欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      第18章小結(jié)與復(fù)習(xí)(第2課時)

      時間:2019-05-13 16:14:35下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《第18章小結(jié)與復(fù)習(xí)(第2課時)》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《第18章小結(jié)與復(fù)習(xí)(第2課時)》。

      第一篇:第18章小結(jié)與復(fù)習(xí)(第2課時)

      第18章 小結(jié)與復(fù)習(xí)

      (第2課時)教學(xué)目標(biāo)

      知識目標(biāo)

      1.會用待定系數(shù)法求一次函數(shù)、反比例函數(shù)的解析式.2.能利用一次函數(shù)、反比例函數(shù)的圖象及其性質(zhì)解決簡單的實(shí)際問題.3.理解一次函數(shù)、一元一次方程及一元一次不等式之間的關(guān)系.能力目標(biāo)

      培養(yǎng)學(xué)生數(shù)學(xué)建模的思路;掌握數(shù)形結(jié)合數(shù)學(xué)思想方法.情感目標(biāo)

      學(xué)生在探究問題的過程中,體驗(yàn)成功的樂趣,養(yǎng)成與人交流合作和學(xué)習(xí)反思的習(xí)慣.重點(diǎn)、難點(diǎn)

      重點(diǎn): 會用待定系數(shù)法求一次函數(shù)、反比例函數(shù)的解析式.難點(diǎn):靈活運(yùn)用一次函數(shù)、反比例函數(shù)的圖象及其性質(zhì)解決簡單的實(shí)際問題.基本教學(xué)思路.教學(xué)思路:知識梳理──習(xí)題選講──訓(xùn)練鞏固──應(yīng)用提高.教學(xué)設(shè)計:

      一.復(fù)習(xí)導(dǎo)入

      通常情況下,我們可以用什么方法求函數(shù)的解析式?一次函數(shù)、一元一次方程和一元一次不等式之間存在怎樣的關(guān)系?利用函數(shù)的知識解決簡單問題,你已經(jīng)獲得了哪些經(jīng)驗(yàn)? 二.典型例題

      例1 某軍加油飛機(jī)接到命令,立即給另一架正在飛行的運(yùn)輸飛機(jī)進(jìn)行空中加油.在加油的過程中,設(shè)運(yùn)輸飛機(jī)的油箱余油量為Q1噸,加油飛機(jī)的加油油箱的余油量為Q2噸,加油時間為t分鐘,Q1、Q2與t之間的函數(shù)圖象如圖所示,結(jié)合圖象回答下列問題:

      (1)加油飛機(jī)的加油油箱中裝載了多少噸油?將這些油全部加給運(yùn)輸飛機(jī)需要多少分鐘?(2)求加油過程中,運(yùn)輸飛機(jī)的余油量Q1(噸)與時間t(分鐘)的函數(shù)關(guān)系式;

      (3)求運(yùn)輸飛機(jī)加完油后,以原速繼續(xù)飛行,需10小時到達(dá)目的地,油料是否夠用?說明理由. 解(1)由圖象知,加油飛機(jī)的加油油箱中裝載了30噸油,全部加給運(yùn)輸飛機(jī)需10分鐘.(2)設(shè)Q1=kt+b,把(0,40)和(10,69)代入,得

      ?40?b, ?69?10k?b.?解得??k?2.9,?b?40.所以Q1=2.9t+40(0≤t≤10).

      (3)根據(jù)圖象可知運(yùn)輸飛機(jī)的耗油量為每分鐘0.1噸. 所以10小時耗油量為:10×60×0.1=60(噸)<69(噸), 所以油料夠用.

      練習(xí)1:利用多媒體演示幻燈片8.春天是萬物復(fù)蘇的季節(jié),同時也是疾病傳播的猖獗時期.為了預(yù)防疾病,?某學(xué)校對學(xué)生宿舍每周進(jìn)行一次藥熏消毒法進(jìn)行消毒.已知藥物燃燒時,室內(nèi)每立方米空氣中含藥量y(毫克)與時間x(分鐘)成正比例.藥物燃燒后,y與x成反比例(如圖所示).現(xiàn)測得藥物8分鐘燃燒完結(jié),此時室內(nèi)空氣中每立方米含藥量為6毫克.請根據(jù)題中提供的信息,解答下列問題:(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為 y=0.75x,自變量的取值范圍是 0≤x≤8;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為

      y(毫克)63O8x(分)y?48(x?8);x(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時學(xué)生方可進(jìn)宿舍,那么從消毒開始,至少需要經(jīng)過 30 分鐘后,學(xué)生才能回到宿舍.(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3?毫克且持續(xù)的時間不低于10分鐘時,才能有效殺死空氣中的病毒,那么此次消毒是否有效?為什么? 答案:含藥量不低于3毫克的時長為12分鐘,因此此次消毒有效.生:合作探究,并解答問題.師生共同歸納解題思路,解題策略,并利用多媒體展示解題的過程和結(jié)果.解:(1)由圖象可知(燃燒過程中):線段AB經(jīng)過坐標(biāo)系原點(diǎn),?因此可設(shè)其解析式為y=kx,由于點(diǎn)A(8,6),在圖象上,得k=3=0.75,所以線段AB解析式為y=0.75x.4k1 ,因?yàn)辄c(diǎn)A(8,6)在雙曲線上,得k1=48,所x(2)由于燃燒后,y1與y2成反比,因此可設(shè)其解析式為y1=以雙曲線的解析式為y1=回到宿舍.4848 ,當(dāng)y1≤1.6時, ≤1.6得x≥30,因此,?學(xué)生在燃燒藥物后30分鐘,才能xx(3)空氣中每立方米的含藥量不低于3毫克,包含兩個過程,即藥物燃燒過程和燃燒后含藥量逐漸消失的過程,含藥量不低于3毫克的時間應(yīng)該是這兩個時間的差.?在燃燒的過程中,有0.75x≥3,得x≥4;在燃燒后的過程中,有48≤3,得x≤16;?時間差為12分鐘.x例2 :k在為何值時,直線2k+1=5x+4y與直線 k=2x+3y的交點(diǎn)在第四象限.

      分析 此題中已知兩直線的交點(diǎn)在第四象限,實(shí)際上就是知道兩個一次函數(shù)圖象交點(diǎn)在第四象限,因此如何求兩個一次函數(shù)的圖象的交點(diǎn)及第四象限點(diǎn)應(yīng)滿足的條件就成了解此題的關(guān)鍵.另外因?yàn)樯婕按ㄏ禂?shù)k的值,所以要先求它們的交點(diǎn),其中交點(diǎn)的坐標(biāo)是可以用待定系數(shù)k來表示,最后再確定第四象限的點(diǎn)的坐標(biāo)滿足的條件. 解 由題意得: 則 ?5x?4y?2k?1, ?2x?3y?k.?2k?3?x?,??7解關(guān)于x,y的二元一次方程組,得?

      k?2?y?.?7?因?yàn)樗鼈兘稽c(diǎn)在第四象限,所以x>0,y<0,?2k?33?0,??k??,?7?即? 解這個不等式組,得?2 ?k?2?0.??k?2.??7由以上可知當(dāng)?3?k?2時,兩直線交點(diǎn)在第四象限. 2y??8x的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫 例3 如圖,已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2.(1)求一次函數(shù)的解析式;(2)求△AOB的面積.

      解(1)把xA8??2代入y??中,得yA?4.

      x所以點(diǎn)A的坐標(biāo)是(-2,4).

      8把yB??2代入y??中,得xB?4. x所以點(diǎn)B的坐標(biāo)是(4,-2). 把A、B的坐標(biāo)代入y=kx+b中,得

      ?4??2k?b, ???2?4k?b.解得??k??1,?b?2.所以一次函數(shù)的解析式是y=-x+2.(2)當(dāng)y=0時,0=-x+2,得x=2,所以M(2,0),即OM=2.

      S?AOB?S?AOM?S?BOM11?2?4??2?2 22?6.?三.學(xué)習(xí)小結(jié)

      方法歸納:1利用函數(shù)知識解決簡單問題的關(guān)鍵是我們在認(rèn)識問題本質(zhì)的基礎(chǔ)上構(gòu)建相應(yīng)的函數(shù)模型,然后利用相應(yīng)函數(shù)的圖形和性質(zhì)解決問題.2.待定系數(shù)法是一項(xiàng)重要的數(shù)學(xué)方法,要結(jié)合它在確定一次函數(shù)和反比例函數(shù)表達(dá)式中的應(yīng)用.

      四.課外作業(yè):

      1.某單位在“五.一”期間,組織36名員工到黃山旅游,可租用的小車有兩種:?一種每輛可坐8人,另一種每輛可坐4人,要求租用的小車不留空位,也不超載.①請你設(shè)計出不同的租車方案(至少三種);②若8人座的車每輛租金是300元/天,4人座的車每輛租金是200元/天,請你設(shè)計出費(fèi)用最小用的租

      車方案,并說明理由.(設(shè)租用4人座的小車x輛,8人座的y輛,則4x+8y=36,且x、y均為自然數(shù),由y8?≤36得y≤4,由此得出租車共有費(fèi)用最小為1400元).2.某單位急需用車,但又不準(zhǔn)備買車,他們準(zhǔn)備和一個體車或一國營出租車公司的一家簽定月租車合同,設(shè)汽車每月行駛x千米,應(yīng)付給個體車主的月費(fèi)用是y1元,應(yīng)付給出租車公司的月費(fèi)是y2元,yl、y2分別與工之間的函數(shù)關(guān)系圖象(兩條射線)如下圖所示,觀察圖象回答下列問題:(1)每月行駛的路程在什么范圍內(nèi),租國營公司的車合算?(2)每月行駛的路程等于多少時,租兩家的費(fèi)用相同?(3)如果這個單位估計每月行駛的路程為2300千米,那么這個單位租哪家公司的車比較合算? 3.小李以每千克0.8元的價格從批發(fā)市場購進(jìn)若干千克西瓜到市場去銷售,在銷售了部分西瓜之后,余下的每千克降價0.4元,全部售完,銷售金額與賣瓜的千克數(shù)之間的關(guān)系如圖所示,問小李至少賺了多少錢?

      4.直線5種方案:9,0;7,1;5,2;3,3;1,4.設(shè)租車總費(fèi)用為

      w(元),則w=300y+200x=300y+200(9-2y)=-100y+1800,由于w隨y的增大而減小,所以當(dāng)y值取大值4時,費(fèi)用最少,y?2x?2分別交x軸、y軸于A、B兩點(diǎn),O是原點(diǎn). 3(1)求△AOB的面積;

      (2)過△AOB的頂點(diǎn)能不能畫出直線把△AOB分成面積相等的兩部分?如能,可以畫出幾條?寫出這樣的直線所對應(yīng)的函數(shù)關(guān)系式. .

      五.板書設(shè)計

      六.教學(xué)后記:

      第二篇:第12課時解直角三角形復(fù)習(xí)2

      初三幾何教案 第六章:解直角三角形

      第12課時:解直解三角形小結(jié)與復(fù)習(xí)(二)

      教學(xué)目標(biāo):

      1、使學(xué)生綜合運(yùn)用有關(guān)直角三角形知識解決實(shí)際問題.

      2、培養(yǎng)學(xué)生分析問題、解決問題的能力,滲透數(shù)形結(jié)合的數(shù)學(xué)思想方法.(三)德育滲透點(diǎn)

      滲透理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn),培養(yǎng)學(xué)生具有用數(shù)學(xué)的意識. 教學(xué)重點(diǎn):

      歸納直角三角形的邊、角之間的關(guān)系,利用這些關(guān)系式解直角三角形,并利用解直角三角形的有關(guān)知識解決實(shí)際問題. 教學(xué)難點(diǎn):

      利用解直角三角形的有關(guān)知識解決實(shí)際問題. 教學(xué)過程:

      一、新課引入:

      1、什么是解直角三角形?

      2、在Rt△ABC中,除直角C外的五個元素間具有什么關(guān)系?

      請學(xué)生回答以上二小題,因?yàn)楸竟?jié)課主要是運(yùn)用以上關(guān)系解直角三角形,從而解決一些實(shí)際問題.

      學(xué)生回答后,板書:

      222(1)三邊關(guān)系:a+b=c;

      (2)銳角之間關(guān)系:∠A+∠B=90°;(3)邊角之間關(guān)系

      第二大節(jié)“解直角三角形”,安排在銳角三角函數(shù)之后,通過計算題、證明題、應(yīng)用題和實(shí)習(xí)作業(yè)等多種形式,對概念進(jìn)行加深認(rèn)識,起到鞏固作用.

      同時,解直角三角形的知識可以廣泛地應(yīng)用于測量、工程技術(shù)和物理之中,主要是用來計算距離、高度和角度.其中的應(yīng)用題,內(nèi)容比較廣泛,具有綜合技術(shù)教育價值.解決這類問題需要進(jìn)行運(yùn)算,但三角的運(yùn)算與邏輯思維是密不可分的;為了便于運(yùn)算,常常先選擇公式并進(jìn)行變換.同時,解直角三角形的應(yīng)用題和實(shí)習(xí)作業(yè)也有利于培養(yǎng)學(xué)生空間想象能力,要求學(xué)生通過觀察,或結(jié)合文字畫出圖形,總之,解直角三角形的應(yīng)用題和實(shí)習(xí)作業(yè)可以培養(yǎng)學(xué)生的三大數(shù)學(xué)能力和分析問題、解決問題的能力.

      解直角三角形還有利于數(shù)形結(jié)合.通過這一章學(xué)習(xí),學(xué)生才能對直角三角形概念有較完整認(rèn)識,才能把直角三角形的判定、性質(zhì)、作圖與直角三角形中邊、角之間的數(shù)量關(guān)系統(tǒng)一起來.另外,有些簡單的幾何圖形可分解為一些直角三角形的組合,從而也能用本章知識加以處理.

      基于以上分析,本節(jié)課復(fù)習(xí)解直角三角形知識主要通過幾個典型例題的教學(xué),達(dá)到教學(xué)目標(biāo).

      二、新課講解:

      1、首先出示,通過一道簡單的解直角三角形問題,為以下實(shí)際應(yīng)用奠定基礎(chǔ).

      根據(jù)下列條件,解直角三角形.

      教師分別請兩名同學(xué)上黑板板演,同時巡視檢查其余同學(xué)解題過程,對有問題的同學(xué)可單獨(dú)指導(dǎo).待全體學(xué)生完成之后,大家共同檢查黑板上兩題的解題過程,通過學(xué)生互評,達(dá)到查漏補(bǔ)缺的目的,使全體學(xué)生掌握解直角三角形.如果班級學(xué)生對解直角三角形掌握較好,這兩個題還可以這樣處理:請二名同學(xué)板演的同時,把下面同學(xué)分為兩部分,一部分做①,另一部分做②,然后學(xué)生互評.這樣可以節(jié)約時間.

      2、出示例題2.

      在平地上一點(diǎn)C,測得山頂A的仰角為30°,向山沿直線前進(jìn)20米到D處,再測得山頂A的仰角為45°,求山高AB.此題一方面可引導(dǎo)學(xué)生復(fù)習(xí)仰角、俯角的概念,同時,可引導(dǎo)學(xué)生加以分析:

      如圖6-39,根據(jù)題意可得AB⊥BC,得∠ABC=90°,△ABD和△ABC都是直角三角形,且C、D、B在同一直線上,由∠ADB=45°,AB=BD,CD=20米,可得BC=20+AB,在Rt△ABC中,∠C=30°,可得AB與BC之間的關(guān)系,因此山高AB可求.學(xué)生在分析此題時遇到的困難是:在Rt△ABC中和Rt△ABD中,都找不出一條已知邊,而題目中的已知條件CD=20米又不會用.教學(xué)時,在這里教師應(yīng)著重引

      ②,通過①,②兩式,可得AB長.

      解:根據(jù)題意,得AB⊥BC,∴∠ABC=Rt△. ∵∠ADB=45°,∴AB=BD,∴BC=CD+BD=20+AB.

      在Rt△ABC中,∠C=30°,通過此題可引導(dǎo)學(xué)生總結(jié):有些直角三角形的已知條件中沒有一條已知邊,但已知二邊的關(guān)系,結(jié)合另一條件,運(yùn)用方程思想,也可以解決.

      3.例題3(出示投影片)如圖6-40,水庫的橫截面是梯形,壩頂寬6m,壩高23m,斜坡AB

      壩底寬AD(精確到0.1m).

      坡度問題是解直角三角形的一個重要應(yīng)用,學(xué)生在解坡度問題時常遇到以下問題:

      1.對坡度概念不理解導(dǎo)致不會運(yùn)用題目中的坡度條件; 2.坡度問題計算量較大,學(xué)生易出錯;

      3.常需添加輔助線將圖形分割成直角三角形和矩形.因此,設(shè)計本題要求教師在教學(xué)中著重針對以上三點(diǎn)來考查學(xué)生的掌握情況. 首先請學(xué)生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.

      教師可請一名同學(xué)上黑板板書,其他學(xué)生筆答此題.教師在巡視中為個別學(xué)生解開疑點(diǎn),查漏補(bǔ)缺.

      解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m. 在Rt△ABE中,∴AB=2BE=46(m).

      ∴FD=CF=23(m).

      答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m. 引導(dǎo)全體同學(xué)通過評價黑板上的板演,總結(jié)解坡度問題需要注意的問題:

      ①適當(dāng)添加輔助線,將梯形分割為直角三角形和矩形.

      ③計算中盡量選擇較簡便、直接的關(guān)系式加以計算.

      三、課堂小結(jié):

      請學(xué)生總結(jié):解直角三角形時,運(yùn)用直角三角形有關(guān)知識,通過數(shù)值計算,去求出圖形中的某些邊的長度或角的大小.在分析問題時,最好畫出幾何圖形,按照圖中的邊角之間的關(guān)系進(jìn)行計算.這樣可以幫助思考、防止出錯.

      四、布置作業(yè)

      1.看教材P.33~P.55,培養(yǎng)學(xué)生的看書習(xí)慣. 2.教材P.56復(fù)習(xí)題六A組6,8,10.

      3.選做B組P.58中1、2、3、4.

      第三篇:第1章小結(jié)與復(fù)習(xí) 時間

      第1章 小結(jié)與復(fù)習(xí)

      時間

      【教學(xué)目標(biāo)】

      1.回顧本章知識,在回顧過程中主動構(gòu)建起本章知識結(jié)構(gòu);

      2.思考勾股定理及其逆定理的發(fā)現(xiàn)證明和應(yīng)用過程,體會出入相補(bǔ)思想、數(shù)形結(jié)合思想、轉(zhuǎn)化思想在解決數(shù)學(xué)問題中的作用.【教學(xué)重點(diǎn)】

      掌握勾股定理以及逆定理的應(yīng)用. 【教學(xué)難點(diǎn)】

      應(yīng)用勾股定理以及逆定理. 【教學(xué)過程】

      一、回顧交流,合作學(xué)習(xí)

      問題1 在本章我們學(xué)習(xí)了直角三角形一個重要的定理,你能敘述這個定理嗎?問題2 我們知道任何一個命題都有逆命題,勾股定理的逆命題成立嗎?你能敘述這個逆命題嗎? 二.知識網(wǎng)絡(luò)

      三.解決問題

      例1

      △ABC中,AB=13,AC=15,BC邊上的高AD=12,求BC的長 分析:分兩種情況討論:銳角三角形和鈍角三角形,根據(jù)勾股定理求得BD,CD,再由圖形求出BC,在銳角三角形中,BC=BD+CD,在鈍角三角形中,BC=CD-BD. 解:(1)如圖,銳角△ABC中,AB=13,AC=15,BC邊上高AD=12,綜合運(yùn)用

      在Rt△ABD中AB=13,AD=12,由勾股定理得 BD2=AB2-AD2=132-122=25,∴BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得 CD2=AC2-AD2=152-122=81,∴CD=9,∴BC的長為BD+DC=9+5=14;

      (2)鈍角△ABC中,AB=13,AC=15,BC邊上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得 BD2=AB2-AD2=132-122=25,∴BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得 CD2=AC2-AD2=152-122=81,∴CD=9,BC的長為DC-BD=9-5=4. BC長為14或4.

      例2 如圖,每個小正方形的邊長都為1.(1)求四邊形ABCD的面積與周長;(2)∠BCD是直角嗎?

      例3 如圖所示,測得長方體的木塊長4 cm,寬3 cm,高4 cm.一只蜘蛛潛伏在木塊的一個頂點(diǎn) A 處,一只蒼蠅在這個長方體上和蜘蛛相對的頂點(diǎn)B處,蜘蛛究竟應(yīng)該沿著怎樣的路線爬上去,所走的路程會最短,并求最短路徑.

      四 練習(xí)

      小明想知道學(xué)校旗桿的高,他發(fā)現(xiàn)旗桿上的繩子垂到地面還多1 m,當(dāng)他把繩子的下端拉開5 m后,發(fā)現(xiàn)下端剛好接觸地面,則旗桿的高為(C).

      A.8 m B.10 m C.12 m D.14 m 五.小結(jié)

      兩個定理(勾股定理及其逆定理);

      兩種重要思想(出入相補(bǔ)思想、數(shù)形結(jié)合思想).

      六、布置作業(yè)

      教科書第38頁復(fù)習(xí)題17第1,2,5,6,7,10,14題.

      ∴故

      第四篇:第13學(xué)時 小結(jié)與復(fù)習(xí)

      第13學(xué)時 小結(jié)與復(fù)習(xí)(3)——練習(xí)課

      學(xué)習(xí)目標(biāo):綜合運(yùn)用本章知識解決問題. 學(xué)習(xí)重點(diǎn):相關(guān)知識的靈活運(yùn)用. 學(xué)習(xí)難點(diǎn):相關(guān)知識的靈活運(yùn)用.

      一、合作探究:

      1.如圖,∠AOB、∠COD都是直角,∠BOC=38°,求∠AOD的度數(shù).

      B

      C D

      AO

      2.如圖,OC、OD是平角∠AOB的三等分線,OE、OF分別是∠AOC、∠BOD的平分線,求∠EOF的度數(shù).

      CDEF

      ABO

      3.如圖,∠AOB=90°,∠BOC=30°,OM、ON分別平分∠AOC、∠BOC,求∠MON的度數(shù).

      A

      MX k b 1.c o m

      BO N C 4.(1)在上面第3題中,如果∠BOC=50°,那么∠MON是多少度?

      (2)在上面第3題中,如果∠AOB=80°,那么∠MON是多少度?

      從上面這幾個問題的解答過程中,你是否發(fā)現(xiàn)了其中的規(guī)律?

      5.在4時和5時之間的哪個時刻,時鐘的時針與分針成直角.

      11121 A210

      765 6.小明同學(xué)晚上6點(diǎn)多種開始做作業(yè)時,他發(fā)現(xiàn)時鐘的時針與分針成120°的角,做完

      作業(yè)后,他發(fā)現(xiàn)時鐘的時針與分針還是成120°的角,但這時已近晚上7點(diǎn)了,那么小 明同學(xué)做作業(yè)用了多少時間?

      11121 A210

      765

      7.小明同學(xué)在操場上從點(diǎn)A出發(fā)向東北方向走40米到點(diǎn)B,再從B出發(fā)向北偏西75°

      方向走50米到點(diǎn)C.用1:1000的比例尺畫出圖形.

      (1)量出AC的長.

      (2)AC間的實(shí)際長是多少?(3)點(diǎn)C在點(diǎn)A的什么方向.

      w-w-w.x-k-b-1.c.-o-m

      二、作業(yè):P147復(fù)習(xí)題3第12、13、14、15、16題.

      第五篇:學(xué)與問第2課時201512

      《學(xué)與問》第二課時 教學(xué)目的:

      一、復(fù)習(xí)導(dǎo)入

      1.通過昨天的學(xué)習(xí),大家知道了什么?

      課文是一篇說理文,也就是我們常說的議論文。

      議論文通常在開頭鮮明地提出觀點(diǎn),然后通過“擺事實(shí),講道理”的方法論證自己的觀點(diǎn),最后得出結(jié)論。(板書:觀點(diǎn)-論證-結(jié)論)2.說說課文的觀點(diǎn)和結(jié)論。學(xué)生上黑板分別板書,齊讀。

      二、精讀明理

      本節(jié)課我們重點(diǎn)關(guān)注作者如何論證自己的觀點(diǎn)。(一)學(xué)習(xí)事例一

      1、我們先來看第一個事例,請同學(xué)們打開書自由讀第2小節(jié),小時候的哥白尼給你留下了怎樣的印象?

      2、從哪些詞充分說明哥白尼好問? “經(jīng)?!?,他在什么時候會問?“纏”,如何纏?

      3、請你來當(dāng)一回小哥白尼,纏著爸爸媽媽問一問。同學(xué)們?nèi)绻覀儼寻迅绨啄崛绾卫p媽媽問問題的情景寫下來,這樣這個例子是不是會更生動呢?作者為什么不寫呢?

      4、哥白尼的問題就這些嗎?他腦子里的問題遠(yuǎn)不止這些,他還會問哪些問題?

      5、師引讀理解:大家會發(fā)現(xiàn)這些問題都很簡單,可以說是司空見慣,但小哥白尼卻從此開啟了對科學(xué)奧秘的不懈探求,你還知道哪些人因?yàn)樯茊枮槭裁?,所以終有所成?

      6、哥白尼的事例充分地證明了——出示中心論點(diǎn),齊讀。

      (二)學(xué)習(xí)事例二

      1、過渡:學(xué)到這里,我們已經(jīng)很明白,作者列舉了哥白尼的事例來說明“問”的重要性,證明自己的觀點(diǎn)是——知識是學(xué)來的,也是問來的。接下來作者列舉沈括的事例想強(qiáng)調(diào)什么呢,我們先來讀一讀這個事例。

      2、師生合作讀。學(xué)生在老師的引導(dǎo)下,讀出有關(guān)內(nèi)容。男生讀沈括的內(nèi)容,女生讀媽媽的內(nèi)容。師引讀:

      3、事例中如何能體現(xiàn)求知的過程中,沈括把勤學(xué)好問和觀察思考結(jié)合起來了呢?

      4、“仍然放在心上”,他會怎樣放在心上的呢?

      5.如果作者把我們剛才想象的內(nèi)容寫進(jìn)去,是不是我們更加感覺沈括善于觀察思考了呢?那作者為什么不這樣寫呢?

      6.作者列舉這個事例的目的是什么?齊讀本小節(jié)中心句,師板書【觀察思考】

      (三)比較體會,運(yùn)用“學(xué)與問”

      1、過渡:這兩個事例都很有代表性,都是典型事例?,F(xiàn)在老師將它們放在一起,也要請同學(xué)們來比一比,問一問,或許這能讓我們學(xué)到更多,因?yàn)椤爸R是學(xué)來的,也是問來的?!庇惺裁磫栴}想問嗎?

      2、學(xué)生交流問題。

      相同點(diǎn):(1)昨天,同學(xué)們收集了很多哥白尼和沈括的資料,哥白尼是波蘭杰出的天文學(xué)家,他的“日心說”標(biāo)志著近代自然科學(xué)的開始,沈括更被西方人稱為“中國科學(xué)史上的坐標(biāo)”。這兩位中外名人有許多值得寫的事例,課文為什么選取這兩件事?(讀者意識、兒童立場)

      引導(dǎo)聯(lián)系我們之前學(xué)的說理文,如《滴水穿石的啟示》、《談禮貌》《說勤奮》等。(2)古今中外,這樣的例子有很多,你能舉出一兩個嗎?如果再加上幾個,是不是更有說服力?為什么作者只選擇這兩個?(典型性)(3)為什么都是科學(xué)家的事例? 不同點(diǎn):

      ①哥白尼的問題來自生活,沈括的問題來自書本。②哥白尼:羅列了他問的許多問題,沒有寫解答的過程

      沈括:只寫了一個問題,把解答的過程寫出來了

      3、通過剛剛的學(xué)習(xí),你們能解開他心中的疑團(tuán)嗎?

      (生:哥白尼的例子是為了證明問的重要性,沈括的例子是為了證明問了以后還要去觀察思考)

      4、那么這兩個事例能交換位置來論述嗎?

      (生:不能,這兩個事例是有層次的。)

      5、小結(jié):說理說理,就要說得讓人心服口服。作者選取的側(cè)重點(diǎn)不同的事例都是為了層層說理來服務(wù)的,這樣才能真正做到就事說理,以理服人。

      (四)除了擺事實(shí)以外,作者還直接講了道理。

      1、引讀第三小節(jié):“作為新一代的小學(xué)生,我們更應(yīng)當(dāng)像哥白尼那樣,遇事多問幾個?為什么?,學(xué)會從平常的事物中發(fā)現(xiàn)問題。有了問題,可隨時隨地請教別人。你可以請教父母和老師,也可以請教同學(xué)和朋友。只要他卻是能給你啟發(fā),給你幫助,不管他年長年幼,地位高低,都可以成為你的老師,都應(yīng)該向他請教。古人說的?能者為師?就是這個道理。”

      2、古人說要拜“能者為師”,請問“能者”是什么意思?文中哪句話解釋了“能者為師”?哪些人可以視為能者,能成為你的老師?生舉身邊的例子(插入孔子的話“不恥下問”“三人行,必有我?guī)熝伞保?/p>

      過渡:雖然他可能比你年幼,但只要他確實(shí)能給你啟發(fā),給你幫助,不管他年長年幼,地位高低,都可以成為你的老師,都應(yīng)該向他請教。

      3、道理論證這一節(jié)為什么放在兩個事例之間?不放在沈括的事例之后? 交流:《學(xué)與問》一課是一篇說明事理的文章。課文緊緊抓住“勤學(xué)好問”這一點(diǎn)進(jìn)行敘述。先寫“問”的重要性,再舉例子來證實(shí),接著寫向誰“問”,然后寫“問”與“思”要結(jié)合,最后有理有據(jù)地提出觀點(diǎn):養(yǎng)成勤學(xué)好問的習(xí)慣,才能成為學(xué)習(xí)的主人

      小結(jié):這三小節(jié)如三環(huán),由淺入深,環(huán)環(huán)相扣,層層推進(jìn)。說理文經(jīng)常采用這樣的邏輯順序,層層深入,把道理說清晰而深刻,讓人信服。小結(jié),課文最后再次得出結(jié)論,(齊讀)怎么做學(xué)習(xí)的主人?

      三、作者用了通過擺事實(shí)講道理,論證了“知識是學(xué)來的,也是問來的。學(xué)問學(xué)問,既要學(xué)又要問。”最后得出結(jié)論“學(xué)與問是相輔相成的,只有在學(xué)中問,在問中學(xué),才能求得真知。

      學(xué)問之道,既貴在問,還貴在什么?(也貴勤,還貴恒??)結(jié)合學(xué)習(xí)與實(shí)踐的關(guān)系,按照說理文的結(jié)構(gòu),編一個提綱。

      下載第18章小結(jié)與復(fù)習(xí)(第2課時)word格式文檔
      下載第18章小結(jié)與復(fù)習(xí)(第2課時).doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點(diǎn)此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        山雀第2課時

        《山雀》教學(xué)設(shè)計 建昌實(shí)驗(yàn)小學(xué) 王敏 教學(xué)目標(biāo) 1、、正確、流利、有感情地分角色朗讀課文。 2、鞏固第一課時所學(xué)字詞,會寫本課6個生字。 3.理解課文內(nèi)容,學(xué)習(xí)作者的觀察方法,激......

        開國大典(第2課時))

        主備人:陳慶玲 審核人: 單位: 羅龐塬小學(xué)班級:五年級姓名: 時間:2014年12月 26 ③層次清楚,有條不紊。場面描寫既要全面顧及特定場合下的各個方面,又要重開國大典(第2課時) 視場面......

        夾竹桃第2課時

        夾竹桃 第二課時 教學(xué)目標(biāo) 1、自讀自悟,感受夾竹桃的韌性和作者所產(chǎn)生的幻想。 2、感受意境,能有感情的朗讀課文. 3、引導(dǎo)學(xué)生正確的價值取向,能喜歡夾竹桃。 教學(xué)重點(diǎn)、難點(diǎn)......

        第21章一元二次方程小結(jié)與復(fù)習(xí)。doc

        第21章一元二次方程小結(jié)與復(fù)習(xí)(兩課時)【學(xué)習(xí)目標(biāo)】1、理解并掌握一元二次方程的有關(guān)概念。2、能根據(jù)不同的一元二次方程的特點(diǎn),選用恰當(dāng)?shù)姆椒ㄇ蠼?,使解題過程簡單合理。3、熟......

        第29章 投影與視圖小結(jié)與復(fù)習(xí)

        第29章 投影與視圖小結(jié)與復(fù)習(xí) 30 知識結(jié)構(gòu) 學(xué)習(xí)要點(diǎn) 1.投影是怎樣得到的?什么是正投影??平面圖形平行于投影面時它的正投影有什么性質(zhì)? 2.什么是三視圖?它是怎樣得到的?畫三視......

        第一節(jié) 化學(xué)鍵與化學(xué)反應(yīng)第2課時

        蓬萊一中化學(xué)組 第一節(jié) 化學(xué)鍵與化學(xué)反應(yīng)(第2課時) 【學(xué)習(xí)目標(biāo)】 1.通過了解化學(xué)反應(yīng)中能量變化的實(shí)質(zhì),初步學(xué)會如何從微觀的角度認(rèn)識化學(xué)反應(yīng); 2.通過生產(chǎn)生活中的實(shí)例,了解化學(xué)......

        《道德與法治》第3課第2課時范文

        授課時間: 月 日 星期 課型 本學(xué)期 課時 3、幸福一家人 教學(xué)要求: 1.引導(dǎo)學(xué)生懂得自己是家庭的一員,感受家庭帶給自己的溫暖和幸福,培養(yǎng)愛父母、愛長輩、愛家庭的情感; 2.通過“......

        第2節(jié) 《感受器與感覺器官》第2課時

        第2節(jié) 《感受器與感覺器官》教學(xué)設(shè)計 第2課時 耳及其他感覺器官 一、三維目標(biāo) 知識與技能:知道耳的結(jié)構(gòu)與各部分功能,學(xué)會自主學(xué)習(xí);會描述聽覺的形成過程,學(xué)會總結(jié)歸納;說出嗅覺......