第一篇:面面垂直習(xí)題(模版)
例1如圖,在四面體P-ABC中,PC⊥平面ABC,AB=BC=CA=PC,求二面角B-AP-C的正切值。
解:如圖,過B作BE⊥AC于E,過E
作EF⊥PA于F,連接BF
∵PC⊥平面ABC,PC?平面PAC
C ∴平面PAC⊥平面ABC ,∴BE⊥平面PAC
由三垂線定理,有BF⊥PA,∴∠BFE是二面角B-PA-C平面角,設(shè)PC=1,由E是AC的中點,?BE?
32,EF?
12sin45?0B
24?tg?BFE
?BE
EF?6
例2:如圖, PA⊥平面ABC,AC⊥BC,AF⊥PC于F.求證:
AF⊥平面PBC.證明:∵PA⊥平面ABCBC ?平面ABC
∴ PA⊥BC
又AC⊥BC PA∩AC=A
∴ BC⊥平面PAC
?平面PAC又BC P F A C B∴平面PBC⊥平面PAC
?平面PAC,∵AF⊥PCAF
平面PBC∩平面PAC=PC
∴ AF⊥平面PBC
如圖,△ABC為正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,求證:平面ADE⊥平面ACE.E
D
C
A
B
如圖在空間四邊形ABCS中,SA?平面ABC,平面SAB ?平面SBC
(1)求證:AB?BC ;
(2)若設(shè)二面角S?BC?A為45?,SA=BC,求二面角A?SC?B的大小
S
E
a
A 2aC
已知線段AB的兩端點在直二面角??CD??的兩個面內(nèi),且與?、?分別成30?和45?角,求AB和CD所成的角
C
如圖PA垂直于矩形ABCD所在平面,E是AB的中點,二面角P?CD?B 為45?求證:平面PEC?平面PCD
G C
E B
第二篇:面面垂直性質(zhì)定理及習(xí)題
面面垂直性質(zhì)定理及習(xí)題《必修2》1.2.4一、學(xué)習(xí)目標(biāo)撰稿:第四組審稿:高二數(shù)學(xué)組時間:2009-9-8
1. 理解面面垂直的性質(zhì)定理
2. 會用性質(zhì)定理解決有關(guān)問題
3. 線線、線面、面面之間的位置關(guān)系及相互轉(zhuǎn)化
4. 利用面面位置關(guān)系解決有關(guān)問題
二、學(xué)習(xí)重點
面面垂直的性質(zhì)定理及應(yīng)用
學(xué)習(xí)難點
“線線、線面、面面”判定及性質(zhì)定理的應(yīng)用
三、知識鏈接
1. 面面垂直的判定定理
2. 面面平行的判定與性質(zhì)定理
3. 直線與面平行、垂直的判定與性質(zhì)定理
四、學(xué)習(xí)過程
1. 回顧上節(jié)內(nèi)容,問:如果兩個平面垂直,那么一個面內(nèi)的直線是否一定垂直于另一個平面?
通過以上討論,得平面與平面垂直的性質(zhì)定理(1)符號語言:
(2)圖形語言:
2. 如何對定理加以證明:
性質(zhì)定理體現(xiàn)了什么關(guān)系?
它反映了面面垂直與線面垂直之間的密切關(guān)系,兩者可以互相轉(zhuǎn)化。
3. 對性質(zhì)定理的應(yīng)用
例:P4
4練習(xí)4
拓展:P43 例
3五、基礎(chǔ)達(dá)標(biāo)
1、判斷下列命題是否正確,說明理由:
(1)若α⊥β,α⊥γ,則α∥β
(2)若α⊥β,β⊥γ,則α⊥γ
(3)若α∥α1,β∥β1,α⊥β,則α1⊥β1。
2、如圖α,β,γ,為平面,α∩β=l,α∩γ=a, β∩γ=b,l⊥γ,指出圖中哪個角是二面角
α-l-β的平面角,并說明理由。
3、判斷下列說法是否正確:
(1)若平面α內(nèi)的兩條相交直線分別平面β 內(nèi)的兩條相交直線,則平面α平行與平面β;
(2)若兩個平面分別經(jīng)過兩條平行直線,則這兩個平面互相平行;
4、已知平面α、β直線l,且α∥β,l??,且l∥α,求證:l∥β。
5、(1)已知平面外的一條直線上有兩點到這個平面距離相等,試判斷這條直線與該平面的位置關(guān)系;
(2)已知一個平面內(nèi)有三點到另一平面距離相等,試判斷這兩個平面的位置關(guān)系。
6、如圖,已知AB是平面α的垂線,AC是平面α的斜線,CD?α,CD⊥AC。
求證:平面PAC⊥平面PBD.7、在四棱錐P—ABCD若PA⊥平面A BCD,且四邊形ABCD是菱形。
求證:平面PAC⊥平面PBD.8、如圖,已知正方體ABCD—A1B2C3D
4,求證:平面B1AC⊥平面B1BDD1.9、如圖,在正方體ABCD-A1B1C1D1中,求二面角C1-BD-C的正切值。
10、已知平面α,β,γ,且α∥β,β∥γ,求證:α∥γ。
11、如圖,在三棱柱ABC-A'B'C'中,點D,E分別是BC和 B'C'的中點。求證:平面A'EB
∥平面ADC'。
12、如圖,有一塊長方體的木料,經(jīng)過木料表面A1B1C1D1內(nèi)的一點P,在這個面內(nèi)畫線段,使其與木料表面ABCD內(nèi)的線段EF平行,應(yīng)該怎樣畫線?
今天我的收獲
第三篇:如何證明面面垂直
如何證明面面垂直
設(shè)p是三角形ABC所在平面外的一點,p到A,B,C三點的距離相等,角BAC為直角,求證:平面pCB垂直平面ABC
過p作pQ⊥面ABC于Q,則Q為p在面ABC的投影,因為p到A,B,C的距離相等,所以有QA=QB=QC,即Q為三角形ABC的中心,因為角BAC為直,所以Q在線段BC上,所以在面pCB上有線段pQ⊥平面ABC,故平面pCB⊥平面ABC
2證明一個面上的一條線垂直另一個面;首先可以轉(zhuǎn)化成一個平面的垂線在另一個平面內(nèi),即一條直線垂直于另一個平面
然后轉(zhuǎn)化成一條直線垂直于另一個平面內(nèi)的兩條相交直線
也可以運用兩個面的法向量互相垂直。
這是解析幾何的方法。
2一、初中部分
1利用直角三角形中兩銳角互余證明
由直角三角形的定義與三角形的內(nèi)角和定理可知直角三角形的兩個銳角和等于90°,即直角三角形的兩個銳角互余。
2勾股定理逆定理
3圓周角定理的推論:直徑所對的圓周角是直角,一個三角形的一邊中線等于這邊的一半,則這個三角形是直角三角形。
二、高中部分
線線垂直分為共面與不共面。不共面時,兩直線經(jīng)過平移后相交成直角,則稱兩條直線互相垂直。
1向量法兩條直線的方向向量數(shù)量積為0
2斜率兩條直線斜率積為-1
3線面垂直,則這條直線垂直于該平面內(nèi)的所有直線
一條直線垂直于三角形的兩邊,那么它也垂直于另外一邊
4三垂線定理在平面內(nèi)的一條直線,如果和穿過這個平面的一條斜線在這個平面內(nèi)的射影垂直,那么它也和這條斜線垂直。
5三垂線定理逆定理如果平面內(nèi)一條直線和平面的一條斜線垂直,那么這條直線也垂直于這條斜線在平面內(nèi)的射影。
3高中立體幾何的證明主要是平行關(guān)系與垂直關(guān)系的證明。方法如下(難以建立坐標(biāo)系時再考慮):
Ⅰ.平行關(guān)系:
線線平行:1.在同一平面內(nèi)無公共點的兩條直線平行。2.公理4(平行公理)。3.線面平行的性質(zhì)。4.面面平行的性質(zhì)。5.垂直于同一平面的兩條直線平行。
線面平行:1.直線與平面無公共點。2.平面外的一條直線與平面內(nèi)的一條直線平行。3.兩平面平行,一個平面內(nèi)的任一直線與另一平面平行。
面面平行:1.兩個平面無公共點。2.一個平面內(nèi)的兩條相交直線分別與另一平面平行。
Ⅱ.垂直關(guān)系:
線線垂直:1.直線所成角為90°。2.一條直線與一個平面垂直,那么這條直線與平面內(nèi)的任一直線垂直。
線面垂直:1.一條直線與一個平面內(nèi)的任一直線垂直。2.一條直線與一個平面內(nèi)的兩條相交直線都垂直。3.面面垂直的性質(zhì)。4.兩條平行直線中的一條垂直與一個平面,那么另一直線也與此平面垂直。5.一條直線垂直與兩個平行平面中的一個,那么這條直線也與另一平面垂直。
面面垂直:1.面面所成二面角為直二面角。2.一個平面過另一平面的垂線,那么這兩個平面垂直。
第四篇:怎么證明面面垂直
怎么證明面面垂直證明一個面上的一條線垂直另一個面;首先可以轉(zhuǎn)化成 一個平面的垂線在另一個平面內(nèi),即一條直線垂直于另一個平面 然后轉(zhuǎn)化成
一條直線垂直于另一個平面內(nèi)的兩條相交直線 也可以運用兩個面的法向量互相垂直。這是解析幾何的方法。
證:連接AC,BD.PD垂直面ABCD=>PD垂直AC.ABCD為正方形=>AC垂直BD.而BD是PB在面ABCD內(nèi)的射影=>PB垂直AC.PD垂直AC=>AC垂直面PBD.AC屬于面ACE=>面PBD垂直面ACE 2 1利用直角三角形中兩銳角互余證明
由直角三角形的定義與三角形的內(nèi)角和定理可知直角三角形的兩個銳角和等于90°,即直角三角形的兩個銳角互余。2勾股定理逆定理
3圓周角定理的推論:直徑所對的圓周角是直角,一個三角形的一邊中線等于這邊的一半,則這個三角形是直角三角形。
二、高中部分
線線垂直分為共面與不共面。不共面時,兩直線經(jīng)過平移后相交成直角,則稱兩條直線互相垂直。
1向量法 兩條直線的方向向量數(shù)量積為0 2斜率 兩條直線斜率積為-1 3線面垂直,則這條直線垂直于該平面內(nèi)的所有直線
一條直線垂直于三角形的兩邊,那么它也垂直于另外一邊 4三垂線定理 在平面內(nèi)的一條直線,如果和穿過這個平面的一條斜線在這個平面內(nèi)的射影垂直,那么它也和這條斜線垂直。
5三垂線定理逆定理 如果平面內(nèi)一條直線和平面的一條斜線垂直,那么這條直線也垂直于這條斜線在平面內(nèi)的射影。
3高中立體幾何的證明主要是平行關(guān)系與垂直關(guān)系的證明。方法如下(難以建立坐標(biāo)系時再考慮):
Ⅰ.平行關(guān)系:
線線平行:1.在同一平面內(nèi)無公共點的兩條直線平行。2.公理4(平行公理)。3.線面平行的性質(zhì)。4.面面平行的性質(zhì)。5.垂直于同一平面的兩條直線平行。
線面平行:1.直線與平面無公共點。2.平面外的一條直線與平面內(nèi)的一條直線平行。3.兩平面平行,一個平面內(nèi)的任一直線與另一平面平行。
面面平行:1.兩個平面無公共點。2.一個平面內(nèi)的兩條相交直線分別與另一平面平行。Ⅱ.垂直關(guān)系:
線線垂直:1.直線所成角為90°。2.一條直線與一個平面垂直,那么這條直線與平面內(nèi)的任一直線垂直。
線面垂直:1.一條直線與一個平面內(nèi)的任一直線垂直。2.一條直線與一個平面內(nèi)的兩條相交直線都垂直。3.面面垂直的性質(zhì)。4.兩條平行直線中的一條垂直與一個平面,那么另一直線也與此平面垂直。5.一條直線垂直與兩個平行平面中的一個,那么這條直線也與另一平面垂直。
面面垂直:1.面面所成二面角為直二面角。2.一個平面過另一平面的垂線,那么這兩個平面垂直。
第五篇:面面垂直學(xué)案
§2.3.4平面與平面垂直的性質(zhì)
一、學(xué)習(xí)目標(biāo):
1.掌握平面與平面垂直的性質(zhì)定理的證明及應(yīng)用;
2.掌握空間中的垂直關(guān)系相互轉(zhuǎn)化的方法。
二、學(xué)習(xí)過程:
(一)復(fù)習(xí)引入
1.平面與平面垂直的定義:
2.面面垂直判定定理:
(二)探索研究
(1)觀察黑板所在的平面和地面,它們是互相垂直的,那么黑板所在的平面里的任意一條直線是否就一定和地面垂直?
(2)觀察長方體ABCD-A`B`C`D`中,平面AA`D`D與平面ABCD垂直,你能否在平面AA`D`D中找一條直線垂直于平面ABCD?
(三)嚴(yán)格證明
已知???,????CD,AB??,AB?CD于B.求證:AB??.A
DB
(四)得出定理
面面垂直的性質(zhì)定理:
兩平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直.符號語言表述:
(五)知識應(yīng)用舉例
例
1、已知平面α與β互相垂直,判斷下列命題是否正確:
(1)若b??,則b??。
(2)若???=l,b?l則b??。
(3)若b??,則b垂直于平面?內(nèi)的無數(shù)條直線。
(4)過一個平面內(nèi)任意一點作交線的垂線,則此垂線
必垂直于另一個平面。
例
2、平面?與平面?互相垂直,????m,P??,P?m,判斷:
(1)過點P且垂直于?的直線a是否一定在?內(nèi)?
(2)過點P且垂直于?的直線l與?是什么位置關(guān)系?并證明
例
3、如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點,平面PAC⊥平面ABC,(1)求證:BC⊥平面PAC。(2)判斷平面PBC與平面PAC是否垂直,并證明。
A
O B
練習(xí):如圖,AB是⊙O的直徑,點C是圓上異于A,B的任意一點,PA⊥平面ABC,AF⊥PC于F.求證:AF⊥平面PBC.C
解題反思:
(六)小結(jié)反思
1.面面垂直的性質(zhì)定理
2..空間垂直關(guān)系有那些?如何實現(xiàn)空間垂直關(guān)系的相互轉(zhuǎn)化?請指出下圖中空間垂直關(guān)系轉(zhuǎn)化的定理依據(jù)?
①
②
③
④
(七)家庭作業(yè)《同步導(dǎo)學(xué)》