第一篇:幾何畫板讓數(shù)學(xué)學(xué)習(xí)變得輕松
幾何畫板讓數(shù)學(xué)學(xué)習(xí)變得輕松
摘要:一直以來,大多數(shù)學(xué)生都是對數(shù)學(xué)的學(xué)習(xí)了無興趣,覺得數(shù)學(xué)枯燥乏味,抽象難懂,而信息技術(shù)中一種先進(jìn)的教學(xué)技術(shù)——幾何畫板,改變了已往狀況。幾何畫板應(yīng)用到數(shù)學(xué)教學(xué)中,使得原本因抽象而枯燥無味的課堂變得活躍、有趣起來,學(xué)生可以自己動(dòng)手操作,可以用眼觀察、比較,可以相互交流討論,在學(xué)習(xí)過程中,可以培養(yǎng)學(xué)生的自主學(xué)習(xí)意識(shí)、合作精神和嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度,促進(jìn)了學(xué)生的全面發(fā)展。
幾何畫板不但可以為數(shù)學(xué)積累生動(dòng)的素材,還可以綜合學(xué)生的多種感官,先讓學(xué)生從視覺上觀察到,呈現(xiàn)給學(xué)生直觀具體的教學(xué)材料誘發(fā)其直覺思維,從所呈現(xiàn)的動(dòng)態(tài)的思維材料中發(fā)現(xiàn)和猜想假設(shè),在變化中尋找不變,所以將幾何畫板適宜地運(yùn)用到數(shù)學(xué)探究式課堂教學(xué)中可以提高學(xué)生的想象力,發(fā)展學(xué)生的抽象思維,激發(fā)學(xué)生的學(xué)習(xí)興趣。
關(guān)鍵詞:幾何畫板;數(shù)學(xué);信息技術(shù);學(xué)習(xí)興趣
多年的數(shù)學(xué)教師生涯中,我感受到:很多學(xué)生覺得數(shù)學(xué)枯燥無趣,深?yuàn)W難懂,甚至是懼怕和厭惡。尤其是近幾年中職生的總體素質(zhì)普遍下降,對數(shù)學(xué)的學(xué)習(xí)更是敬而遠(yuǎn)之。
在科技發(fā)展的今天,幾何畫板這個(gè)軟件在數(shù)學(xué)教學(xué)中起到了良好的作用,讓學(xué)生對數(shù)學(xué)“另眼相看”了,也引起了學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,使得數(shù)學(xué)的教學(xué)能夠順利開展并收到了良好的效果。
我覺得利用幾何畫板應(yīng)用于數(shù)學(xué)教學(xué),可以提高學(xué)生的學(xué)數(shù)學(xué)的興趣,可以從下面幾個(gè)方面入手:
一、創(chuàng)設(shè)問題情境,引發(fā)好奇心
當(dāng)學(xué)生第一次接觸幾何畫板時(shí),提出問題:如何驗(yàn)證三角形內(nèi)角和等于180度呢?(學(xué)生好奇:初中的知識(shí)怎么再次提出?)多數(shù)學(xué)生都紛紛拿起紙和筆,畫三角形,將用量角器測量每個(gè)角的度數(shù)。如果單純地畫在黑板上然后用量角器測量的話,不但麻煩,而且會(huì)有很大的誤差。而利用幾何畫板可以動(dòng)態(tài)的量出每 1
個(gè)角的度數(shù),并且可以自動(dòng)計(jì)算三個(gè)角的和,這樣就使許多抽象深?yuàn)W的數(shù)學(xué)圖形和數(shù)學(xué)理論具體形象地展示在了學(xué)生的面前,為數(shù)學(xué)教師做到了常規(guī)教學(xué)方法不可能做到的事。它的動(dòng)畫技術(shù)將會(huì)充分地調(diào)動(dòng)學(xué)生的積極性,吸引學(xué)生的注意力,使學(xué)生在輕松、愉快的氛圍中獲得知識(shí)。
二、創(chuàng)設(shè)矛盾情境,誘發(fā)求知欲
創(chuàng)設(shè)問題遷移情境,引發(fā)學(xué)生的認(rèn)知沖突,促進(jìn)學(xué)生的積極反思,完善學(xué)生的認(rèn)知結(jié)構(gòu),激發(fā)學(xué)生的學(xué)習(xí)興趣。
應(yīng)用舉例:設(shè)一條線段MN上的點(diǎn)組成的集合為A,以線段MN為直徑的半圓上的點(diǎn)組成的集合為B,問集合A與集合B哪個(gè)集合的元素多?
在實(shí)際教學(xué)中,很多學(xué)生都認(rèn)為集合B的元素比集合A的元素多(理由是半圓比線段長),因?yàn)閷W(xué)生沒有比較兩個(gè)無限集合元素多少的方法,他們只有把比較兩個(gè)有限集合元素多少的方法遷移過來。設(shè)計(jì)這樣的問題給學(xué)生以學(xué)習(xí)動(dòng)力,使用傳統(tǒng)的教學(xué)手段進(jìn)行解釋變得困難,而是用幾何畫板軟件創(chuàng)設(shè)如下的學(xué)生活動(dòng)情境:讓學(xué)生利用幾何畫板畫出下圖,圖中PR?MN,拖動(dòng)點(diǎn)R,觀察半圓上的點(diǎn)P與R的對應(yīng)關(guān)系。通過這一活動(dòng)。學(xué)生不僅可以認(rèn)識(shí)到:這里的對應(yīng)法則是線段
MN上的點(diǎn)所組成的(無限)集合A到半圓上的點(diǎn)所組成的(無限)集合B的映射,同時(shí),學(xué)生能默認(rèn)線段MN上的點(diǎn)與半圓上的點(diǎn)一樣多。這也回答了學(xué)生用有限集合元素多少的比較方法遷移到無限集合上的錯(cuò)誤,引起學(xué)生的認(rèn)知沖突,激發(fā)學(xué)生的學(xué)習(xí)興趣,為今后的學(xué)習(xí)埋下了“種子”。
三、提倡創(chuàng)新精神,營造創(chuàng)新氛圍
幾何畫板為學(xué)生提供了一個(gè)主動(dòng)學(xué)習(xí)數(shù)學(xué)的有效平臺(tái),讓學(xué)生有更多的機(jī)會(huì)去動(dòng)手試驗(yàn)和探索,提出自己的猜想并驗(yàn)證猜想,發(fā)現(xiàn)問題并且嘗試用自己的方法來解決問題,從而培養(yǎng)了學(xué)生的創(chuàng)新精神和實(shí)踐能力。
22?a?b?a?b應(yīng)用舉例:不等式?(a,b?R)??2?2?2教學(xué)設(shè)計(jì):
1、先用幾何畫板給出圖2,由學(xué)生觀察、歸納、猜想出結(jié)論,再用邏輯的方法去證明結(jié)論。
2、將y?x2改成其他的函數(shù)可以得到什么不等式?如何證明?
3、將a?ba??b(??0)改成又可以得到什么不同的結(jié)論?怎么證明? 21??
4、將y?x2改成其他的函數(shù),同時(shí)將么不同的結(jié)論?怎么證明?
a?ba??b(??0)改成又可以得到什21??
5、更一般性的結(jié)論是什么?
本設(shè)計(jì)利用幾何畫板創(chuàng)設(shè)了一個(gè)有利學(xué)生觀察、歸納、猜想、分析、證明的情境。首先學(xué)生從形上把握不等式的實(shí)質(zhì),進(jìn)一步聯(lián)想到其他的不等式。在教室的啟發(fā)下,一個(gè)又一個(gè)的抽象不等式被學(xué)生“再創(chuàng)造出來”。對于這些“創(chuàng)造”出來的不等式,有的甚至可能有誤,有的可能暫時(shí)還不能證明,但是這絲毫不影響學(xué)生的創(chuàng)造熱情,相反地能夠進(jìn)一步促進(jìn)學(xué)生積極的、主動(dòng)的、自覺的反思。計(jì)算機(jī)作為現(xiàn)代化的教育技術(shù),它媒體的集成性,信息的多維性,人機(jī)的交互性,學(xué)習(xí)的自主性,操作的靈活性,參與的積極性,噓唏的趣味性等特征都體現(xiàn)的淋漓盡致,幾何畫板環(huán)境下的數(shù)學(xué)教學(xué)更有助于提高學(xué)生的創(chuàng)新能力,培養(yǎng)學(xué)生的創(chuàng)新精神,營造創(chuàng)新氛圍。
四、師生平等互動(dòng),構(gòu)建民主情境
在實(shí)際教學(xué)中讓學(xué)生自己動(dòng)手操作,有的學(xué)生改變不同的變量來觀察、探索進(jìn)而得出不同的結(jié)果;有的學(xué)生設(shè)計(jì)出來的圖像,提出的問題,教師也無法解釋,教師要和學(xué)生一起課后進(jìn)行研究;有的學(xué)生用幾何畫板設(shè)計(jì)的圖像讓老師和同學(xué)們驚嘆。在多媒體教學(xué)中,利用幾何畫板制作課件已經(jīng)使數(shù)學(xué)教學(xué)的過程發(fā)生了 5
重大的變化。幾何畫板使數(shù)學(xué)的課堂教學(xué)進(jìn)入一個(gè)更新的階段。
教師隨著幾何畫板在實(shí)踐教學(xué)情境的應(yīng)用和實(shí)踐中會(huì)不斷遇到問題,進(jìn)而會(huì)不斷地解決問題,在這個(gè)過程中教師逐漸地形成和積累著知識(shí)與智慧,從而獲得教學(xué)專業(yè)發(fā)展進(jìn)步。學(xué)生在學(xué)習(xí)中的問題是具體的、不確定的,也是動(dòng)態(tài)生成的?!耙匀藶楸尽钡剡\(yùn)用幾何畫板、優(yōu)化教學(xué)環(huán)節(jié),促使課堂教學(xué)過程動(dòng)態(tài)生成,創(chuàng)造信息化教育環(huán)境,在多樣化的教學(xué)情景中快樂學(xué)習(xí),提高學(xué)生自主學(xué)習(xí)的興趣和能力,促使學(xué)生以幾何畫板為載體達(dá)到學(xué)習(xí)方式的轉(zhuǎn)變,構(gòu)成多樣化、合理化、個(gè)性化的學(xué)習(xí)方式,使數(shù)學(xué)教學(xué)更能達(dá)到活潑生動(dòng)、充滿生命活力,有助于個(gè)體主動(dòng)、健康、全面的發(fā)展。
五、結(jié)束語
將幾何畫板運(yùn)用到數(shù)學(xué)教學(xué)中,有利于學(xué)生形成全面的數(shù)學(xué)觀,培養(yǎng)學(xué)生的辯證思維的能力?!皵?shù)形結(jié)合”和“運(yùn)動(dòng)變化”都是數(shù)學(xué)重要的思想方法,而幾何畫板強(qiáng)大的動(dòng)態(tài)作圖功能為學(xué)生更好地運(yùn)用“數(shù)形結(jié)合”、“運(yùn)動(dòng)變化”的數(shù)學(xué)思想創(chuàng)造了良好的條件。在傳統(tǒng)的數(shù)學(xué)探究教學(xué)中,缺乏精確的作圖工具,雖然手工作圖很精確,但也很難呈現(xiàn)動(dòng)態(tài)的幾何圖像,所以幾何畫板從這個(gè)方面來說,深化了學(xué)生對數(shù)學(xué)思想方法的認(rèn)識(shí)。幾何畫板作圖過程可以體現(xiàn)數(shù)學(xué)思維的過程性,更深刻理解數(shù)學(xué)概念、數(shù)學(xué)知識(shí),一方面用幾何畫板作圖必須按照數(shù)學(xué)的意義逐步地完成,很顯然,這可以訓(xùn)練學(xué)生的邏輯思維能力,另一方面,幾何畫板不像其他計(jì)算繪圖軟件那樣跳過思維過程而只是留下運(yùn)算和繪圖的結(jié)果。因此,只要教師的教學(xué)設(shè)計(jì)得當(dāng),就比較容易突出教學(xué)重、難點(diǎn)及知識(shí)發(fā)生發(fā)展過程。
這種運(yùn)用幾何畫板的探索式學(xué)習(xí)課堂氣氛與傳統(tǒng)教學(xué)是截然不同的,教師不再只是簡單的知識(shí)的灌輸者,而是學(xué)生獲取知識(shí)的引導(dǎo)者。學(xué)生也不再只是知識(shí)的被動(dòng)接收者,而是知識(shí)的主動(dòng)探求者,這就充分地體現(xiàn)了教師的主導(dǎo)作用和學(xué)生的主體作用。
綜上所述,用幾何畫板進(jìn)行數(shù)學(xué)探究教學(xué)不但彌補(bǔ)了傳統(tǒng)教學(xué)的不足,還使教學(xué)模式上升為現(xiàn)代化的多媒體教學(xué)模式,從教學(xué)法上,便于突破教學(xué)中的難點(diǎn),培養(yǎng)學(xué)生的思維能力;從課堂教學(xué)上,能加大課堂教學(xué)的密度,提高學(xué)生信息吸收率;使教學(xué)具有“人機(jī)”交互的智能性的特點(diǎn)。通過呈現(xiàn)這種具體直觀的信息,6
能給學(xué)生留下更為深刻的印象,學(xué)生也不再把數(shù)學(xué)作為單純的知識(shí)去理解,而是能夠更有實(shí)感的去把握。這既可以激發(fā)學(xué)生的情感、培養(yǎng)學(xué)生的興趣,又可以提高課堂效率。
參考文獻(xiàn):
[1]劉勝利.幾何畫板課件制作教程[M].科學(xué)出版社.2010 [2]李炳亭.高效課堂22條[M].山東文藝出版社.2009 [3]繆亮等著.幾何畫板輔助數(shù)學(xué)教學(xué)[M].清華大學(xué)出版社.2002
第二篇:讓物理學(xué)習(xí)變得輕松高效
讓物理學(xué)習(xí)變得輕松高效
一. 第一遍定律:
心理學(xué)家研究表明:人們第一次接觸的事物會(huì)在大腦里留下難以磨滅的印象。
在學(xué)習(xí)上也是如此:如果第一遍是對的,那么正確的信息,就會(huì)在大腦里儲(chǔ)存起來;如果第一遍錯(cuò)了,就會(huì)很容易的在大腦里鞏固下來,如果第一遍錯(cuò)了,那么從大腦中抹去錯(cuò)誤的信息所花費(fèi)的時(shí)間將比你重新雪學(xué)還要多得多。
方法:A.好的學(xué)習(xí)態(tài)度:“要么不學(xué),要么學(xué)好?!敝挥羞@樣才能學(xué)的輕松,才有時(shí)間玩。
B.興趣信心具體的說:學(xué)習(xí),先學(xué)習(xí)有趣的;背誦
易難漸入佳境最大程度避免第一遍出錯(cuò)。
二.幾個(gè)習(xí)慣:
1.養(yǎng)成把握整體的習(xí)慣
物理這門學(xué)科有一個(gè)知識(shí)系統(tǒng),注意了解各種知識(shí)的聯(lián)系,從整體上把握知識(shí),對各章節(jié)心中有數(shù)。
2.養(yǎng)成聯(lián)想的習(xí)慣:(高效記憶的核心)
3.養(yǎng)成重視基礎(chǔ)知識(shí)的習(xí)慣重視課本的基礎(chǔ)知識(shí)。(7:2:14.養(yǎng)成獨(dú)立思考的習(xí)慣機(jī)會(huì),應(yīng)該獨(dú)立思考,自己運(yùn)用所學(xué)的知識(shí)來解決問題。這種習(xí)慣極大增強(qiáng)你處理各種問題的能力。
三.物理學(xué)習(xí)規(guī)律與方法`
很多同學(xué)感到物理難學(xué)原因是學(xué)習(xí)物理不僅需要具備系統(tǒng)的物理知識(shí),而且還需要有比較扎實(shí)的數(shù)學(xué)、語文基礎(chǔ)。數(shù)學(xué)運(yùn)算,語文審題。其實(shí)物理并不像一些同學(xué)想象的那么難,只要掌握了科學(xué)的學(xué)習(xí)方法,就能順利攻克難關(guān)。
A.三大基本功
1.基本概念
什么是基本概念哪?比如“速度”這個(gè)概念,他有兩個(gè)意思:一是指速度的大??;一是路程與時(shí)間的比值。
2.基本規(guī)律
對于基本規(guī)律:例如:平均速度的計(jì)算公式v=s/t是定義式,適用
于任何情況。推導(dǎo)式:V=2V1V2/V1+V2V=V1+V2/
23.基本方法
初中物理常采用的模型法、實(shí)驗(yàn)加推理法。
學(xué)習(xí)物理除了以上三大基本功,還要一些實(shí)用、易記的推論或論斷,如:根據(jù)基本公式
v=s/t的推論: s=vtt=s/v等。
B. 三段法
學(xué)習(xí)物理重視三個(gè)時(shí)間段的學(xué)習(xí),即課前預(yù)習(xí)、課堂練習(xí)、課后復(fù)習(xí)。這三個(gè)
時(shí)段的學(xué)習(xí)效果,決定物理成績的好壞。
(一).課前預(yù)習(xí)
課前預(yù)習(xí)時(shí)要結(jié)合課文中的課后作業(yè),提出問題,邊閱讀,邊思考。通過閱讀,對新課內(nèi)容有一個(gè)大致的了解。預(yù)習(xí)時(shí)要搞清知識(shí)點(diǎn),找出重難點(diǎn),劃出記號(hào),以便在課堂上聽老師答疑解惑。例如:快與慢這一節(jié),可列出下列問題:1.日常生活中怎樣比較物體的快與慢?物理學(xué)中對時(shí)間與路程都不相同時(shí),怎樣比較物體的快慢?2.速度的含義是什么?
(二).課堂學(xué)習(xí)
在課堂上,對于那些重點(diǎn)知識(shí),如概念、規(guī)律等,要邊聽課邊作筆記,對關(guān)鍵詞、段落,要?jiǎng)澇鲇浱?hào),只有抓住重點(diǎn),才能深刻理解,才能準(zhǔn)確掌握所學(xué)的知識(shí)。例如:學(xué)到‘光的反射’時(shí),關(guān)鍵詞是‘反射角等于入射角’,而不是‘入射角等于反射角’。平面鏡成像中反射光線反向匯聚一點(diǎn),形成了虛像,關(guān)鍵詞是‘好像物體發(fā)出的光反射眼中’,而不是‘物體的像發(fā)出的光線直射眼中’。
(三).課后復(fù)習(xí)
每次學(xué)完新知識(shí),要結(jié)合課堂筆記對新知識(shí)進(jìn)行歸納整理,把每節(jié)或每章的知識(shí)按‘樹結(jié)構(gòu)’或‘圖表’的形式加以歸類,使零碎的知識(shí)系統(tǒng)化、條理化。歸納整理的過程,其實(shí)就是一種有效的學(xué)習(xí)。隨著整理在筆記本上逐步完成,零散的知識(shí)也在你大腦里變得條理清晰起來。在復(fù)習(xí)中整理筆記是知識(shí)系統(tǒng)的好方法。
(四)獨(dú)立做題。要獨(dú)立地(指不依賴他人),保質(zhì)保量地做一些題。
題目要有一定的數(shù)量,不能太少,更要有一定的質(zhì)量,就是說要有一定的難度。任何人學(xué)習(xí)數(shù)理化不經(jīng)過這一關(guān)是學(xué)不好的。獨(dú)立解題,可能有時(shí)慢一些,有時(shí)要走彎路,有時(shí)甚至解不出來,但這些都是正常的,是任何一個(gè)初學(xué)者走向成功的必由之路。
(五)物理過程。要對物理過程一清二楚,物理過程弄不清必然存在解題的隱患。
題目不論難易都要盡量畫圖,有的畫草圖就可以了,有的要畫精確圖,要?jiǎng)佑脠A規(guī)、三角板、量角器等,以顯示幾何關(guān)系。畫圖能夠變抽象思維為形象思維,更精確地掌握物理過程。有了圖就能作狀態(tài)分析和動(dòng)態(tài)分析,狀態(tài)分析是固定的、死的、間斷的,而動(dòng)態(tài)分析是活的、連續(xù)的。
(六)上課。
上課要認(rèn)真聽講,不走思或盡量少走思。不要自以為是,要虛心向老師學(xué)習(xí)。不要以為老師講得簡單而放棄聽講,如果真出現(xiàn)這種情況可以當(dāng)成是復(fù)習(xí)、鞏固。盡量與老師保持一致、同步,不能自搞一套,否則就等于是完全自學(xué)了。入門以后,有了一定的基礎(chǔ),則允許有自己一定的活動(dòng)空間,也就是說允許有一些自己的東西,學(xué)得越多,自己的東西越多。
(七)筆記本。
上課以聽講為主,還要有一個(gè)筆記本,有些東西要記下來。知識(shí)結(jié)構(gòu),好的解題方法,好的例題,聽不太懂的地方等等都要記下來。課后還要整理筆記,一方面是為了“消化好”,另一方面還要對筆記作好補(bǔ)充。筆記本不只是記上課老師講的,還要作一些讀書摘記,自己在作業(yè)中發(fā)現(xiàn)的好題、好的解法也要記在筆記本上,就是同學(xué)們常說的“好題本”。辛辛苦苦建立起來的筆記本要進(jìn)行編號(hào),以后要經(jīng)學(xué)看,要能做到愛不釋手,終生保存。
(八)學(xué)習(xí)資料。
學(xué)習(xí)資料要保存好,作好分類工作,還要作好記號(hào)。學(xué)習(xí)資料的分類包括練習(xí)題、試卷、實(shí)驗(yàn)報(bào)告等等。作記號(hào)是指,比方說對練習(xí)題吧,一般題不作記號(hào),好題、有價(jià)值的題、易錯(cuò)的題,分別作不同的記號(hào),以備今后閱讀,作記號(hào)可以節(jié)省不少時(shí)間。
(九)時(shí)間。
時(shí)間是寶貴的,沒有了時(shí)間就什么也來不及做了,所以要注意充分利用時(shí)間,而利用時(shí)間是一門非常高超的藝術(shù)。比方說,可以利用“回憶”的學(xué)習(xí)方法以節(jié)省時(shí)間,睡覺前、等車時(shí)、走在路上等這些時(shí)間,我們可以把當(dāng)天講的課一節(jié)一節(jié)地回憶,這樣重復(fù)地再學(xué)一次,能達(dá)到強(qiáng)化的目的。物理題有的比較難,有的題可能是在散步時(shí)想到它的解法的。學(xué)習(xí)物理的人腦子里會(huì)經(jīng)常有幾道做不出來的題貯存著,念念不忘,不知何時(shí)會(huì)有所突破,找到問題的答案。
(十)向別人學(xué)習(xí)。
要虛心向別人學(xué)習(xí),向同學(xué)們學(xué)習(xí),向周圍的人學(xué)習(xí),看人家是怎樣學(xué)習(xí)的,經(jīng)常與他們進(jìn)行“學(xué)術(shù)上”的交流,互教互學(xué),共同提高,千萬不能自以為是。也不能保守,有了好方法要告訴別人,這樣別人有了好方法也會(huì)告訴你。在學(xué)習(xí)方面要有幾個(gè)好朋友。
(十一)知識(shí)結(jié)構(gòu)。
要重視知識(shí)結(jié)構(gòu),要系統(tǒng)地掌握好知識(shí)結(jié)構(gòu),這樣才能把零散的知識(shí)系統(tǒng)起來。大到整個(gè)物理的知識(shí)結(jié)構(gòu),小到力學(xué)的知識(shí)結(jié)構(gòu),甚至具體到章,如靜力學(xué)的知識(shí)結(jié)構(gòu)等等。
(十二)數(shù)學(xué)。
物理的計(jì)算要依靠數(shù)學(xué),對學(xué)物理來說數(shù)學(xué)太重要了。沒有數(shù)學(xué)這個(gè)計(jì)算工具物理學(xué)是步難行的。大學(xué)里物理系的數(shù)學(xué)課與物理課是并重的。要學(xué)好數(shù)
學(xué),利用好數(shù)學(xué)這個(gè)強(qiáng)有力的工具。
(十三)體育活動(dòng)。
健康的身體是學(xué)習(xí)好的保證,旺盛的精力是學(xué)習(xí)高效率的保證。要經(jīng)常參加體育活動(dòng),要會(huì)一種、二種鍛煉身體的方法,要終生參加體育活動(dòng),不能間斷,僅由興趣出發(fā)三天打魚兩天曬網(wǎng)地搞體育活動(dòng),對身體不會(huì)有太大好處。要自覺地有意識(shí)地去鍛煉身體。要保證充足的睡眠,不能以減少睡覺的時(shí)間去增加學(xué)習(xí)的時(shí)間,這種辦法不可取。不能以透支健康為代價(jià)去換取一點(diǎn)好成績,不能動(dòng)不動(dòng)就講所謂“沖刺”、“拼搏”,學(xué)習(xí)也要講究規(guī)律性,也就是說總是努力,不搞突擊。
四.學(xué)習(xí)有法,但學(xué)無定法。
在學(xué)習(xí)的道路上,愿同學(xué)們結(jié)合自己的特點(diǎn),穩(wěn)扎穩(wěn)打,提高自己的學(xué)習(xí)成績,形成有效的思維、方法。
第三篇:學(xué)習(xí)幾何畫板心得體會(huì)
學(xué)習(xí)幾何畫板心得體會(huì)
我們在本期培訓(xùn)中進(jìn)行了幾何畫板的培訓(xùn),老師的講解很細(xì),很詳,讓我受益匪淺。我了解了幾何畫板的有關(guān)知識(shí),掌握了幾何畫板的一些基礎(chǔ)應(yīng)用,如一些基本圖形的構(gòu)造、圖形的平移與旋轉(zhuǎn)、函數(shù)圖象的繪制等。聯(lián)想到我日常教學(xué)中,比如圓和圓的位置關(guān)系、直線和圓的位置關(guān)系、二次函數(shù)圖像的變換、三角形的全等和相似、還有一些常見題目的動(dòng)畫演示等,這些知識(shí)若通過幾何畫板演示,學(xué)生就能直接觀察到它們的運(yùn)動(dòng)路徑,使抽象的知識(shí)變得更加形象和直觀,學(xué)生接受起來就很容易了。同時(shí),如果學(xué)好了幾何畫板,直接在課堂上操作,通過多媒體演示,既節(jié)省了時(shí)間,又提高了課堂效率。由此我體會(huì)到幾何畫板在數(shù)學(xué)教學(xué)中的用途如此之大,與我日常教學(xué)息息相關(guān),我一定要認(rèn)認(rèn)真真地把它學(xué)好。培訓(xùn)以后,我對幾何畫板興趣更高了,在平時(shí)自己用用,感覺很好,作圖更有信心了,下面是我學(xué)習(xí)的幾點(diǎn)體會(huì)。
一、學(xué)習(xí)從基本功能開始,首先必需熟練運(yùn)用好直線,線段,三角形,圓形,橢圓,垂線,二次函數(shù),反函數(shù)等圖形的繪畫操作。在學(xué)習(xí)過程中,我也是遇到了不少的難題和困惑。主要有三點(diǎn):第一,我感覺單單用這個(gè)軟件去制作課件并不難,難的是制作之前的構(gòu)思巧妙與否,如何才能達(dá)到最佳效果。第二,在學(xué)習(xí)制作JAVA幾何畫板網(wǎng)頁時(shí),我做的幾個(gè)幾何畫板積件在導(dǎo)出為HTML文件時(shí)都出現(xiàn)了問題,原來是不少幾何畫板的功能網(wǎng)頁不支持,我又不知道如何用其他功能代替。第三,我對那些個(gè)語法規(guī)則一知半解,無法參透其意。
二、對幾何畫板的認(rèn)識(shí)要提高。問題與解決是數(shù)學(xué)的心臟。提出問題并解決問題是數(shù)學(xué)發(fā)展的原動(dòng)力。由于各種原因,今天的中學(xué)數(shù)學(xué)教材中,難以體現(xiàn)出“問題與解決”的韻味,也沒有機(jī)會(huì)讓中學(xué)生接觸豐富的數(shù)學(xué)遺產(chǎn)。問題提出的唐突化,過度的公式化、形式化及解題的模式化,使數(shù)學(xué)失去了原有的魅力。至使部分學(xué)生錯(cuò)誤地認(rèn)為數(shù)學(xué)只是符號(hào)與公式的組合,難以激發(fā)他們學(xué)習(xí)數(shù)學(xué)的熱情和興趣。而《幾何畫板》它的精髓是:動(dòng)態(tài)地保持了幾何圖形中內(nèi)在的、恒定不變的幾何關(guān)系及幾何規(guī)律。它的最大特點(diǎn)是:按給定的數(shù)學(xué)規(guī)律和關(guān)系來制作圖形(或圖象、表格),從中觀察事物的現(xiàn)象,通過類比和分析提出問題,還可進(jìn)行
實(shí)驗(yàn)來驗(yàn)證問題的真與假,從而發(fā)現(xiàn)恒定不變的幾何規(guī)律,以及十分豐富的數(shù)學(xué)圖象的內(nèi)在美、對稱美??梢择{駛《幾何畫板》這一葉扁舟,在數(shù)學(xué)發(fā)展的歷史長河中漫游,興之所至,或探蹤尋源,或蕩舟而過。這是其它的教學(xué)媒體所辦不到的,也是一般CAI軟件功能所不及的。
將《幾何畫板》引入數(shù)學(xué)課堂教學(xué),有助于提高課堂效率,增大知識(shí)的復(fù)蓋面。能給學(xué)生以更多的操作機(jī)會(huì),培養(yǎng)學(xué)生的動(dòng)手動(dòng)腦的能力。有助于培養(yǎng)學(xué)生敏捷思維和觀察問題、分析問題、解決問題的能力。利用現(xiàn)代化的教育手段進(jìn)行快速訓(xùn)練,有助于個(gè)性特長的培養(yǎng)和發(fā)揮?!稁缀萎嫲濉返囊虢o廣大數(shù)學(xué)教師指出一條捷徑,一條新路。它僅僅要求數(shù)學(xué)老師略懂計(jì)算機(jī)知識(shí),就可使用《幾何畫板》,并能用它來編制課件,因?yàn)镚SP的操作不需要任何程序語言,它是以數(shù)學(xué)基礎(chǔ)為根本,以動(dòng)態(tài)幾何的特殊形式來表達(dá)設(shè)計(jì)者的思想。《幾何畫板》為數(shù)學(xué)教師使用現(xiàn)代化教學(xué)媒體提供了方便。教師可以自己動(dòng)手根據(jù)不同的教材,不同的生源素質(zhì)開發(fā)出不同的教學(xué)輔助軟件。既注重腳本的質(zhì)量,又處理好教材中教學(xué)內(nèi)容、多媒體輔助教學(xué)的功能、教師施教的手段、學(xué)生掌握知識(shí)的過程這四個(gè)壞節(jié)之間的相互關(guān)系。在課堂教學(xué)中可以很自由地掌握教學(xué)節(jié)奏以及教學(xué)深度與廣度?!稁缀萎嫲濉纺軌蛲怀鲆c(diǎn),有助于學(xué)生理解概念掌握方法;畫板動(dòng)態(tài)反映了概念及過程,能有效地突破難點(diǎn);畫板強(qiáng)大的交互性,讓學(xué)生有更多的參與機(jī)會(huì);畫板通過多媒體實(shí)驗(yàn)實(shí)現(xiàn)了對普通實(shí)驗(yàn)的擴(kuò)充,并通過對真實(shí)情景的再現(xiàn)和模擬,培養(yǎng)學(xué)生的探索、創(chuàng)造能力;畫板操作過程的可重復(fù)性,可以有效地克服學(xué)生的遺忘.
第四篇:《幾何畫板》與數(shù)學(xué)教學(xué)
存檔編號(hào)
贛南師范學(xué)院科技學(xué)院學(xué)士學(xué)位論文
《幾何畫板》與數(shù)學(xué)教學(xué)
屆 別 2012屆 專 業(yè) 數(shù)學(xué)與應(yīng)用數(shù)學(xué) 學(xué) 號(hào) 0820151207 姓 名 程思華 指導(dǎo)老師 黃進(jìn)紅 完成日期 2012年4月28日
系 別 數(shù)學(xué)與信息科學(xué)系
目錄
內(nèi)容摘要.........................................................1 關(guān)鍵詞...........................................................1 Abstract.........................................................1 Key word.........................................................1 1.《幾何畫板》簡介...............................................2 2.《幾何畫板》主要功能及其特點(diǎn)...................................2 2.1 《幾何畫板》的主要功能.......................................2 2.2 《幾何畫板》的特點(diǎn)...........................................4 3.《幾何畫板》在數(shù)學(xué)教學(xué)中的主要作用體現(xiàn).........................5 3.1 《幾何畫板》在代數(shù)教學(xué)中的應(yīng)用...............................5 3.2《幾何畫板》在立體幾何教學(xué)中的應(yīng)用............................5 4.《幾何畫板》輔助數(shù)學(xué)教學(xué)分析...................................6 5.《幾何畫板》輔助數(shù)學(xué)教學(xué)課件示例...............................7 5.1 課件制作過程.................................................7 5.2 小結(jié).........................................................9 參考文獻(xiàn)........................................................10 致謝............................................................11
《幾何畫板》與數(shù)學(xué)教學(xué)
內(nèi)容摘要:《幾何畫板》是21世紀(jì)數(shù)學(xué)教學(xué)的一個(gè)新興軟件,它是一個(gè)通用的數(shù)學(xué)教學(xué)環(huán)境,提供豐富而方便的創(chuàng)造功能使用戶可以隨心所欲地編寫出自己需要的教學(xué)課件。本文對幾何畫板的功能、特點(diǎn),以及其應(yīng)用于數(shù)學(xué)教學(xué)進(jìn)行分析,闡明了幾何畫板對數(shù)學(xué)教學(xué)的輔助作用。
關(guān)鍵詞:幾何畫板 數(shù)學(xué)教學(xué) 教學(xué)分析
Abstract: “ Geometry drawing board” in twenty-first Century mathematics teaching an emerging software, it is a general mathematical teaching environment, providing a rich and convenient feature allows users to create arbitrary need to write their own teaching courseware.The Geometer's Sketchpad function, characteristics, and should be used in mathematics teaching to carry on the analysis, explained the Geometer's Sketchpad in mathematics teaching aided function.Key word:The Geometer's Sketchpad Mathematics Teaching Teaching analysis
1.《幾何畫板》簡介
21世紀(jì)對于人才的重視程度越來越高,對教育的關(guān)注也有增無減,而數(shù)學(xué)教學(xué)便成為了教育環(huán)節(jié)中的一個(gè)重點(diǎn)與難點(diǎn),由于許多數(shù)學(xué)概念的抽象化,平面化,使得學(xué)生在數(shù)學(xué)學(xué)習(xí)上理解困難,而《幾何畫板》正是解決這一難題的理想的教學(xué)軟件。
《幾何畫板》原名:The Geometer's Sketchpad,是由美國Key Curriculum Press公司研制并出版的幾何軟件。它是一個(gè)適用于數(shù)學(xué)教學(xué)的軟件平臺(tái),為教師和學(xué)生提供了一個(gè)探索幾何圖形內(nèi)在關(guān)系的環(huán)境。它以點(diǎn)、線、圓為基本元素,通過對這些基本元素的變換、構(gòu)造、測算、計(jì)算、動(dòng)畫和跟蹤軌跡等方式,能顯示或構(gòu)造出較為復(fù)雜的圖形。
《幾何畫板》操作簡單,只要用鼠標(biāo)點(diǎn)取工具欄和菜單就可以開發(fā)課件。它無需編制任何程序,一切都要借助于幾何關(guān)系來表現(xiàn),因此它只適用于能夠用數(shù)學(xué)模型來描述的內(nèi)容。很適合于數(shù)學(xué)老師使用,這也正是數(shù)學(xué)老師所擅長的。用《幾何畫板》進(jìn)行開發(fā)速度非常快,一般來說,如果有設(shè)計(jì)思路的話,操作較為熟練的老師開發(fā)一個(gè)難度適中的軟件只需5~10分鐘。
2.《幾何畫板》主要功能及其特點(diǎn)
2.1 《幾何畫板》的主要功能
《幾何畫板》被譽(yù)為是21世紀(jì)的動(dòng)態(tài)幾何,其功能可見一斑。
《幾何畫板》是一個(gè)通用的數(shù)學(xué)、物理教學(xué)環(huán)境,提供豐富而方便的創(chuàng)造功能使用戶可以隨心所欲地編寫出自己需要的教學(xué)課件。軟件提供充分的手段幫助用戶實(shí)現(xiàn)其教學(xué)思想,只需要熟悉軟件的簡單的使用技巧即可自行設(shè)計(jì)和編寫應(yīng)用范例,范例所體現(xiàn)的并不是編者的計(jì)算機(jī)軟件技術(shù)水平,而是教學(xué)思想和教學(xué)水平??梢哉f《幾何畫板》是最出色的教學(xué)軟件之一。
《幾何畫板》所作出的圖形是動(dòng)態(tài)的,可以再圖形變動(dòng)時(shí)保持設(shè)定不變的幾何關(guān)系。如設(shè)定某線段的重點(diǎn)后,線段的未知、長短、斜率變化時(shí),該點(diǎn)的
位置變化,但永遠(yuǎn)是該線段的中點(diǎn);設(shè)定為平行的直線在動(dòng)態(tài)中永遠(yuǎn)保持平行。由于能“在運(yùn)動(dòng)中保持給定的幾何關(guān)系”,就可以運(yùn)用《幾何畫板》在“變化的圖形中,發(fā)現(xiàn)恒定不變的幾何規(guī)律”,給我們開展“數(shù)學(xué)實(shí)驗(yàn)”,進(jìn)行探索式學(xué)習(xí)提供了很好的工具。
《幾何畫板》提供了平移、旋轉(zhuǎn)、縮放、反射燈圖形變換功能,可以按指定的值或動(dòng)態(tài)的值對圖形進(jìn)行這些變換,也可以使用由用戶定義的向量、距離、角度、比值來控制這些交換?!稁缀萎嫲濉愤€能對動(dòng)態(tài)的對象進(jìn)行“追蹤”,并能顯示該對象的“蹤跡”,如點(diǎn)的蹤跡、線的蹤跡、形成的曲線或包絡(luò)。利用這一功能可以是學(xué)生預(yù)先猜測軌跡的形狀,還可以看到軌跡形成的過程以及軌跡形成的原因,為觀察現(xiàn)象、發(fā)現(xiàn)結(jié)論、探討問題創(chuàng)設(shè)了較好的情境。
《幾何畫板》提供了度量和計(jì)算功能,能夠?qū)λ鞒龅膶ο筮M(jìn)行度量,如度量線段的長度、度量弧長、角度、面積等。還能夠?qū)Χ攘砍龅闹颠M(jìn)行計(jì)算,包括四則運(yùn)算、函數(shù)運(yùn)算,并把結(jié)果動(dòng)態(tài)的顯示在屏幕上。當(dāng)被測量的對象變動(dòng)時(shí),顯示它們大小的量也隨之改變,可以動(dòng)態(tài)地觀察它們的變化或者關(guān)系。這樣一來,像研究多邊形的內(nèi)角和之類的問題就非常容易了。許多定量研究也可以借助《幾何畫板》來進(jìn)行。
《幾何畫板》還提供自定義工具,自定義工具就是把繪圖過程自動(dòng)記錄下來,形成一個(gè)工具,并隨文件保存下來,以后可以使用這個(gè)工具進(jìn)行繪圖。比如,課前把畫正方體的過程記錄下來,制作成一個(gè)名為“畫正方體”的工具,用這個(gè)工具在課堂上再畫一個(gè)正方體只要幾秒鐘。我們可以把畫橢圓、畫雙曲線、畫拋物線或者一些常用圖形的制作過程分別記錄下來,建立自己的工具庫,這可以大大增強(qiáng)《幾何畫板》的功能。用這一功能還可以揭示他人用《幾何畫板》制作課件的過程,向他人學(xué)習(xí)制作經(jīng)驗(yàn),提高制作水平,還可以進(jìn)一步用來進(jìn)行課件制作方法交流、研究。
《幾何畫板》支持直角坐標(biāo)系和極坐標(biāo)系,支持由y=f(x),x=f(y), r=f(θ),θ=f(r)確定的圖像或曲線。只要給出函數(shù)的表達(dá)式,《幾何畫板》
能畫出任何一個(gè)初等函數(shù)的圖像,還可以給定自變量的范圍。如果需要進(jìn)行動(dòng)態(tài)控制,可以做出含若干個(gè)參數(shù)的函數(shù)圖像。用《幾何畫板》可以畫分段函數(shù)的圖像,而且可以畫出分任意段的分段函數(shù)的圖像。
《幾何畫板》支持多種坐標(biāo)系的選擇,不但可以作出直角坐標(biāo)系下方程所表示的曲線,也可以做出極坐標(biāo)下方程表示的曲線。不僅能制作出由普通方程給出的曲線,也能作出由參數(shù)方程給出的曲線
2.2 《幾何畫板》的特點(diǎn)
《幾何畫板》的很多不同于其他繪圖軟件的特點(diǎn)為教學(xué)過程中提出問題、探索問題、分析問題和進(jìn)一步解決問題提供了極好的外部條件,為培養(yǎng)學(xué)生的能力提供了極好的工具。
《幾何畫板》最大的特點(diǎn)是“動(dòng)態(tài)性”:即:可以用鼠標(biāo)拖動(dòng)圖形上的任一元素(點(diǎn)、線、圓),而事先給定的所有幾何關(guān)系(即圖形的基本性質(zhì))都保持不變,這樣更有利于在圖形的變化中把握不變,深入幾何的精髓,突破了傳統(tǒng)教學(xué)的難點(diǎn)。
《幾何畫板》操作簡單,易于掌握運(yùn)用。只要用鼠標(biāo)點(diǎn)取工具欄和菜單就可以開發(fā)課件。它無需編制任何程序,一切都要借助于幾何關(guān)系來表現(xiàn),因此它只適用于能夠用數(shù)學(xué)模型來描述的內(nèi)容--例如部分物理、天文問題等。因此,它非常適合于數(shù)學(xué)老師使用,如果有設(shè)計(jì)思路的話,用《幾何畫板》進(jìn)行開發(fā)課件速度非???。
《幾何畫板》還能為學(xué)生創(chuàng)造一個(gè)進(jìn)行幾何“實(shí)驗(yàn)”的環(huán)境。學(xué)習(xí)數(shù)學(xué)需要數(shù)學(xué)邏輯經(jīng)驗(yàn)的支撐,而數(shù)學(xué)經(jīng)驗(yàn)是從操作活動(dòng)中獲得。離開人的活動(dòng)是沒有數(shù)學(xué)、也學(xué)不懂?dāng)?shù)學(xué)的。在老師的引導(dǎo)下,《幾何畫板》可以給學(xué)生創(chuàng)造一個(gè)實(shí)際“操作”幾何圖形的環(huán)境。學(xué)生可以任意拖動(dòng)圖形、觀察圖形、猜測并驗(yàn)證,在觀察、探索、發(fā)現(xiàn)的過程中增加對各種圖形的感性認(rèn)識(shí),形成豐厚的幾何經(jīng)驗(yàn)背景,從而更有助于學(xué)生理解和證明。因此,《幾何畫板》還能為學(xué)生創(chuàng)造一個(gè)進(jìn)行幾何“實(shí)驗(yàn)”的環(huán)境,有助于發(fā)揮學(xué)生的主體性、積極性和創(chuàng)
造性,充分體現(xiàn)了現(xiàn)代教學(xué)的思想。
3.《幾何畫板》在數(shù)學(xué)教學(xué)中的主要作用體現(xiàn)
3.1 《幾何畫板》在代數(shù)教學(xué)中的應(yīng)用
函數(shù)是高中的重要知識(shí)體系,而函數(shù)又是最基本、最重要的概念,它的概念和思維方法滲透在高中數(shù)學(xué)的各個(gè)部分;同時(shí),函數(shù)是以運(yùn)動(dòng)變化的觀點(diǎn)對現(xiàn)實(shí)世界數(shù)量關(guān)系的一種刻畫,這又決定了它是對學(xué)生進(jìn)行素質(zhì)教育的重要材料。就如華羅庚所說:“數(shù)缺形少直觀,形缺數(shù)難入微。”而我們教師在進(jìn)行函數(shù)教學(xué)時(shí),備感頭疼的是函數(shù)的圖像,為了解決數(shù)形結(jié)合的問題,在有關(guān)函數(shù)的傳統(tǒng)教學(xué)中,大多數(shù)老師用手工繪圖,但手工繪圖有不精確、速度慢的弊端;而運(yùn)用《幾何畫板》快速直觀的顯示及變化功能,恰好可以克服上述弊端,從而大大提高課堂效率,進(jìn)而起到事半功倍的效果。
比如,圖像的變化是代數(shù)教學(xué)的一個(gè)難點(diǎn),要說明函數(shù)的圖像與圖像的關(guān)系,我們可以通過《幾何畫板》拖動(dòng)點(diǎn)反復(fù)觀察圖像移動(dòng)與t的數(shù)量關(guān)系,當(dāng)函數(shù)式中t>0時(shí),圖像右移,當(dāng)t<0時(shí),圖像左移,形象直觀地顯示了圖像的移動(dòng)與參數(shù)t之間的關(guān)系,從而歸納出圖像平移變化的規(guī)律。
3.2《幾何畫板》在立體幾何教學(xué)中的應(yīng)用
立體幾何主要是為了培養(yǎng)學(xué)生的空間想象能力而開設(shè)的,初學(xué)立體幾何時(shí),大多數(shù)學(xué)生不具備豐富的空間想象的能力和較強(qiáng)的平面與空間圖形的轉(zhuǎn)化能力,主要原因在于人們習(xí)慣于依靠對二維平面圖形的直觀來感知和想象三維空間圖形,而二維平面圖形不可能成為三維空間圖形的真實(shí)寫照,平面上繪出的立體圖形的平面直觀圖因受其視角的影響,難于綜觀全局。而用《幾何畫板》則能輕松地達(dá)到意想不到的效果。
對于棱臺(tái)的教學(xué),我們往往采用模型進(jìn)行教學(xué),通過“模型”和“圖形”的聯(lián)系,加深對所授幾何體的概念和性質(zhì)的理解,但“模型”加“圖形”的教學(xué)方法仍不能直觀明了地向?qū)W生展示棱臺(tái)的性質(zhì),倘若能通過《《幾何畫板》》
在前面得到的三棱錐的基礎(chǔ)上,在大的棱錐上截取一個(gè)小棱錐,然后對這個(gè)小棱錐進(jìn)行移動(dòng)來實(shí)現(xiàn)對棱錐的拆分得到棱臺(tái)。充分培養(yǎng)學(xué)生的空間想象能力,通過《幾何畫板》解決教學(xué)中的重點(diǎn)和難點(diǎn),也使學(xué)生對立體幾何學(xué)習(xí)有一種新的認(rèn)識(shí),并能產(chǎn)生濃厚的興趣。
3.3 《幾何畫板》在平面解析幾何教學(xué)中的應(yīng)用
平面解析幾何是用代數(shù)方法來研究幾何問題的一門數(shù)學(xué)學(xué)科,它研究問題的基本思想和基本方法是:根據(jù)已知條件,選擇適當(dāng)?shù)淖鴺?biāo)系,借助形和數(shù)的對應(yīng)關(guān)系,求出表示平面曲線的方程,把形的問題轉(zhuǎn)化為數(shù)來研究;再通過方程,研究平面曲線的性質(zhì),把數(shù)的研究轉(zhuǎn)化為形來討論。而曲線中各幾何量受各種因素的影響而變化,導(dǎo)致點(diǎn)、線按不同的方式做運(yùn)動(dòng),曲線和方程的對應(yīng)關(guān)系比較抽象,學(xué)生不易理解。而展示幾何圖形變形與運(yùn)動(dòng)的整體過程在解析幾何教學(xué)中是非常重要的,這樣,《幾何畫板》就以其極強(qiáng)的運(yùn)算功能和圖形圖像功能在解析幾何的教與學(xué)中大顯身手。
4.《幾何畫板》輔助數(shù)學(xué)教學(xué)分析
培養(yǎng)學(xué)生的思維能力。在教師精心的設(shè)計(jì)下,恰當(dāng)?shù)乩谩稁缀萎嫲濉返难菔?協(xié)助學(xué)生思考而不是代替學(xué)生思考,可促進(jìn)學(xué)生思維的發(fā)展。在橢圓的離心角的教學(xué)中,橢圓的半徑為終邊的角與橢圓離心角容易混淆。若利用《幾何畫板》,不僅可以使學(xué)生把這兩個(gè)角的關(guān)系辨析清楚,而且電腦動(dòng)態(tài)顯示的優(yōu)勢抓住了時(shí)機(jī),有助于發(fā)展學(xué)生的思維能力。
培養(yǎng)學(xué)生的探索、觀察能力。“探索是數(shù)學(xué)的生命線”。用《幾何畫板》進(jìn)行探索思考、觀察,使學(xué)生的想象力得以發(fā)揮,其顯示功能通過動(dòng)態(tài)的演示軌跡,增強(qiáng)學(xué)生感性認(rèn)識(shí),化抽象的事物為具體的事物。
解決許多帶參數(shù)的軌跡問題,培養(yǎng)學(xué)生分類討論的能力。在畫板的幫助下很多需要分類討論的帶參數(shù)的問題變得簡單,讓學(xué)生們在思考過程中“興奮”起來,學(xué)生對參數(shù)的改變引起軌跡的變化的認(rèn)識(shí)也就更深刻了,分類討論的思 6
想迎刃而解。
培養(yǎng)學(xué)生解決實(shí)際應(yīng)用問題的能力。應(yīng)用的廣泛性是數(shù)學(xué)的又一特點(diǎn),數(shù)學(xué)教學(xué)中注重應(yīng)用。應(yīng)用題往往難在對實(shí)際問題的數(shù)學(xué)化。而運(yùn)用畫板進(jìn)行輔助教學(xué)將易于揭示其數(shù)學(xué)本質(zhì),有助于增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用能力。
5.《幾何畫板》輔助數(shù)學(xué)教學(xué)課件示例
范例:一條線段CD的一個(gè)短點(diǎn)C在定圓A上運(yùn)動(dòng),制作線段CD的垂直平分線與直線AC的交點(diǎn)的軌跡。
5.1 課件制作過程
(1)按“文件”-“新建文件”,建立新畫板。用“畫圓”工具畫一個(gè)圓A。B是圓上的電,可用以改變遠(yuǎn)的大小,Ctrl+H隱藏B點(diǎn)。(2)用“畫線段”工具畫線段CD,使點(diǎn)C在圓上,D在圓內(nèi)。
(3)選擇線段CD,做出線段中點(diǎn)E。(如圖5.1.1)
圖 5.1.1(4)過點(diǎn)E做線段CD的垂線,選定直線,顯示直線的標(biāo)簽j。
(5)在空白處單擊鼠標(biāo),釋放對之間j的選擇。用鼠標(biāo)按住“畫線段工具
不放開,顯示出一排按鈕,拖動(dòng)鼠標(biāo)到“畫直線”工具處松開鼠標(biāo),“畫線段”工具成為“畫直線”工具。(如圖5.1.2)
圖 5.1.2(6)用“畫直線”工具畫直線AC,按Ctrl+K鍵,顯示直線AC的標(biāo)簽k。(7)用“選擇”工具單擊之間j與k的交點(diǎn)處,做出交點(diǎn)F。
(8)用“選擇”工具同時(shí)選中主動(dòng)點(diǎn)C與被動(dòng)點(diǎn)F,單擊“構(gòu)造”菜單里的“軌跡”,做出點(diǎn)F的軌跡--橢圓。
圖 5.1.3 8
(9)按shift鍵,單擊“顯示”菜單里的“線型”-“粗線”選項(xiàng),把橢圓設(shè)置成粗線。(如圖5.1.3)
(10)同時(shí)選中之間j和點(diǎn)C,單擊“構(gòu)造”菜單里的軌跡,做出之間j的軌跡,它的包絡(luò)是橢圓。(如圖5.1.4)
圖 5.1.4 5.2 小結(jié)
如以上制作過程,《幾何畫板》通過簡潔方便的操作,直觀的展示了橢圓的構(gòu)造原理及其軌跡,其動(dòng)態(tài)的圖形功能,豐富的圖像功能,無一不說明《幾何畫板》是一個(gè)優(yōu)秀的數(shù)學(xué)教學(xué)輔助工具。
參考文獻(xiàn)
文玉蟬,《幾何畫板》----21世紀(jì)的動(dòng)態(tài)幾何{J},玉林師范學(xué)院學(xué)報(bào),2003,(03)。
楊超杰,淺談“《幾何畫板》”及其在初中數(shù)學(xué)教學(xué)中的應(yīng)用{J},中學(xué)生數(shù)理化(教與學(xué)),2009,(03)。
雒淑英,應(yīng)用《幾何畫板》優(yōu)化數(shù)學(xué)教學(xué){J},科技信息(學(xué)術(shù)研究),2007,(30)。
丁佐宏,《幾何畫板》:高中數(shù)學(xué)教學(xué)的工具{J},新課程(新高考版),2008,(01)。
劉愛英,《幾何畫板》在高中數(shù)學(xué)教學(xué)中的應(yīng)用例談{J},中國現(xiàn)在教育設(shè)備,2010,(04)。
陳俊新,《幾何畫板》與數(shù)學(xué)教學(xué)-----課堂教學(xué)的小課件應(yīng)用{J},考試周2007,萬方數(shù)據(jù)庫 004km.cn
致謝:
感謝我的指導(dǎo)老師黃進(jìn)紅老師,從論文的選題,到定稿,都在黃老師的悉心指導(dǎo)下完成,黃老師認(rèn)真負(fù)責(zé)的工作態(tài)度給我留下了難以磨滅的印象,也為我今后的工作樹立了優(yōu)秀的榜樣。
第五篇:幾何畫板學(xué)習(xí)心得體會(huì)
幾何畫板學(xué)習(xí)心得體會(huì)
通過近三天的學(xué)習(xí),使我充分認(rèn)識(shí)到幾何畫板這一軟件在教學(xué)中的應(yīng)用價(jià)值,促使我迫不及待的進(jìn)行自學(xué)這一軟件,并應(yīng)用于自己的教學(xué)實(shí)踐,讓我受益匪淺。我了解了幾何畫板的有關(guān)知識(shí),掌握了幾何畫板的一些基礎(chǔ)應(yīng)用,如一些基本圖形的構(gòu)造、圖形的平移與旋轉(zhuǎn)、函數(shù)圖象的繪制等。聯(lián)想到我日常教學(xué)中,比如圓和圓的位置關(guān)系、直線和圓的位置關(guān)系、二次函數(shù)圖像的變換、三角形的全等和相似、還有一些常見題目的動(dòng)畫演示等,這些知識(shí)若通過幾何畫板演示,學(xué)生就能直接觀察到它們的運(yùn)動(dòng)路徑,使抽象的知識(shí)變得更加形象和直觀,學(xué)生接受起來就很容易了。同時(shí),如果學(xué)好了幾何畫板,直接在課堂上操作,通過多媒體演示,既節(jié)省了時(shí)間,又提高了課堂效率。由此我體會(huì)到幾何畫板在數(shù)學(xué)教學(xué)中的用途如此之大,與我日常教學(xué)息息相關(guān),我一定要認(rèn)認(rèn)真真地把它學(xué)好。同時(shí)準(zhǔn)備動(dòng)員我校全體數(shù)學(xué)教師進(jìn)一步開發(fā)研究幾何畫板的使用,提高其使用技能下面是我學(xué)習(xí)的幾點(diǎn)體會(huì)。
一、學(xué)習(xí)從基本功能開始,首先必需熟練運(yùn)用好直線,線段,三角形,圓形,橢圓,垂線,二次函數(shù)等圖形的繪畫操作。在學(xué)習(xí)過程中,我也是遇到了不少的難題和困惑。我感覺單單用這個(gè)軟件去制作課件并不難,難的是制作之前的構(gòu)思巧妙與否,如何才能達(dá)到最佳效果。其次自己的自學(xué)能力畢竟有限,有許多地方都不明白,如果有老師給予一定的引導(dǎo)會(huì)更加好一些。
二、對幾何畫板的認(rèn)識(shí)要提高。問題與解決是數(shù)學(xué)的心臟。提出問題并解決問題是數(shù)學(xué)發(fā)展的原動(dòng)力。由于各種原因,今天的初中數(shù)學(xué)教材中,難以體現(xiàn)出“問題與解決”的韻味,也沒有機(jī)會(huì)讓中學(xué)生接觸豐富的數(shù)學(xué)遺產(chǎn)。問題提出的唐突化,過度的公式化、形式化及解題的模式化,使數(shù)學(xué)失去了原有的魅力。至使部分學(xué)生錯(cuò)誤地認(rèn)為數(shù)學(xué)只是符號(hào)與公式的組合,難以激發(fā)他們學(xué)習(xí)數(shù)學(xué)的熱情和興趣。而《幾何畫板》它的精髓是:動(dòng)態(tài)地保持了幾何圖形中內(nèi)在的、恒定不變的幾何關(guān)系及幾何規(guī)律。它的最大特點(diǎn)是:按給定的數(shù)學(xué)規(guī)律和關(guān)系來制作圖形(或圖象、表格),從中觀察事物的現(xiàn)象,通過類比和分析提出問題,還可進(jìn)行實(shí)驗(yàn)來驗(yàn)證問題的真與假,從而發(fā)現(xiàn)恒定不變的幾何規(guī)律,以及十分豐富的數(shù)學(xué)圖象的內(nèi)在美、對稱美。可以駕駛《幾何畫板》這一葉扁舟,在數(shù)學(xué)發(fā)展的歷史長河中漫游,興之所至,或探蹤尋源,或蕩舟而過。
將《幾何畫板》引入數(shù)學(xué)課堂教學(xué),有助于提高課堂效率,增大知識(shí)的覆蓋面。能給學(xué)生以更多的操作機(jī)會(huì),培養(yǎng)學(xué)生的動(dòng)手動(dòng)腦的能力。有助于培養(yǎng)學(xué)生敏捷思維和觀察問題、分析問題、解決問題的能力。利用現(xiàn)代化的教育手段進(jìn)行快速訓(xùn)練,有助于個(gè)性特長的培養(yǎng)和發(fā)揮?!稁缀萎嫲濉返囊霑?huì)給廣大數(shù)學(xué)教師指出一條捷徑,一條新路。它僅僅要求數(shù)學(xué)老師略懂計(jì)算機(jī)知識(shí),就可使用《幾何畫板》,并能用它來編制課件,它是以數(shù)學(xué)基礎(chǔ)為根本,以動(dòng)態(tài)幾何的特殊形式來表達(dá)設(shè)計(jì)者的思想?!稁缀萎嫲濉窞閿?shù)學(xué)教師使用現(xiàn)代化教學(xué)媒體提供了方便。教師可以自己動(dòng)手根據(jù)不同的教材,不同的生源素質(zhì)開發(fā)出不同的教學(xué)輔助軟件。在課堂教學(xué)中可以很自由地掌握教學(xué)節(jié)奏以及教學(xué)深度與廣度。
幾何畫板的探究使用過程還很漫長,我將一如既往的進(jìn)一步研究它,使用它,直至能過熟練的應(yīng)用于自己的教育教學(xué)之中。