交集、并集概念的講解,培養(yǎng)學生觀察、比較、分析、概括、等能力,使學生認識由具體到抽象的思維過程;
(6)通過對集合符號語言的學習,培養(yǎng)學生符號表達能力,培養(yǎng)嚴謹?shù)?strong>學習作風,養(yǎng)成良好的學習習慣.
教學重點:交集和并集的概念
教學難點:交集和并集的概念、符號之間的區(qū)別與聯(lián)系
教學過程設計
一、導入新課
【提問】
試敘述子集、補集的概念?它們各涉及幾個集合?
補集涉及三個集合,補集是由一個集合及其一個子集而產(chǎn)生的第三個集合.由兩個集合產(chǎn)生第三個集合不僅有補集,在實際中還有許多其他情形,我們今天就來學習另外兩種.
回憶.
傾聽.集中注意力.激發(fā)求知欲.
鞏固舊知.為導入新課作準備.
滲透集合運算的意識.
二、新課
【引入】我們看下面圖(用投影儀打出,軟片做成左右兩向遮啟式,便于同學在“動態(tài)”中進行觀察).
【設問】
1.第一次看到了什么?
2.第二次看到了什么
3.第三次又看到了什么?
4.陰影部分的周界線是一條封閉曲線,它的內(nèi)部(陰影部分)當然表示一個新的集合,試問這個新集合中的元素與集A 、集B元素有何關系?
【介紹】這又是一種由兩個集合產(chǎn)生第三個集合的情況,在今后學習中會經(jīng)常出現(xiàn),為方便起見,稱集A與集B的公共部分為集A與集B的交集.
【設問】請大家從元素與集合的關系試敘述文集的概念.
【助學】“且”的含義是“同時”,“又”.
“所有”的含義是A與B的公共元素一個不能少.
【介紹】集合A與集合B的交集記作.讀做“ A交B ”?
【助學】符號“ ”形如帽子戴在頭
上,產(chǎn)生“交”的感覺,所以開口向下.切記該符號不要與表示子集的符號“ ”、“ ”混淆.
【設問】集A與集B的交集除上面看到的用圖示法表示交集外,還可以用我們學習過的哪種方法表示?如何表示?
【設問】與A有何關系?如何表示?與B有何關系?如何表示?
【隨練】寫出,的交集.
【設問】大家是如何寫出的?
我們再看下面的圖.
【設問】
1.第一次看到了什么?
2.第二次除看到集B和外,還看到了什么集合?
3.第三次看到了什么?如何用有關集合的符號表示?
4.第四次看到了什么?這與剛才看到的集合類似,請用有關集合的符號表示.
5.第五次同學看出上面看到的集A 、集B 、集、集、集,它們都可以用我們已經(jīng)學習過的集合有關符號來表示.除此之外,大家還可以發(fā)現(xiàn)什么集合?
6.第六次看到了什么?
7.陰影部分的周界是一條封閉曲線,它的內(nèi)部(陰影部分)表示一個新的集合,試問它的元素與集A集B的元素有何關系?
【注】若同學直接觀察到,第二、三、四次和第五次部分觀察活動可不進行.
【介紹】這又是由兩個集合產(chǎn)生第三個集合的情形,在今后學習中也經(jīng)常出現(xiàn),它給我們由集A集B并在一起的感覺,稱為集A集B的并.
【設問】請大家從元素與集合關系仿照交集概念的敘述方法試敘述并集的概念?
【助學】并集與交集的概念僅一字之差,即將“且”改為“或”.或的.含義是集A中的所有元素要取,集B中的所有元素也要取.
【介紹】集A與集B的并集記作(讀作A并B).
【助學】符號“ ”形如“碰杯”時的杯子,產(chǎn)生并的感覺,所以開口向上.切記,不要與“ ”混淆,更不能與“ ”等符號混淆.
觀察.產(chǎn)生興趣.
答:圖示法表示的集A.
答:圖示法表示集B.集A集B的公共部分?
答:公共部分出現(xiàn)陰影.
傾聽.觀察
思考.答:該集合中所有元素屬于集合A且屬于集合B.
傾聽.理解.
思考.答:由所有屬于集合A且屬于集合B的元素所組成的集合,叫做A與B的交集.
傾聽.記憶.
傾聽.興趣記憶.
思考:“列舉法還是描述法?”答:描述法.
思考.議論.
口答結合板書.
想象交集的圖示,或回憶交集的概念.
口答結合板書:是A的子集.A.是
B的子集.
口答結合板書.
口答:從一個集合開始,依次用其每個元素與另一個集合中的元素對照,取出相同的元素組成的集合即為所求.
答:圖示法表示的集A.
答:集A中子集A交B的補集.
答:上述區(qū)域出現(xiàn)陰影.
口答結合板書
答:出現(xiàn)陰影.
口答結合板書
認真、仔細、整體的進行觀察、想象.答:表示集A集B的兩條封閉曲線除去表示交集的封閉曲線剩余部分組成一條封閉曲線的內(nèi)部所表示的集合.
答:出現(xiàn)陰影.
思考:答:該集合中所有元素屬于集合A或?qū)儆诩螧.
傾聽,理解.
回憶交集概念,思考.答:由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A與B的并集.
傾聽.比較.記憶.
傾聽,記憶.
傾聽.興趣記憶.比較記憶,.
直觀性原則.多媒體助學.
用直觀、感性的例子為引入交集做鋪墊.
滲透集合運算意識.
直觀的感知交集.
培養(yǎng)從直觀、感性到理性的概括抽象能力.
解決難點.
興趣激勵.比較記憶
培養(yǎng)用描述法表示集合的能力.
培養(yǎng)想象能力.
以新代舊.
突出重點.
概念遷移為能力.
進一步培養(yǎng)觀察能力.
培養(yǎng)觀察能力
以新代舊.
培養(yǎng)整體觀察能力.
培養(yǎng)從直觀、感性到理性的概括抽象能力.
解決難點.比較記憶.
興趣激勵,辯易混.比較記憶.
【設問】集A與集B的并集除上面看到的用圖示法表示外,還可以用我們學習過的哪種方法表示?如何表示?
【設問】與A有何關系?如何表示?與B有何關系?如何表示?
【隨練】寫出,的并集.
【設問】大家是如何寫出的?
【例1 】設,,求(以下例題用投影儀打出,隨用隨啟).
【助練】本例實為解不等式組,用數(shù)軸法找出公共部分,寫出即可.
【例2 】設,
,求
【例3 】設,,求
【例4 】設,
,求
【助學】數(shù)軸法(略).想象前面集A集B并集的圖示法,類似地,將兩個不等式區(qū)域并到一起,即為所求.其中元素2雖不屬于集A倮屬于集B,所以要取,元素1雖不屬于集B但屬于集A,所以要取,因此,只要將集A的左端點,集B的右端點組成新的不等式區(qū)域即為所求(兩端點取否維持題設條件).
【助練】以上例題,當理解并較熟練后,且結果可進一步簡化時,中間一步或兩步可省略.如例4.
【練習】教材第12頁練習1~5.
【助練】
1.全集與其某個子集的交集是哪個集合?
2.全集與其某個子集的并集是哪個集合?
3.兩個無公共元素的集合的交集是什么集合?
4.兩個無公共元素的集合A 、B,它們的并集如何表示?
5.任意集合A與其本身的交集、并集分別是什么集合?如何表示?
6.任意集A與空集的交集、并集分別是什么集合?如何表示?
7.與的關系如何表示?與的關系如何表示?
【例5 】設,,求
【助思】
1.集A 、集B各是什么集合?
2.如何理解
3.本例實為求兩條直線的交點或解二元一次方程組,只不過是從集合的角度提出問題解決問題.
【例6 】已知A為奇數(shù)集,B為偶數(shù)集,Z為整數(shù)集,求,,,,
,
【助學】
1.偶數(shù)包括哪些數(shù)?任意偶數(shù)如何表示?偶數(shù)集(全體偶數(shù)的集合)如何表示?
2.奇數(shù)包括哪些數(shù)?任意奇數(shù)如何表示?奇數(shù)集(全體奇數(shù)的集合?如何表示?)
【例7 】設,,,求,,,.
思考:“列舉法還是描述法?”
答:描述法.
思考.議論.
口答結合板書.
或
想象并集的圖示,或回憶并集的概念.
口答結合板書:A和B都是的子集.,
口答結合板書:
口答:綜合考慮兩個集合,從最小數(shù)開始,哪個集合的元素都取,一個不能丟,相同元素由集合中元素的互異性只取一次.
審清題意.筆練結合板書.
解:
傾聽.理解.
審清題意.口答結合板書.
解:
是直角三角形,且是直角三角形是等腰三角形.
審清題意.口答結合板書.
解:是銳角三角形是鈍角三角形是銳角三角形,或是鈍角三角形是斜三角形.
審清題意.
畫數(shù)軸.畫出不等式區(qū)域.傾聽.解:
傾聽.理解.
口答結合筆練和板演.
思考.答:子集.
思考.答:全集.
思考.答:空集
思考.議論.答:,或
思考.答:A.,
思考.答:分別是空集和A.
,
思考.答:
審清題意.
思考.議論.答:分別是直線或直線上的點集.或者分別是二元一次方程和二元一次方程的解集.
思考:答:求這兩條直線的交點,或求這兩個二元一次方程的公共解,即求由這兩個二元一次方程組成的二元一次方程組的解.
傾聽.理解.掌握.
解:
審題中發(fā)現(xiàn)未見過的集合.
思索.
答:0,,等.
或{偶數(shù)}
答:,等.()
或(奇數(shù))
解:{奇數(shù)} {偶數(shù)}
{奇數(shù)} Z={奇數(shù)}=A.
{偶數(shù)} Z={偶數(shù)}=B.
{奇數(shù)} {偶數(shù)}=Z.
{奇數(shù)}
{偶數(shù)}
審清題意.口答結合板書.
解:
培養(yǎng)用描述法表示集合的能力.
以新代舊.
培養(yǎng)想象能力.
以新代舊.
突出重點.
概念遷移為能力.
突出重點.培養(yǎng)能力.
落實教學目標.
突出重點.培養(yǎng)能力.
三、課堂練習
教材第13頁練習1 、2 、3 、4.
【助練習】第13頁練習4(1)中用一個方向的斜平行線段表示,用另一方向的平行線段表示如圖:
凡有陰影部分即為所求.
【講解】看圖,所得結果實際上還可以看作全集U中子集的補集則有第13頁練習4(2)仿上,如圖,凡有雙向陰影部分即為所求.
【講解】看圖,所得結果實際上還可以看作全集U中子集的補集.則有:以上兩個等式稱反演律.簡記為“先補后并等于先交后補”和“先補后交等于先并后補”.反演律在今后類似問題中給我們帶來方便,因為它將三步工作簡化為兩步工作.
四、小結
提綱式(略).再一次突出交集和并集兩個概念中“且”,“或”的含義的不同.
五、作業(yè)
習題1至8.
筆練結合板書.
傾聽.修改練習.掌握方法.
觀察.思考.傾聽.理解.記憶.
傾聽.理解.記憶.
回憶、再現(xiàn)學習內(nèi)容.
落實教學目標
介紹解題技能技巧.
學習內(nèi)容條理化.
課堂教學設計說明
1.本教學設計方案除繼續(xù)遵循“集合”方案中的“主體教學思想”外,著力研究直觀性原則在教學中的應用及多媒體(投影儀)的助學作用.
2.反演律可根據(jù)學生實際酌情使用.
高一數(shù)學教案12
教學目標
會運用圖象判斷單調(diào)性;理解函數(shù)的單調(diào)性,能判斷或證明一些簡單函數(shù)單調(diào)性;注意必須在定義域內(nèi)或其子集內(nèi)討論函數(shù)的單調(diào)性。
重 點
函數(shù)單調(diào)性的證明及判斷。
難 點
函數(shù)單調(diào)性證明及其應用。
一、復習引入
1、函數(shù)的定義域、值域、圖象、表示方法
2、函數(shù)單調(diào)性
(1)單調(diào)增函數(shù)
(2)單調(diào)減函數(shù)
(3)單調(diào)區(qū)間
二、例題分析
例1、畫出下列函數(shù)圖象,并寫出單調(diào)區(qū)間:
(1) (2) (2)
例2、求證:函數(shù) 在區(qū)間 上是單調(diào)增函數(shù)。
例3、討論函數(shù) 的單調(diào)性,并證明你的結論。
變(1)討論函數(shù) 的單調(diào)性,并證明你的結論
變(2)討論函數(shù) 的單調(diào)性,并證明你的結論。
例4、試判斷函數(shù) 在 上的單調(diào)性。
三、隨堂練習
1、判斷下列說法正確的是 。
(1)若定義在 上的函數(shù) 滿足 ,則函數(shù) 是 上的.單調(diào)增函數(shù);
(2)若定義在 上的函數(shù) 滿足 ,則函數(shù) 在 上不是單調(diào)減函數(shù);
(3)若定義在 上的函數(shù) 在區(qū)間 上是單調(diào)增函數(shù),在區(qū)間 上也是單調(diào)增函數(shù),則函數(shù) 是 上的單調(diào)增函數(shù);
(4)若定義在 上的函數(shù) 在區(qū)間 上是單調(diào)增函數(shù),在區(qū)間 上也是單調(diào)增函數(shù),則函數(shù) 是 上的單調(diào)增函數(shù)。
2、若一次函數(shù) 在 上是單調(diào)減函數(shù),則點 在直角坐標平面的( )
A.上半平面 B.下半平面 C.左半平面 D.右半平面
3、函數(shù) 在 上是___ ___;函數(shù) 在 上是__ _____。
3.下圖分別為函數(shù) 和 的圖象,求函數(shù) 和 的單調(diào)增區(qū)間。
4、求證:函數(shù) 是定義域上的單調(diào)減函數(shù)。
四、回顧小結
1、函數(shù)單調(diào)性的判斷及證明。
課后作業(yè)
一、基礎題
1、求下列函數(shù)的單調(diào)區(qū)間
(1) (2)
2、畫函數(shù) 的圖象,并寫出單調(diào)區(qū)間。
二、提高題
3、求證:函數(shù) 在 上是單調(diào)增函數(shù)。
4、若函數(shù) ,求函數(shù) 的單調(diào)區(qū)間。
5、若函數(shù) 在 上是增函數(shù),在 上是減函數(shù),試比較 與 的大小。
三、能力題
6、已知函數(shù) ,試討論函數(shù)f(x)在區(qū)間 上的單調(diào)性。
變(1)已知函數(shù) ,試討論函數(shù)f(x)在區(qū)間 上的單調(diào)性。
高一數(shù)學教案13
一、教學目標
1、理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關系。
2、能根據(jù)所給條件寫出簡單的一次函數(shù)表達式。
二、能力目標
1、經(jīng)歷一般規(guī)律的探索過程、發(fā)展學生的抽象思維能力。
2、通過由已知信息寫一次函數(shù)表達式的過程,發(fā)展學生的數(shù)學應用能力。
三、情感目標
1、通過函數(shù)與變量之間的關系的聯(lián)系,一次函數(shù)與一次方程的聯(lián)系,發(fā)展學生的.數(shù)學思維。
2、經(jīng)歷利用一次函數(shù)解決實際問題的過程,發(fā)展學生的數(shù)學應用能力。
四、教學重難點
1、一次函數(shù)、正比例函數(shù)的概念及關系。
2、會根據(jù)已知信息寫出一次函數(shù)的表達式。
五、教學過程
1、新課導入
有關函數(shù)問題在我們?nèi)粘I钪须S處可見,如彈簧秤有自然長度,在彈性限度內(nèi),隨著所掛物體的重量的'增加,彈簧的長度相應的會拉長,那么所掛物體的重量與彈簧的長度之間就存在某種關系,究竟是什么樣的關系,
請看:某彈簧的自然長度為3厘米,在彈性限度內(nèi),所掛物體的質(zhì)量x每增加1千克、彈簧長度y增加0.5厘米。
(1)計算所掛物體的質(zhì)量分別為1千克、2千克、3千克、4千克、5千克時彈簧的長度,
(2)你能寫出x與y之間的關系式嗎?
分析:當不掛物體時,彈簧長度為3厘米,當掛1千克物體時,增加0.5厘米,總長度為3.5厘米,當增加1千克物體,即所掛物體為2千克時,彈簧又增加0.5厘米,總共增加1厘米,由此可見,所掛物體每增加1千克,彈簧就伸長0.5厘米,所掛物體為x千克,彈簧就伸長0.5x厘米,則彈簧總長為原長加伸長的長度,即y=3+0.5x。
2、做一做
某輛汽車油箱中原有汽油 100升,汽車每行駛 50千克耗油 9升。你能寫出x與y之間的關系嗎?(y=1000。18x或y=100 x)
接著看下面這些函數(shù),你能說出這些函數(shù)有什么共同的特點嗎?上面的幾個函數(shù)關系式,都是左邊是因變量,右邊是含自變量的代數(shù)式,并且自變量和因變量的指數(shù)都是一次。
3、一次函數(shù),正比例函數(shù)的概念
若兩個變量x,y間的關系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當b=0時,稱y是x的正比例函數(shù)。
4、例題講解
例1:下列函數(shù)中,y是x的一次函數(shù)的是( )
①y=x6;②y= ;③y= ;④y=7x
A、①②③ B、①③④ C、①②③④ D、②③④
分析:這道題考查的是一次函數(shù)的概念,特別要強調(diào)一次函數(shù)自變量與因變量的指數(shù)都是1,因而②不是一次函數(shù),答案為B
高一數(shù)學教案14
教學 目標
1、使學生理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項、
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項是由其項數(shù)唯一確定的、
(2)了解數(shù)列的各種表示方法,理解通項公式是數(shù)列第 項 與項數(shù) 的關系式,能根據(jù)通項公式寫出數(shù)列的前幾項,并能根據(jù)給出的一個數(shù)列的前幾項寫出該數(shù)列的一個通項公式、
(3)已知一個數(shù)列的遞推公式及前若干項,便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項、
2、通過對一列數(shù)的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力、
3、通過由 求 的過程,培養(yǎng)學生嚴謹?shù)目茖W態(tài)度及良好的思維習慣、
教學 建議
(1)為激發(fā)學生學習數(shù)列的興趣,體會數(shù)列知識在實際生活中的作用,可由實際問題引入,從中抽象出數(shù)列要研究的問題,使學生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個數(shù)的計算等、
(2)數(shù)列中蘊含的函數(shù)思想是研究數(shù)列的指導思想,應及早引導學生發(fā)現(xiàn)數(shù)列與函數(shù)的關系、在 教學 中強調(diào)數(shù)列的項是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列、函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項公式法、由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(或幾項)有關系,從而數(shù)列就有其特殊的表示法??遞推公式法、
(3)由數(shù)列的通項公式寫出數(shù)列的前幾項是簡單的代入法, 教師 應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助、
(4)由數(shù)列的前幾項寫出數(shù)列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結論,如正負相間用 來調(diào)整等、如果學生一時不能寫出通項公式,可讓學生依據(jù)前幾項的規(guī)律,猜想該數(shù)列的下一項或下幾項的值,以便尋求項與項數(shù)的關系、
(5)對每個數(shù)列都有求和問題,所以在本節(jié)課應補充數(shù)列前 項和的概念,用 表示 的問題是重點問題,可先提出一個具體問題讓學生分析 與 的關系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調(diào) 的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況、
(6)給出一些簡單數(shù)列的通項公式,可以求其最大項或最小項,又是函數(shù)思想與方法的體現(xiàn),對程度好的學生應提出這一問題,學生運用函數(shù)知識是可以解決的、
教學 設計示例
數(shù)列的概念
教學 目標
1、通過 教學 使學生理解數(shù)列的概念,了解數(shù)列的表示法,能夠根據(jù)通項公式寫出數(shù)列的項、
2、通過數(shù)列定義的歸納概括,初步培養(yǎng)學生的觀察、抽象概括能力;滲透函數(shù)思想、
3、通過有關數(shù)列實際應用的介紹,激發(fā)學生學習研究數(shù)列的積極性、
教學 重點,難點
教學 重點是數(shù)列的定義的歸納與認識; 教學 難點是數(shù)列與函數(shù)的聯(lián)系與區(qū)別、
教學 用具: 電腦,課件(媒體資料),投影儀,幻燈片
教學 方法: 講授法為主
教學 過程
一、揭示課題
今天開始我們研究一個新課題、
先舉一個生活中的例子:場地上堆放了一些圓鋼,最底下的一層有100根,在其上一層(稱作第二層)碼放了99根,第三層碼放了98根,依此類推,問:最多可放多少層?第57層有多少根?從第1層到第57層一共有多少根?我們不能滿足于一層層的去數(shù),而是要但求如何去研究,找出一般規(guī)律、實際上我們要研究的是這樣的一列數(shù)
( 板書 ) 象這樣排好隊的數(shù)就是我們的研究對象??數(shù)列、
( 板書 )第三章 數(shù)列
(一)數(shù)列的概念
二、講解新課
要研究數(shù)列先要知道何為數(shù)列,即先要給數(shù)列下定義,為幫助同學概括出數(shù)列的定義,再給出幾列數(shù):
(幻燈片)
①
自然數(shù)排成一列數(shù):
②
3個1排成一列:
③
無數(shù)個1排成一列:
④
的不足近似值,分別近似到 排列起來:
⑤
正整數(shù) 的倒數(shù)排成一列數(shù):
⑥
函數(shù) 當 依次取 時得到一列數(shù):
⑦
函數(shù) 當 依次取 時得到一列數(shù):
⑧
請學生觀察8列數(shù),說明每列數(shù)就是一個數(shù)列,數(shù)列中的每個數(shù)都有自己的特定的位置,這樣數(shù)列就是按一定順序排成的一列數(shù)、
( 板書 )1、數(shù)列的定義:按一定次序排成的一列數(shù)叫做數(shù)列、
為表述方便給出幾個名稱:項,項數(shù),首項(以幻燈片的形式給出)、以上述八個數(shù)列為例,讓學生練習了指出某一個數(shù)列的首項是多少,第二項是多少,指出某一個數(shù)列的一些項的項數(shù)、
由此可以看出,給定一個數(shù)列,應能夠指明第一項是多少,第二項是多少,……,每一項都是確定的,即指明項數(shù),對應的項就確定、所以數(shù)列中的每一項與其項數(shù)有著對應關系,這與我們學過的函數(shù)有密切關系、
( 板書 )2、數(shù)列與函數(shù)的`關系
數(shù)列可以看作特殊的函數(shù),項數(shù)是其自變量,項是項數(shù)所對應的函數(shù)值,數(shù)列的定義域是正整數(shù)集 ,或是正整數(shù)集 的有限子集 、
于是我們研究數(shù)列就可借用函數(shù)的研究方法,用函數(shù)的觀點看待數(shù)列、
遇到數(shù)學概念不單要下定義,還要給其數(shù)學表示,以便研究與交流,下面探討數(shù)列的表示法、
( 板書 )3、數(shù)列的表示法
數(shù)列可看作特殊的函數(shù),其表示也應與函數(shù)的表示法有聯(lián)系,首先請學生回憶函數(shù)的表示法:列表法,圖象法,解析式法、相對于列表法表示一個函數(shù),數(shù)列有這樣的表示法:用 表示第一項,用 表示第一項,……,用 表示第 項,依次寫出成為
( 板書 )(1)列舉法
(如幻燈片上的例子)簡記為
一個函數(shù)的直觀形式是其圖象,我們也可用圖形表示一個數(shù)列,把它稱作圖示法、
( 板書 )(2)圖示法
啟發(fā)學生仿照函數(shù)圖象的畫法畫數(shù)列的圖形、具體方法是以項數(shù) 為橫坐標,相應的項 為縱坐標,即以 為坐標在平面直角坐標系中做出點(以前面提到的數(shù)列 為例,做出一個數(shù)列的圖象),所得的數(shù)列的圖形是一群孤立的點,因為橫坐標為正整數(shù),所以這些點都在 軸的右側,而點的個數(shù)取決于數(shù)列的項數(shù)、從圖象中可以直觀地看到數(shù)列的項隨項數(shù)由小到大變化而變化的趨勢、
有些函數(shù)可以用解析式來表示,解析式反映了一個函數(shù)的函數(shù)值與自變量之間的數(shù)量關系,類似地有一些數(shù)列的項能用其項數(shù)的函數(shù)式表示出來,即 ,這個函數(shù)式叫做數(shù)列的通項公式、
( 板書 )(3)通項公式法
如數(shù)列 的通項公式為 ;
的通項公式為 ;
的通項公式為 ;
數(shù)列的通項公式具有雙重身份,它表示了數(shù)列的第 項,又是這個數(shù)列中所有各項的一般表示、通項公式反映了一個數(shù)列項與項數(shù)的函數(shù)關系,給了數(shù)列的通項公式,這個數(shù)列便確定了,代入項數(shù)就可求出數(shù)列的每一項、
例如,數(shù)列 的通項公式 ,則 、
值得注意的是,正如一個函數(shù)未必能用解析式表示一樣,不是所有的數(shù)列都有通項公式,即便有通項公式,通項公式也未必唯一、
除了以上三種表示法,某些數(shù)列相鄰的兩項(或幾項)有關系,這個關系用一個公式來表示,叫做遞推公式、
( 板書 )(4)遞推公式法
如前面所舉的鋼管的例子,第 層鋼管數(shù) 與第 層鋼管數(shù) 的關系是 ,再給定 ,便可依次求出各項、再如數(shù)列 中, ,這個數(shù)列就是 、
像這樣,如果已知數(shù)列的第1項(或前幾項),且任一項與它的前一項(或前幾項)間的關系用一個公式來表示,這個公式叫做這個數(shù)列的遞推公式、遞推公式是數(shù)列所特有的表示法,它包含兩個部分,一是遞推關系,一是初始條件,二者缺一不可、
可由學生舉例,以檢驗學生是否理解、
三、小結
1、數(shù)列的概念
2、數(shù)列的四種表示
四、作業(yè)? 略
五、板書 設計
數(shù)列
(一)數(shù)列的概念 涉及的數(shù)列及表示
1、數(shù)列的定義
2、數(shù)列與函數(shù)的關系
3、數(shù)列的表示法
(1)列舉法
(2)圖示法
(3)通項公式法
(4)遞推公式法
探究活動
將邊長為 厘米的正方形分成 個邊長為1厘米的正方形,數(shù)出其中所有正方形的個數(shù)、
解:當 時,共有正方形 個;當 時,共有正方形 個;當 時,共有正方形 個;當 時,共有正方形 個;當 時,共有正方形 個;歸納猜想邊長為 厘米的正方形中的正方形共有 個、
高一數(shù)學教案15
學習目標
1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì)
2、掌握標準方程中的幾何意義
3、能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題
一、預習檢查
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
3、雙曲線的漸進線方程為、
4、設分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、
二、問題探究
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關系、
練習:已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、
例1根據(jù)以下條件,分別求出雙曲線的標準方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例2已知雙曲線,直線過點,左焦點到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率、
例3(理)求離心率為,且過點的雙曲線標準方程、
三、思維訓練
1、已知雙曲線方程為,經(jīng)過它的右焦點,作一條直線,使直線與雙曲線恰好有一個交點,則設直線的斜率是、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
4、(理)設是雙曲線上一點,雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點,若,則、
四、知識鞏固
1、已知雙曲線方程為,過一點(0,1),作一直線,使與雙曲線無交點,則直線的`斜率的集合是、
2、設雙曲線的一條準線與兩條漸近線交于兩點,相應的焦點為,若以為直徑的圓恰好過點,則離心率為、
3、已知雙曲線的左,右焦點分別為,點在雙曲線的右支上,且,則雙曲線的離心率的值為、
4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
5、(理)雙曲線的焦距為,直線過點和,且點(1,0)到直線的距離與點(-1,0)到直線的距離之和、求雙曲線的離心率的取值范圍、
第三篇:高一數(shù)學教案:對數(shù)函數(shù)
教學目標:
1.進一步理解對數(shù)函數(shù)的性質(zhì),能運用對數(shù)函數(shù)的相關性質(zhì)解決對數(shù)型函數(shù)的常見問題.2.培養(yǎng)學生數(shù)形結合的思想,以及分析推理的能力.教學重點:
對數(shù)函數(shù)性質(zhì)的應用.教學難點:
對數(shù)函數(shù)的性質(zhì)向?qū)?shù)型函數(shù)的演變延伸.教學過程:
一、問題情境
1.復習對數(shù)函數(shù)的性質(zhì).2.回答下列問題.(1)函數(shù)y=log2x的值域是;
(2)函數(shù)y=log2x(x≥1)的值域是;
(3)函數(shù)y=log2x(0
3.情境問題.函數(shù)y=log2(x2+2x+2)的定義域和值域分別如何求呢?
二、學生活動
探究完成情境問題.三、數(shù)學運用
例1 求函數(shù)y=log2(x2+2x+2)的定義域和值域.練習:
(1)已知函數(shù)y=log2x的值域是[-2,3],則x的范圍是________________.(2)函數(shù),x(0,8]的值域是.(3)函數(shù)y=log(x2-6x+17)的值域.(4)函數(shù) 的值域是_______________.例2 判斷下列函數(shù)的奇偶性:
(1)f(x)=lg(2)f(x)=ln(-x)
例3 已知loga 0.75>1,試求實數(shù)a 取值范圍.例4 已知函數(shù)y=loga(1-ax)(a>0,a≠1).(1)求函數(shù)的定義域與值域;
(2)求函數(shù)的單調(diào)區(qū)間.練習:
1.下列函數(shù)(1)y=x-1;(2)y=log2(x-1);(3)y=;(4)y=lnx,其中值域為R的有(請寫出所有正確結論的序號).2.函數(shù)y=lg(-1)的圖象關于 對稱.3.已知函數(shù)(a>0,a≠1)的圖象關于原點對稱,那么實數(shù)m=.4.求函數(shù),其中x [,9]的值域.四、要點歸納與方法小結
(1)借助于對數(shù)函數(shù)的性質(zhì)研究對數(shù)型函數(shù)的定義域與值域;
(2)換元法;
(3)能畫出較復雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結合).五、作業(yè)
課本P70~71-4,5,10,11.
第四篇:高一數(shù)學教案:對數(shù)函數(shù)1
3eud教育網(wǎng) http://www.3edu.net 百萬教學資源,完全免費,無須注冊,天天更新!
課題 對數(shù)函數(shù)
教學目標
在指數(shù)函數(shù)及反函數(shù)概念的基礎上,使學生掌握對數(shù)函數(shù)的概念,能正確描繪對數(shù)函數(shù)的圖像,掌握對數(shù)函數(shù)的性質(zhì),并初步應用性質(zhì)解決簡單問題.
通過對數(shù)函數(shù)的學習,樹立相互聯(lián)系,相互轉(zhuǎn)化的觀點,滲透數(shù)形結合,分類討論的思想.
通過對數(shù)函數(shù)有關性質(zhì)的研究,培養(yǎng)學生觀察,分析,歸納的思維能力,調(diào)動學生學習的積極性.
教學重點,難點
重點是理解對數(shù)函數(shù)的定義,掌握圖像和性質(zhì).
難點是由對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)的關系,利用指數(shù)函數(shù)圖像和性質(zhì)得到對數(shù)函數(shù)的圖像和性質(zhì).
教學方法
啟發(fā)研討式
教學用具
投影儀
教學過程
引入新課
今天我們一起再來研究一種常見函數(shù).前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).
反函數(shù)的實質(zhì)是研究兩個函數(shù)的關系,所以自然我們應從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個熟悉的函數(shù)就是指數(shù)函數(shù).
提問:什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?
由學生說出學生口答求反函數(shù)的過程:
由 得
是指數(shù)函數(shù),它是存在反函數(shù)的.并由一個
.又 的值域為,3eud教育網(wǎng) http://www.3edu.net 教學資源集散地??赡苁亲畲蟮拿赓M教育資源網(wǎng)!3eud教育網(wǎng) http://www.3edu.net 百萬教學資源,完全免費,無須注冊,天天更新!
所求反函數(shù)為 .
那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對數(shù)函數(shù).
2.8對數(shù)函數(shù)(板書)
對數(shù)函數(shù)的概念
定義:函數(shù)對數(shù)函數(shù).
的反函數(shù)
叫做
由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個角度出發(fā).如從定義中你能了解對數(shù)函數(shù)的什么性質(zhì)嗎?最初步的認識是什么?
教師可提示學生從反函數(shù)的三定與三反去認識,從而找出對數(shù)函數(shù)的定義域為,對數(shù)函數(shù)的值域為
.
,且底數(shù) 就是指數(shù)函數(shù)中的,故有著相同的限制條件
在此基礎上,我們將一起來研究對數(shù)函數(shù)的圖像與性質(zhì).
二.對數(shù)函數(shù)的圖像與性質(zhì)(板書)
作圖方法
提問學生打算用什么方法來畫函數(shù)圖像?學生應能想到利用互為反函數(shù)的兩個函數(shù)圖像之間的關系,利用圖像變換法畫圖.同時教師也應指出用列表描點法也是可以的,讓學生從中選出一種,最終確定用圖像變換法畫圖.
由于指數(shù)函數(shù)的圖像按
和
分成兩種不同的類型,故對數(shù)函數(shù) 和
,并分別以
的圖像也應以1為分界線分成兩種情況和 為例畫圖.
具體操作時,要求學生做到:
指數(shù)函數(shù)趨勢等).
畫出直線 和 的圖像要盡量準確(關鍵點的位置,圖像的變化 .
3eud教育網(wǎng) http://www.3edu.net 教學資源集散地??赡苁亲畲蟮拿赓M教育資源網(wǎng)!3eud教育網(wǎng) http://www.3edu.net 百萬教學資源,完全免費,無須注冊,天天更新!的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近軸對稱為逐漸靠近軸,而折,在 左側的先翻,然后再翻在 的圖像在翻折時可提示學生分兩段翻
右側的部分.
學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出
和一坐標系內(nèi))如圖:
的圖像.(此時同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同
草圖.
教師畫完圖后再利用投影儀將標系內(nèi),如圖:
和 的圖像畫在同一坐
然后提出讓學生根據(jù)圖像說出對數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個角度說明)
性質(zhì)
3eud教育網(wǎng) http://www.3edu.net 教學資源集散地??赡苁亲畲蟮拿赓M教育資源網(wǎng)!3eud教育網(wǎng) http://www.3edu.net 百萬教學資源,完全免費,無須注冊,天天更新!
定義域:
值域:
由以上兩條可說明圖像位于 軸的右側.
截距:令為漸近線. 得
,即在 軸上的截距為1,與 軸無交點即以 軸
奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關于原點對稱,也不關于 軸對稱.
單調(diào)性:與 有關.當
當 時,在 時,在 上是增函數(shù).即圖像是上升的
上是減函數(shù),即圖像是下降的.
之后可以追問學生有沒有最大值和最小值,當?shù)玫椒穸ù鸢笗r,可以再問能否看待何時函數(shù)值為正?學生看著圖可以答出應有兩種情況:
當 時,有
;當
時,有
.
學生回答后教師可指導學生巧記這個結論的方法:當?shù)讛?shù)與真數(shù)在1的同側時函數(shù)值為正,當?shù)讛?shù)與真數(shù)在1的兩側時,函數(shù)值為負,并把它當作第(6)條性質(zhì)板書記下來.
最后教師在總結時,強調(diào)記住性質(zhì)的關鍵在于要腦中有圖.且應將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對比記憶.(特別強調(diào)它們單調(diào)性的一致性)
對圖像和性質(zhì)有了一定的了解后,一起來看看它們的應用.
三.簡單應用(板書)
研究相關函數(shù)的性質(zhì)
求下列函數(shù)的定義域:
(1)
(2)
(3)
先由學生依次列出相應的不等式,其中特別要注意對數(shù)中真數(shù)和底數(shù)的條件限制.
利用單調(diào)性比較大小(板書)
比較下列各組數(shù)的大小
3eud教育網(wǎng) http://www.3edu.net 教學資源集散地??赡苁亲畲蟮拿赓M教育資源網(wǎng)!3eud教育網(wǎng) http://www.3edu.net 百萬教學資源,完全免費,無須注冊,天天更新!
(1)與 ;(2)與 ;
(3)與 ;(4)與 .
讓學生先說出各組數(shù)的特征即它們的底數(shù)相同,故可以構造對數(shù)函數(shù)利用單調(diào)性來比大?。詈笞寣W生以其中一組為例寫出詳細的比較過程.
三.鞏固練習
練習:若
四.小結
五.作業(yè) 略
板書設計
,求 的取值范圍.
教案點評:
根據(jù)教材內(nèi)容和課程標準的要求,本節(jié)課的重點是理解對數(shù)函數(shù)的定義,掌握圖像和性質(zhì)。教案的編寫從四個環(huán)節(jié)設計教學過程。各個教學環(huán)節(jié),依據(jù)教學內(nèi)容和教學目標的不同要求,呈現(xiàn)的教學方式、方法各有不同,第一個環(huán)節(jié)從復習指數(shù)函數(shù)開始,有學生熟悉的指數(shù)函數(shù)入手,引起學生興趣;第二個環(huán)節(jié)是對數(shù)函數(shù)的定義;第三個環(huán)節(jié):因為學生已經(jīng)具有一定的作圖能力,讓學生畫出常見的幾個函數(shù)圖象,并總結出對數(shù)函數(shù)的性質(zhì)。第四個環(huán)節(jié):簡單應用。因此通過學生之間、師生之間的交流、討論,使知識系統(tǒng)化、條理化,利于學生記憶對數(shù)函數(shù)的性質(zhì)。
3eud教育網(wǎng) http://www.3edu.net 教學資源集散地。可能是最大的免費教育資源網(wǎng)!
第五篇:數(shù)學教案
長方體的認識(二)
教學目標
1.認識和掌握長方體的特征,理解長、寬、高的概念.
2.培養(yǎng)學生的觀察能力、操作能力及分析綜合和抽象概括的能力,發(fā)展空間觀念. 教學重點
掌握長方體的特征,認識長方體的長、寬、高.
教學難點
初步建立“立體圖形”的概念,形成表象.
教學過程
一、復習引入.
1、教師談話:我們已學過一些幾何圖形,你們還記得是哪些嗎?
(長方形、正方形、三角形、平行四邊形和梯形)
2、出示下面的實物.
教師提問:這些物體是什么形狀的呢?
老師明確:以前學習的長方形、正方形、三角形、平行四邊形和梯形等都是平面上的圖形,叫做平面圖形.現(xiàn)在看到的這些圖形都占有一定的空間,我們把它們叫做立體圖形. 教師提問:在低年級時我們曾認識過長方體和正方體,誰能找出這些物體中的長方體和正方體?
引入:這一單元我們要繼續(xù)深入研究長方體和正方體,今天先學習對長方體的認識.(板書課題:長方體的認識)
二、學習新課.
在日常生活中,你還見過哪些物體的形狀是長方體的?(學生舉例)
(一)認識長方體的面.
1、教師演示告訴學生什么是長方體的面,并讓學生摸一摸.
2、讓學生按照前、后、上、下、左、右的順序,數(shù)一數(shù)長方體共有幾個面.再觀察每個面都是什么形狀的.(板書:長方體有6個面,6個面都是長方形.)
3、提問:6個面中有沒有不都是長方形的情況呢?
(板書:也可能有兩個相對的面是正方形)
4、提問:長方體的6個面還有什么特征呢?(板書:相對的面完全相同)
5、總結特征:長方體有6個面,6個面都是長方形(也可能有兩個相對的面是正方形),相對的面完全相同.
(二)認識長方體的棱.
1、讓學生摸一摸長方體兩個面相交的地方,說明這叫長方體的棱.
2、讓學生把直尺放在棱上,發(fā)現(xiàn)直尺平平的.說明棱是直的,是線段,可以度量.
3、提問:長方體有多少條棱?想一想,怎樣數(shù)才能做到不重復,不遺漏?
引導學生把棱分成三組,也可用同一顏色把每組互相平行的棱標出來.數(shù)出每組各有4條棱,有3組,一共有12條棱.(板書:有12條棱)
4、讓學生量一量每組中棱的長度,說一說發(fā)現(xiàn)了什么?
(板書:互相平行的4條棱的長度相等)
5、總結特征:有12條棱,互相平行的4條棱的長度相等
(三)認識長方體的頂點.
1、讓學生摸一摸長方體三個面相交的地方,說明這叫長方體的頂點.
2、數(shù)一數(shù)長方體有幾個頂點.(按照一定的順序數(shù))
(板書:有8個頂點)
(四)總結長方體的特征.
長方體是由6個長方形圍成的立體圖形(也可能有兩個相對的面是正方形),它有12條棱,8個頂點.在一個長方體中,相對的面完全相同,相對的棱長度相等.
(五)認識長、寬、高.
出示長方體框架,引導學生觀察并回答:
1、長方體的12條棱可以怎樣分組?每組棱的長度有什么關系?
(分3組,每組4條棱長度相等)
2、相交于一個頂點的棱有幾條?它們的長度有什么特點?
(3條棱,3條棱的長度不相等.)
3、教師小結:由于有三組互相平行的棱,每組棱的長度相等,我們可以取相交于一個頂點的3條棱作代表,把相交于一個頂點的3條棱的長度分別叫做長方體的長、寬、高.
4、指導學生理解長、寬、高的概念.
可讓學生把長方體橫放、豎放、側放,分別說出長、寬、高,使學生認識到長方體的形狀和大小是由它的長、寬、高決定的.
(六)教學識圖,發(fā)展空間觀念.
1、讓學生把長方體學具放在課桌左上角,引導學生觀察,并提問:你們能看到幾個面?
2、教師啟發(fā)提問:怎樣用圖表示出來呢?可同時板書畫圖.
說明:虛線表示看不見的三條棱,并讓學生指出長、寬、高,教師板書.
三、反饋練習.
1、按照教科書所給的圖樣,用硬紙做一個長方體,再量一量它的長、寬、高.
2、拿一個火柴盒,量一量它的長、寬、高各是多少?再說一說每個面的長和寬是多少?
3、看圖說出下面每個長方體的長、寬、高各是多少?
4、說出右面的物體是什么形狀,并且說明:
①它的上面是什么形,長和寬各是多少?
②它的右側面是什么形,長和寬各是多少?
③它的前面是什么形,長和寬各是多少?
④它的下面和后面各是什么形?長和寬各是多少?
四、課堂小結.
今天我們學習了長方體的特征,那么在長方體的6個面中只能有兩個面是正方形嗎?如果其它的面也是正方形,那會出現(xiàn)什么情況呢?同學們想一想,這是下節(jié)課要研究的問題.
五、板書設計
長方體的認識
面:長方體有6個面,6個面都是長方形(也可能有兩個相對的面是正方形),相對的面完全相同.
棱:兩個面相交的邊叫做棱.有12條棱,互相平行的4條棱的長度相等
頂點:三條棱相交的點叫做頂點.有8個頂點.
相交于一個頂點的三條棱的長度分別叫做長方體的長、寬、高.
【在線生日祝福網(wǎng)頁——帶有你名字的個性祝?!?/p>
【推薦】下載本網(wǎng)的快捷方式到桌面,以便下次使用。下載本文
教案搜索
范文推薦
【工作總結】 班主任 教師 辦公室 財務 銷售 【工作計劃】 班主任 學校 教學 德育 班級 【工作報告】述職 述廉 社會實踐 實習辭職 調(diào)查 【黨團范文】入黨申請書 入團 思想?yún)R報 轉(zhuǎn)正 【演 講 稿】 技巧 競聘 英語 節(jié)日 教師 愛崗敬業(yè)
上一篇:長方體的認識(三)下一篇:長方體的認識(一)
您可以將本頁一鍵:
關于我們| 收藏本站 | 友情連接 |【歡迎投稿】
Copyright ? 本網(wǎng) All Rights Reserved.粵ICP備06060663號|貴賓統(tǒng)計