第一篇:第四講四點(diǎn)共圓問(wèn)題
第四講四點(diǎn)共圓問(wèn)題
“四點(diǎn)共圓”問(wèn)題在數(shù)學(xué)競(jìng)賽中經(jīng)常出現(xiàn),這類問(wèn)題一般有兩種形式:一是以“四點(diǎn)共圓”作為證題的目的,二是以“四點(diǎn)共圓”作為解題的手段,為解決其他問(wèn)題鋪平道路.判定“四點(diǎn)共圓”的方法,用得最多的是統(tǒng)編教材《幾何》二冊(cè)所介紹的兩種(即P89定理和P93例3),由這兩種基本方法推導(dǎo)出來(lái)的其他判別方法也可相機(jī)采用.“四點(diǎn)共圓”作為證題目的例1.給出銳角△ABC,以AB為直徑的圓與AB邊的高CC′及其延長(zhǎng)線交于M,N.以AC為直徑的圓與
AC邊的高BB′及其延長(zhǎng)線將于P,Q.求證:M,N,P,Q四點(diǎn)共圓.(第19屆美國(guó)數(shù)學(xué)奧林匹克)
分析:設(shè)PQ,MN交于K點(diǎn),連接AP,AM.欲證M,N,P,Q四點(diǎn)共圓,須證 AMK·KN=PK·KQ,Q即證(MC′-KC′)(MC′+KC′)C′=(PB′-KB′)·(PB′+KB′)
2222或MC′-KC′=PB′-KB′.不難證明 AP=AM,從而有 B2222AB′+PB′=AC′+MC′.2222故 MC′-PB′=AB′-AC′
2222=(AK-KB′)-(AK-KC′)
22=KC′-KB′.②
由②即得①,命題得證.O例2.A、B、C三點(diǎn)共線,O點(diǎn)在直線外,O1O1,O2,O3分別為△OAB,△OBC,△OCA的外心.求證:O,O1,O2,O2O3四點(diǎn)共圓.3(第27屆莫斯科數(shù)學(xué)奧林匹克)
A分析:作出圖中各輔助線.易證O1O2垂直平分OB,O1O3垂直平分OA.觀察△OBC及其外接圓,立得∠BC
OO2O1=11∠OO2B=∠OCB.觀察△OCA及其外接圓,立得∠OO3O1=∠OO3A=∠OCA.22
由∠OO2O1=∠OO3O1?O,O1,O2,O3共圓.利用對(duì)角互補(bǔ),也可證明O,O1,O2,O3四點(diǎn)共圓,請(qǐng)同學(xué)自證.以“四點(diǎn)共圓”作為解題手段
這種情況不僅題目多,而且結(jié)論變幻莫測(cè),可大體上歸納為如下幾個(gè)方面.(1)證角相等
例3.在梯形ABCD中,AB∥DC,AB>CD,K,M分別在AD,BC上,∠DAM=∠CBK.求證:∠DMA=∠CKB.CD(第二屆袓沖之杯初中競(jìng)賽)
分析:易知A,B,M,K四點(diǎn)共圓.連接KM,有∠DAB=∠CMK.∵∠DAB+∠ADC KM
=180°,∴∠CMK+∠KDC=180°.AB故C,D,K,M四點(diǎn)共圓?∠CMD=∠DKC.但已證∠AMB=∠BKA,∴∠DMA=∠CKB.(2)證線垂直 例4.⊙O過(guò)△ABC頂點(diǎn)A,C,且與AB,BC交于K,N(K與N不同).△ABC外接圓和△BKN外接圓相交于B和
BM.求證:∠BMO=90°.(第26屆IMO第五題)分析:這道國(guó)際數(shù)學(xué)競(jìng)賽題,曾使許多選手望而卻步.共圓”,問(wèn)題是不難解決的.連接OC,OK,MC,MK,延長(zhǎng)BM到G.易得∠GMC=
∠BAC=∠BNK=∠BMK.而∠COK=2·∠BAC=∠GMC+
∠BMK=180°-∠CMK,∴∠COK+∠CMK=180°?C,O,K,M四點(diǎn)共圓.在這個(gè)圓中,由
OC=OK? OC∠OMC=∠OMK.但∠GMC=∠BMK,故∠BMO=90°.(3)判斷圖形形狀
例5.四邊形ABCD內(nèi)接于圓,△BCD,△ACD,△ABD,△ABC的內(nèi)心依次記為IA,IB,IC,ID.試證:IAIBICID是矩形.(第一屆數(shù)學(xué)奧林匹克國(guó)家集訓(xùn)選拔試題)
分析:連接AIC,AID,BIC,BID和DIB.易得
11∠ADB=90°+ 22
∠ACB=∠AIDB?A,B,ID,IC四點(diǎn) ∠AICB=90°+
共圓.同理,A,D,IB,IC四點(diǎn)共圓.此時(shí) IBAC1∠AICID=180°-∠ABID =180°-∠ABC,2
1∠AICIB=180°-∠ADIB=180°-∠ADC,2
∴∠AICID+∠AICIB A1(∠ABC+∠ADC)2
1=360°-×180°=270°.2=360°-故∠IBICID=90°.同樣可證IAIBICID其它三個(gè)內(nèi)角皆為90°.該四邊形必為矩形.(4)計(jì)算
2例6.正方形ABCD的中心為O,面積為1989㎝.P為正方形內(nèi)
一點(diǎn),且∠OPB=45°,PA:PB=5:14.則PB=__________
(1989,全國(guó)初中聯(lián)賽)CD分析:答案是PB=42㎝.怎樣得到的呢?
連接OA,OB.易知O,P,A,B
四點(diǎn)共圓,有∠APB=∠AOB=90°.222故PA+PB=AB=1989.由于PA:PB=5:14,可求PB.BA(5)其他
例7.設(shè)有邊長(zhǎng)為1的正方形,試在這個(gè)正方形的內(nèi)接正三角形中找出面積最大的和一個(gè)面積最小的,并
求出這兩個(gè)面積(須證明你的論斷).(1978,全國(guó)高中聯(lián)賽)
分析:設(shè)△EFG為正方形ABCD 的一個(gè)內(nèi)接正三角形,由于正三角形的三個(gè)頂點(diǎn)至少必落在正方形的三EA條邊上,所以不妨令F,GD·作正△EFG的高EK,易知E,K,G,D四點(diǎn)共圓?∠KDE=∠KGE=60°.同
理,∠KAE=60°.故△KAD也是一個(gè)正 FGK三角形,K必為一個(gè)定點(diǎn).CB
又正三角形面積取決于它的邊長(zhǎng),當(dāng)KF丄AB時(shí),邊長(zhǎng)為1,這時(shí)邊長(zhǎng)最小,而面積S=
也最4
小.當(dāng)KF通過(guò)B點(diǎn)時(shí),邊長(zhǎng)為2·2?3,這時(shí)邊長(zhǎng)最大,面積S=23-3也最大.例8.NS是⊙O的直徑,弦AB丄NS于M,P為ANB上異于N的任一點(diǎn),PS交AB于R,PM的延長(zhǎng)線
交⊙O于Q.求證:RS>MQ.(1991,江蘇省初中競(jìng)賽)
分析:連接NP,NQ,NR,NR的延長(zhǎng)線交⊙O于Q′.連接
MQ′,SQ′.易證N,M,R,P四點(diǎn)共圓,從而,∠SNQ′=∠MNR=
∠MPR=∠SPQ=∠SNQ.根據(jù)圓的軸對(duì)稱性質(zhì)可知Q與Q′關(guān)于NS成軸對(duì)稱?MQ′=MQ.又易證M,S,Q′,R四點(diǎn)共圓,且RS是這個(gè)圓的直徑(∠RMS=90°),MQ′是一條弦(∠MSQ′<90°),故RS>MQ′.但MQ=MQ′,所以,RS>MQ.練習(xí)題
1.⊙O1交⊙O2 于A,B兩點(diǎn),射線O1A交⊙O2 于C點(diǎn),射線O2A
交⊙O1 于D點(diǎn).求證:點(diǎn)A是△BCD的內(nèi)心.(提示:設(shè)法證明C,D,O1,B四點(diǎn)共圓,再證C,D,B,O2
四點(diǎn)共圓,從而知C,D,O1,B,O2五點(diǎn)共圓.)
2.△ABC為不等邊三角形.∠A及其外角平分線分別交對(duì)邊中垂線于A1,A2;同樣得到B1,B2,C1,C2.求證:A1A2=B1B2=C1C2.(提示:設(shè)法證∠ABA1與∠ACA1互補(bǔ)造成A,B,A1,C四點(diǎn)共圓;再證A,A2,B,C四點(diǎn)共圓,從而知A1,A2都是△ABC的外接圓上,并注意∠A1AA2=90°.)
3.設(shè)點(diǎn)M在正三角形三條高線上的射影分別是M1,M2,M3(互不重合).求證:△M1M2M3也是正三角形.4.在Rt△ABC中,AD為斜邊BC上的高,P是AB上的點(diǎn),過(guò)A點(diǎn)作PC的垂線交過(guò)B所作AB的垂線于Q點(diǎn).求證:PD丄QD.(提示:證B,Q,E,P和B,D,E,P分別共圓)
5.AD,BE,CF是銳角△ABC的三條高.從A引EF的垂線l1,從B引FD的垂線l2,從C引DE的垂線l3.求證:l1,l2,l3三線共點(diǎn).(提示:過(guò)B作AB的垂線交l1于K,證:A,B,K,C四點(diǎn)共圓)
第二篇:證明四點(diǎn)共圓
方法1
從被證共圓的四點(diǎn)中先選出三點(diǎn)作一圓,然后證另一點(diǎn)也在這個(gè)圓上,若能證明這一點(diǎn),即可肯定這四點(diǎn)共圓. 方法2 方法3
方法4 同側(cè),若能證明其頂角相等(同弧所對(duì)的圓周角相等),從而即可肯定這四點(diǎn)共圓.(若能證明其兩頂角為直角,即可肯定這四個(gè)點(diǎn)共圓,且斜邊上兩點(diǎn)連線為該圓直徑。)把被證共圓的四點(diǎn)連成四邊形,若能證明其對(duì)角互補(bǔ)或能證明其一個(gè)外角等于其鄰補(bǔ)角的內(nèi)對(duì)角時(shí),即可肯定這四點(diǎn)共圓.
把被證共圓的四點(diǎn)兩兩連成相交的兩條線段,若能證明它們各自被交點(diǎn)分成的兩線段之積相等,即可肯定這四點(diǎn)共圓(相交弦定理的逆定理);或把被證共圓的四點(diǎn)兩兩連結(jié)并延長(zhǎng)相交的兩線段,若能證明自交點(diǎn)至一線段兩個(gè)端點(diǎn)所成的兩線段之積等于自交點(diǎn)至另一線段兩端點(diǎn)所成的兩線段之積,即可肯定這四點(diǎn)也共圓.(割線定理的逆定理)方法5
證被證共圓的點(diǎn)到某一定點(diǎn)的距離都相等,從而確定它們共圓.既連成的四邊形三邊中垂線有交點(diǎn),可肯定這四點(diǎn)共圓.
上述五種基本方法中的每一種的根據(jù),就是產(chǎn)生四點(diǎn)共圓的一種原因,因此當(dāng)要求證四點(diǎn)共圓的問(wèn)題時(shí),首先就要根據(jù)命題的條件,并結(jié)合圖形的特點(diǎn),在這五種基本方法中選擇一種證法,給予證明
第三篇:如何證明四點(diǎn)共圓(定稿)
如何證明四點(diǎn)共圓
證明四點(diǎn)共圓的基本方法
證明四點(diǎn)共圓有下述一些基本方法:
方法
1從被證共圓的四點(diǎn)中先選出三點(diǎn)作一圓,然后證另一點(diǎn)也在這個(gè)圓上,若能證明這一點(diǎn),即可肯定這四點(diǎn)共圓。
方法
2把被證共圓的四個(gè)點(diǎn)連成共底邊的兩個(gè)三角形,且兩三角形都在這底邊的同側(cè),若能證明其頂角相等(同弧所對(duì)的圓周角相等),從而即可肯定這四點(diǎn)共圓.(若能證明其兩頂角為直角,即可肯定這四個(gè)點(diǎn)共圓,且斜邊上兩點(diǎn)連線為該圓直徑。)
方法
3把被證共圓的四點(diǎn)連成四邊形,若能證明其對(duì)角互補(bǔ)或能證明其一個(gè)外角等于其鄰補(bǔ)角的內(nèi)對(duì)角時(shí),即可肯定這四點(diǎn)共圓。方法
4把被證共圓的四點(diǎn)兩兩連成相交的兩條線段,若能證明它們各自被交點(diǎn)分成的兩線段之積相等,即可肯定這四點(diǎn)共圓(根據(jù)相交弦定理的逆定理);或把被證共圓的四點(diǎn)兩兩連結(jié)并延長(zhǎng)相交的兩線段,若能證明自交點(diǎn)至一線段兩個(gè)端點(diǎn)所成的兩線段之積等于自交點(diǎn)至另一線段兩端點(diǎn)所成的兩線段之積,即可肯定這四點(diǎn)也共圓。(根據(jù)托勒密定理的逆定理)
方法
5證被證共圓的點(diǎn)到某一定點(diǎn)的距離都相等,從而確定它們共圓.既連成的四邊形三邊中垂線有交點(diǎn),即可肯定這四點(diǎn)共圓. 上述五種基本方法中的每一種的根據(jù),就是產(chǎn)生四點(diǎn)共圓的一種原因,因此當(dāng)要求證四點(diǎn)共圓的問(wèn)題時(shí),首先就要根據(jù)命題的條件,并結(jié)合圖形的特點(diǎn),在這五種基本方法中選擇一種證法,給予證明. 判定與性質(zhì):
圓內(nèi)接四邊形的對(duì)角和為180°,并且任何一個(gè)外角都等于它的內(nèi)對(duì)角。
如四邊形ABCD內(nèi)接于圓O,延長(zhǎng)AB和DC交至E,過(guò)點(diǎn)E作圓O的切線EF,AC、BD交于P,則A+C=π,B+D=π,角DBC=角DAC(同弧所對(duì)的圓周角相等)。
角CBE=角ADE(外角等于內(nèi)對(duì)角)
△ABP∽△DCP(三個(gè)內(nèi)角對(duì)應(yīng)相等)
AP*CP=BP*DP(相交弦定理)
EB*EA=EC*ED(割線定理)
EF*EF= EB*EA=EC*ED(切割線定理)
(切割線定理,割線定理,相交弦定理統(tǒng)稱圓冪定理)
AB*CD+AD*CB=AC*BD(托勒密定理Ptolemy)
弦切角定理
方法6
同斜邊的兩個(gè)RT三角形的四個(gè)頂點(diǎn)共圓,其斜邊為圓的直徑。
如何判定四點(diǎn)共圓
1、圓的內(nèi)接四邊形的兩對(duì)角和是180度,反之,如果四邊形的兩對(duì)角和是180,那么四點(diǎn)共圓。
2、在圓里,同弦角相等。設(shè)A、B、C、D四點(diǎn)在圓上,明顯,AB弦所對(duì)的角∠ACB=∠ADB。反之,如果∠ACB=∠ADB,那四點(diǎn)共圓。常用的就是這兩個(gè)
第四篇:四點(diǎn)共圓證明方法
:四點(diǎn)共圓的證明方法有以下五種,本例用的是第二種 方法1從被證共圓的四點(diǎn)中先選出三點(diǎn)作一圓,然后證另一點(diǎn)也在這個(gè)圓上,若能證明這一點(diǎn),即可肯定這四點(diǎn)共圓. 方法2把被證共圓的四個(gè)點(diǎn)連成共底邊的兩個(gè)三角形,且兩三角形都在這底邊的同側(cè),若能證明其頂角相等(同弧所對(duì)的圓周角相等),從而即可肯定這四點(diǎn)共圓.(若能證明其兩頂角為直角,即可肯定這四個(gè)點(diǎn)共圓,且斜邊上兩點(diǎn)連線為該圓直徑。)方法3把被證共圓的四點(diǎn)連成四邊形,若能證明其對(duì)角互補(bǔ)或能證明其一個(gè)外角等于其鄰補(bǔ)角的內(nèi)對(duì)角時(shí),即可肯定這四點(diǎn)共圓. 方法4把被證共圓的四點(diǎn)兩兩連成相交的兩條線段,若能證明它們各自被交點(diǎn)分成的兩線段之積相等,即可肯定這四點(diǎn)共圓;或把被證共圓的四點(diǎn)兩兩連結(jié)并延長(zhǎng)相交的兩線段,若能證明自交點(diǎn)至一線段兩個(gè)端點(diǎn)所成的兩線段之積等于自交點(diǎn)至另一線段兩端點(diǎn)所成的兩線段之積,即可肯定這四點(diǎn)也共圓.(根據(jù)托勒密定理的逆定理)方法5證被證共圓的點(diǎn)到某一定點(diǎn)的距離都相等,從而確定它們共圓.既連成的四邊形三邊中垂線有交點(diǎn),即可肯定這四點(diǎn)共圓.上述五種基本方法中的每一種的根據(jù),就是產(chǎn)生四點(diǎn)共圓的一種原因,因此當(dāng)要求證四點(diǎn)共圓的問(wèn)題時(shí),首先就要根據(jù)命題的條件,并結(jié)合圖形的特點(diǎn),在這五種基本方法中選擇一種證法,給予證明.
第五篇:四點(diǎn)共圓的證明
證明四點(diǎn)共圓有下述一些基本方法:
方法1 從被證共圓的四點(diǎn)中先選出三點(diǎn)作一圓,然后證另一點(diǎn)也在這個(gè)圓上,若能證明這一點(diǎn),即可肯定這四點(diǎn)共圓.
方法2 把被證共圓的四個(gè)點(diǎn)連成共底邊的兩個(gè)三角形,且兩三角形都在這底邊的同側(cè),若能證明其頂角相等,從而即可肯定這四點(diǎn)共圓.(若能證明其兩頂角為直角,即可肯定這四個(gè)點(diǎn)共圓,且斜邊上兩點(diǎn)連線為該圓直徑。)
方法3 把被證共圓的四點(diǎn)連成四邊形,若能證明其對(duì)角互補(bǔ)或能證明其一個(gè)外角等于其鄰補(bǔ)角的內(nèi)對(duì)角時(shí),即可肯定這四點(diǎn)共圓.
方法4 把被證共圓的四點(diǎn)兩兩連成相交的兩條線段,若能證明它們各自被交點(diǎn)分成的兩線段之積相等,即可肯定這四點(diǎn)共圓;或把被證共圓的四點(diǎn)兩兩連結(jié)并延長(zhǎng)相交的兩線段,若能證明自交點(diǎn)至一線段兩個(gè)端點(diǎn)所成的兩線段之積等于自交點(diǎn)至另一線段兩端點(diǎn)所成的兩線段之積,即可肯定這四點(diǎn)也共圓.(根據(jù)托勒密定理的逆定理)
方法5 證被證共圓的點(diǎn)到某一定點(diǎn)的距離都相等,從而確定它們共圓.
上述五種基本方法中的每一種的根據(jù),就是產(chǎn)生四點(diǎn)共圓的一種原因,因此當(dāng)要求證四點(diǎn)共圓的問(wèn)題時(shí),首先就要根據(jù)命題的條件,并結(jié)合圖形的特點(diǎn),在這六種基本方法中選擇一種證法,給予證明.
判定與性質(zhì):
圓內(nèi)接四邊形的對(duì)角和為π,并且任何一個(gè)外角都等于它的內(nèi)對(duì)角。
如四邊形ABCD內(nèi)接于圓O,延長(zhǎng)AB和DC交至E,過(guò)點(diǎn)E作圓O的切線EF,AC、BD交于P,則A+C=π,B+D=π。
角CBE=角ADC(外角等于內(nèi)對(duì)角)△ABP∽△DCP(三個(gè)內(nèi)角對(duì)應(yīng)相等)AP*CP=BP*DP(相交弦定理)EB*EA=EC*ED(割線定理)
EF*EF= EB*EA=EC*ED(切割線定理)(切割線定理,割線定理,相交弦定理統(tǒng)稱圓冪定理)AB*CD+AD*CB=AC*BD(托勒密定理Ptolemy)
證明四點(diǎn)共圓基本方法:
方法1 把被證共圓的四個(gè)點(diǎn)連成共底邊的兩個(gè)三角形,且兩三角形都在這底邊的同側(cè),若能證明其頂角相等,從而即可肯定這四點(diǎn)共圓.
方法2 把被證共圓的四點(diǎn)連成四邊形,若能證明其對(duì)角互補(bǔ)或能證明其一個(gè)外角等于其鄰補(bǔ)角的內(nèi)對(duì)角時(shí),即可肯定這四點(diǎn)共圓.
四點(diǎn)共圓的判定是以四點(diǎn)共圓的性質(zhì)的基礎(chǔ)上進(jìn)行證明的。四點(diǎn)共圓的性質(zhì):(1)同弧所對(duì)的圓周角相等(2)圓內(nèi)接四邊形的對(duì)角互補(bǔ)
(3)圓內(nèi)接四邊形的外角等于內(nèi)對(duì)角
以上性質(zhì)可以根據(jù)圓周角等于它所對(duì)弧的度數(shù)的一半進(jìn)行證明。
四點(diǎn)共圓的判定定理:
方法1 把被證共圓的四個(gè)點(diǎn)連成共底邊的兩個(gè)三角形,且兩三角形都在這底邊的同側(cè),若能證明其頂角相等,從而即可肯定這四點(diǎn)共圓.(可以說(shuō)成:若線段同側(cè)二點(diǎn)到線段兩端點(diǎn)連線夾角相等,那末這二點(diǎn)和線段二端點(diǎn)四點(diǎn)共圓)
方法2 把被證共圓的四點(diǎn)連成四邊形,若能證明其對(duì)角互補(bǔ)或能證明其一個(gè)外角等于其鄰補(bǔ)角的內(nèi)對(duì)角時(shí),即可肯定這四點(diǎn)共圓.
(可以說(shuō)成:若平面上四點(diǎn)連成四邊形的對(duì)角互補(bǔ)或一個(gè)外角等于其內(nèi)對(duì)角。那末這四點(diǎn)共圓)
我們 可都可以用數(shù)學(xué)中的一種方法;反證法開進(jìn)行證明。
現(xiàn)就“若平面上四點(diǎn)連成四邊形的對(duì)角互補(bǔ)。那末這四點(diǎn)共圓”證明如下(其它畫個(gè)證明圖如后)已知:四邊形ABCD中,∠A+∠C=π
求證:四邊形ABCD內(nèi)接于一個(gè)圓(A,B,C,D四點(diǎn)共圓)
證明:用反證法
過(guò)A,B,D作圓O,假設(shè)C不在圓O上,剛C在圓外或圓內(nèi),若C在圓外,設(shè)BC交圓O于C’,連結(jié)DC’,根據(jù)圓內(nèi)接四邊形的性質(zhì)得∠A+∠DC’B=π,∵∠A+∠C=π ∴∠DC’B=∠C
這與三角形外角定理矛盾,故C不可能在圓外。類似地可證C不可能在圓內(nèi)。
∴C在圓O上,也即A,B,C,D四點(diǎn)共圓。