第一篇:3.2解一元一次方程----合并同類項(xiàng)與移項(xiàng)導(dǎo)學(xué)案1
2011-2012學(xué)年度上學(xué)期七年級(jí)數(shù)學(xué)導(dǎo)學(xué)案
3.2解一元一次方程---合并同類項(xiàng)與移項(xiàng)(1)
學(xué)習(xí)目標(biāo):
1、自主探索、歸納解一元一次方程的一般步驟。
2、正確、熟練地運(yùn)用解一元一次方程的兩個(gè)基本步驟解簡(jiǎn)單的一元一次方程。學(xué)習(xí)重點(diǎn): 應(yīng)用合并同類項(xiàng)、系數(shù)化為1解一元一次方程。
學(xué)習(xí)難點(diǎn): 建立方程解決實(shí)際問(wèn)題。
學(xué)習(xí)過(guò)程:
一、自主學(xué)習(xí)
問(wèn)題1某校三年共購(gòu)買計(jì)算機(jī)140臺(tái),去年購(gòu)買數(shù)量是前年的2倍,今年購(gòu)買的數(shù)量又是去年的2倍。前年這個(gè)學(xué)校購(gòu)買了多少臺(tái)計(jì)算機(jī)?
解:設(shè)前年購(gòu)買計(jì)算機(jī)x臺(tái),則去年購(gòu)買臺(tái),今年購(gòu)買臺(tái),依題意得
方程:
二、探究新知
探究:如何將方程 x+2x+4x=140 轉(zhuǎn)化為x=a的形式,求出方程x+2x+4x=140的解?合并同類項(xiàng).--------系數(shù)化為1.-------歸納:解形如ax+bx=c的方程步驟是:①;②.三、應(yīng)用新知
例解下列方程:(1)9x—5 x =8 ;(2)4x-6x-x =-15;
解:合并同類項(xiàng)得:=,解:合并同類項(xiàng)得:=,系數(shù)化為1,得 x?.系數(shù)化為1,得 x?.(3)7x?2.5x?3x?1.5x??15?4?6?3
解:合并同類項(xiàng)得:=,系數(shù)化為1,得x?.四、發(fā)現(xiàn)總結(jié)
1、建立方程解決實(shí)際問(wèn)題的步驟是:分析、設(shè)、列、解、寫(xiě)。
2、解形如ax+bx=c的方程步驟是:。
五、當(dāng)堂檢測(cè)解下列方程:(1)6x —x = 4 ;(2)-4x + 6x-0.5x =-0.3;
(3)3x?1.3x?5x?2.7x??12?3?6?4.六、總結(jié)反思
2011-2012學(xué)年度上學(xué)期七年級(jí)數(shù)學(xué)導(dǎo)學(xué)案
3.2.1解一元一次方程---合并同類項(xiàng)與移項(xiàng)(2)
學(xué)習(xí)目標(biāo):
1、自主探索、歸納解一元一次方程的一般步驟。
2、正確、熟練地運(yùn)用解一元一次方程的三個(gè)基本步驟解簡(jiǎn)單的一元一次方程。學(xué)習(xí)重點(diǎn): 應(yīng)用移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1解一元一次方程。
學(xué)習(xí)難點(diǎn): 建立方程解決實(shí)際問(wèn)題及用移項(xiàng)解方程。
學(xué)習(xí)過(guò)程:
二、自主學(xué)習(xí)
問(wèn)題2把一些圖書(shū)分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個(gè)班有多少學(xué)生?每人分3本,共分出本,這批書(shū)共有;每人分4本,需要本,減去缺少的25本,就是這批書(shū)共本,這批書(shū)是一個(gè)定值,因此可得方程:。
二、探究新知
探究:如何將方程 3x+20=4x-25 轉(zhuǎn)化為x=a的形式,求出方程x+2x+4x=140的解?
移項(xiàng):把等式一邊的某項(xiàng)后移到,叫做。
移項(xiàng)的根據(jù)是:。解方程 3x+20=4x-25 的一般步驟:
解:移項(xiàng),得.--------
合并同類項(xiàng), 得.--------
系數(shù)化為1,得x?.-------
歸納:解形如ax+b=cx+d的方程步驟是:①;②③.三、應(yīng)用新知
例解下列方程:
(1)5x?8??3x?2;(2)3x?7?32?2x。
解:移項(xiàng),得
合并同類項(xiàng),得.系數(shù)化為1,得.四、發(fā)現(xiàn)總結(jié)
1、把等式一邊的某項(xiàng)后移到,叫做移項(xiàng)。
2、解形如ax+b=cx+d的方程步驟是:①;②③.3、注意的是:移項(xiàng)與加法的交換律是同的,移項(xiàng)要符號(hào)。
五、當(dāng)堂檢測(cè)解方程:(1)x?2?3?x;(2)6x?7?4x?5;
(3)1
2x?6?3
4x;(4)x?2x?1?2
3x;(5)x?3x?1.2?4.8?5x.六、總結(jié)反思
第二篇:《解一元一次方程——合并同類項(xiàng)與移項(xiàng)》教學(xué)設(shè)計(jì)
3.2解一元一次方程
(一)—合并同類項(xiàng)與移項(xiàng)
第二課時(shí)
【教學(xué)目標(biāo)】
知識(shí)與技能:
能熟練地求解數(shù)字系數(shù)的一元一次方程(不含去括號(hào)、去分母)。過(guò)程與方法:
經(jīng)歷和體會(huì)解一元一次方程中“轉(zhuǎn)化”的思想方法。情感態(tài)度與價(jià)值觀:
在數(shù)學(xué)活動(dòng)中獲得成功的喜悅,增強(qiáng)自信心和意志力,激發(fā)學(xué)習(xí)興趣。【教學(xué)重,難點(diǎn)】
重點(diǎn):學(xué)會(huì)解一元一次方程 難點(diǎn):移項(xiàng)
【教學(xué)設(shè)計(jì)】
一、復(fù)習(xí)鞏固
合并同類項(xiàng),系數(shù)化為1。
二、實(shí)踐探索,揭示新知
1、P/89問(wèn)題2 把一些圖書(shū)分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本。這個(gè)班有多少學(xué)生?(1)設(shè)未知數(shù):這個(gè)班有x名學(xué)生
(2)找相等關(guān)系:這批書(shū)的總數(shù)是一個(gè)定值,表示它的兩個(gè)式子相等。(3)列方程:3x+20=4x-25(4)怎么樣解這個(gè)方程?怎么樣才能使它向x=a轉(zhuǎn)化?它的依據(jù)是什么? 給出了移項(xiàng)的概念:根據(jù)等式的基本性質(zhì)方程中的某些項(xiàng)改變符號(hào)后,可以從方程的一邊移到另一邊,這樣的變形叫做移項(xiàng)。
2、判斷題
下面的移項(xiàng),對(duì)不對(duì)?若不對(duì),請(qǐng)改正。(1)從5+x=10得x=10+5;()(2)從3x=8-2x得3x+2x=8;()(3)從3x=2x-5得3x+2x=-5;()(4)從2=-5x+1得5x=1+2;()(5)從1-2x=-3x得3x-2x=-1。()
3、例題
解方程 3x+7=32-2x
解:移項(xiàng),得,3x+2x=32-7,合并同類項(xiàng),得,5x=25,系數(shù)化為1,得,x=5.三、練習(xí)
(4個(gè)學(xué)生上黑板板演)。導(dǎo)學(xué)案92-93頁(yè)。
1,5x?8??3x?2;
2,3x?7?32?2x。
3,x?3x?1.2?4.8?5x
4,x?2x
5,?6a?8?2a?3?5a
6,5?7y?4y?16
?1?2x 3
老師巡視學(xué)生做的情況(很多學(xué)生在移項(xiàng)的過(guò)程中將含x的項(xiàng)和常數(shù)項(xiàng)弄錯(cuò))小結(jié):含未知數(shù)的項(xiàng)通常放在等號(hào)的左邊,將含未知數(shù)的項(xiàng)合并;常數(shù)項(xiàng)通常放在等號(hào)的右邊,將常數(shù)項(xiàng)合并,最終化成形如“x?a”的形式。移項(xiàng)的實(shí)質(zhì)是什么?本質(zhì)上就是利用等式的性質(zhì)1。
四、歸納小結(jié)
通過(guò)本節(jié)課的學(xué)習(xí)你的收獲是什么?
1,本節(jié)學(xué)習(xí)的解一元一次方程,主要步驟有①移項(xiàng),②合并同類項(xiàng),③系數(shù)化為1 2,移項(xiàng)時(shí)要注意,移正變負(fù),移負(fù)變正。
五、作業(yè):全效學(xué)習(xí)71-72頁(yè)。
第三篇:《解一元一次方程—合并同類項(xiàng)和移項(xiàng)》教學(xué)設(shè)計(jì)
《解一元一次方程—合并同類項(xiàng)和移項(xiàng)》教學(xué)設(shè)計(jì)
艾玉霞
廊坊市香河縣第五中學(xué) 065400
一、內(nèi)容與解析 1.內(nèi)容
一元一次方程的合并同類項(xiàng)解法,用方程模型解決實(shí)際問(wèn)題。2.內(nèi)容核心
本章的核心內(nèi)容是“解方程”和“列方程”。方程的解法是初中內(nèi)容的核心,合并同類項(xiàng)是解方程的基本步驟之一,是一種同解變形,合并同類項(xiàng)的依據(jù)是乘法分配律,運(yùn)用合并同類項(xiàng)可以把等式兩邊的多項(xiàng)式合并成一項(xiàng),從而使方程向x=a的形式轉(zhuǎn)化。合并同類項(xiàng)是后續(xù)解方程經(jīng)常應(yīng)用的步驟,并且在學(xué)習(xí)其它方程、方程組、不等式、函數(shù)時(shí)都要經(jīng)常使用。
“列方程”在所有方程類型中占有重要的地位,貫穿于全章的始終,從實(shí)際問(wèn)題中建立一元一次方程模型,結(jié)合這些模型討論方程的解法,這樣可以自然的反映所討論的內(nèi)容是從實(shí)際需要中產(chǎn)生。列方程對(duì)學(xué)生來(lái)說(shuō)是個(gè)難點(diǎn),以實(shí)際問(wèn)題引入增強(qiáng)學(xué)生的興趣,慢慢理解和掌握列方程的基本步驟,有利于提高學(xué)生分析問(wèn)題和解決問(wèn)題能力。
解方程就是將復(fù)雜的方程向x=a的形式轉(zhuǎn)化,其中化歸思想起了指導(dǎo)作用,化歸思想在以后二元一次方程組、一元一次不等式、分式方程、一元二次方程的解法中都有所體現(xiàn)。
根據(jù)以上分析,確定本節(jié)課的教學(xué)重點(diǎn)是:確定問(wèn)題中的相等關(guān)系,建立形如ax+bx=c的方程,會(huì)用合并同類項(xiàng)的方法解形如ax+bx=c+d類型的一元一次方程。
二、目標(biāo)和目標(biāo)解析 1.目標(biāo)
(1)掌握解方程中的合并同類項(xiàng),會(huì)解形如“ax+bx=c+d”類型的一元一次方程,體會(huì)等式變形中的化歸思想。
(2)能夠從實(shí)際問(wèn)題中列出一元一次方程,體會(huì)方程思想的作用以及它的應(yīng)用價(jià)值。2.目標(biāo)解析
達(dá)成目標(biāo)(1)的標(biāo)志是:知道合并同類項(xiàng)是應(yīng)用乘法分配率,給定一個(gè)方程,能夠準(zhǔn)確的進(jìn)行合并同類項(xiàng)解方程。知道合并同類項(xiàng)的作用可以簡(jiǎn)化方程,使方程向x=a的形式轉(zhuǎn)化,在此過(guò)程中體會(huì)化歸思想。
達(dá)成目標(biāo)(2)的標(biāo)志是:通過(guò)對(duì)某校三年購(gòu)買計(jì)算機(jī)臺(tái)數(shù)的研究,建立ax+bx=c類型的方程,觀察與分析方程的特征,可以通過(guò)合并同類項(xiàng)解這類方程;在“列方程”和“解方程”的過(guò)程中,能夠體會(huì)方程思想的價(jià)值。
三、學(xué)生學(xué)情分析
學(xué)生已經(jīng)學(xué)習(xí)了有理數(shù)的運(yùn)算,掌握了單項(xiàng)式,多項(xiàng)式的有關(guān)概念及同類項(xiàng)、合并同類項(xiàng)的方法,會(huì)利用等式的基本性質(zhì)解方程。學(xué)習(xí)了方程的解的概念,這些知識(shí)為本節(jié)課的學(xué)習(xí)做了鋪墊。我所教的班級(jí)學(xué)生基礎(chǔ)知識(shí)和發(fā)展水平一般,但整體學(xué)習(xí)氣氛較濃厚,學(xué)生的好奇心和求知欲較強(qiáng)。
四、教學(xué)策略分析
(一)創(chuàng)設(shè)情境,導(dǎo)入新課。
(二)講解新課。(三)例題示范,鞏固新知。
(四)課堂練習(xí),鞏固新知。
(五)小結(jié)。
(六)作業(yè)
五、發(fā)展學(xué)生核心素養(yǎng)分析
化歸思想是解方程的基本思想,在教學(xué)時(shí)引導(dǎo)學(xué)生聯(lián)系解方程的目標(biāo)是最終得到x=a的形式來(lái)體會(huì)具體的解法步驟。列方程解應(yīng)用題中,培養(yǎng)學(xué)生分析問(wèn)題解決問(wèn)題的能力是數(shù)學(xué)培養(yǎng)的目標(biāo)。
六、教學(xué)過(guò)程
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
1.利用課件出示一首古詩(shī) 太陽(yáng)下山晚霞紅,我把鴨子趕回籠;
一半在外鬧哄哄,一半的一半進(jìn)籠中; 剩下十五圍著我,共有多少請(qǐng)算清。
提出問(wèn)題,你能用列出方程解決問(wèn)題嗎?
設(shè)計(jì)意圖:用古詩(shī)導(dǎo)入,使學(xué)生在輕松與新穎的環(huán)境下學(xué)習(xí)數(shù)學(xué)知識(shí),激發(fā)學(xué)生學(xué)習(xí)的求知和探索的欲望。
2.約公元825年,數(shù)學(xué)家阿爾-花拉子米寫(xiě)了一本代數(shù)書(shū),重點(diǎn)論述了怎樣解方程.這本書(shū)的譯本名稱為《對(duì)消與還原》.“對(duì)消”“還原”是什么意思呢? 【師生活動(dòng)】 教師利用課件出示,有一名學(xué)生朗讀。
設(shè)計(jì)意圖:為后面討論方程的解法的引子,同時(shí)感受數(shù)學(xué)知識(shí)悠久的歷史。3.引導(dǎo)學(xué)生探索新知
問(wèn)題1:某校三年共買了新桌椅270套,去年買的數(shù)量是前年的2倍,今年又是去年的3倍,前年這個(gè)學(xué)校買了多少套桌椅?
【師生活動(dòng)】教師出示問(wèn)題,學(xué)生審題之后,教師提出問(wèn)題
(1)在我們生活中存在很多這樣的問(wèn)題,請(qǐng)你幫忙解決一下,你準(zhǔn)備怎么做,誰(shuí)能說(shuō)一說(shuō)自己的想法。請(qǐng)說(shuō)出你的理由?
(2)那我們用方程的方法來(lái)解,哪位同學(xué)能說(shuō)一下第一步應(yīng)當(dāng)先干什么呢?(3)未知數(shù)設(shè)了,下一步應(yīng)該做什了呢?(4)列方程的根據(jù)是什么?本題中含有怎樣的相等關(guān)系?所列的方程是什么?
學(xué)生思考后發(fā)表意見(jiàn),教師引導(dǎo)學(xué)生回顧列方程解決實(shí)際問(wèn)題的基本思路。學(xué)生自主分析相等關(guān)系列出方程。教師指出“總體等于各部分的和”是一個(gè)基本的相等關(guān)系。
設(shè)計(jì)意圖:以學(xué)生身邊熟悉的實(shí)際問(wèn)題展開(kāi)討論,一種輕松的學(xué)習(xí)氛圍,激發(fā)學(xué)生繼續(xù)學(xué)習(xí)的愿望。教師提出的一些問(wèn)題,實(shí)際就是列方程的一般步驟,讓學(xué)生體會(huì)列方程的一般思路,以后可以逐步放手,培養(yǎng)學(xué)生獨(dú)立解決問(wèn)題的能力。
(二)講解新課
問(wèn)題2 觀察x+2x+4x=140等號(hào)左邊的三個(gè)代數(shù)式有什么特點(diǎn)?怎么合并同類項(xiàng)?合并的結(jié)果是什么?
【師生活動(dòng)】:教師展示問(wèn)題,學(xué)生獨(dú)立思考,舉手回答。
設(shè)計(jì)意圖:讓學(xué)生去觀察這個(gè)方程的結(jié)構(gòu)特點(diǎn),去體會(huì)合并同類項(xiàng)的作用,調(diào)動(dòng)學(xué)生學(xué)習(xí)解方程的積極性,滲透化歸的思想。
問(wèn)題3怎樣才能將方程轉(zhuǎn)化成x=a的形式呢?
【師生活動(dòng)】:教師指出此時(shí)方程變成了7x=140,我們要求的是x而不是7x,如何求出x?
學(xué)生思考后回答。
教師強(qiáng)調(diào),7x的系數(shù)是7,根據(jù)等式的性質(zhì)2兩邊都除以7后得到了x,此時(shí)x的系數(shù)是1,這個(gè)過(guò)程我們把它叫做系數(shù)化為1?!跋禂?shù)化為1”指的是使方程的一邊ax化為x,現(xiàn)在我們把這個(gè)問(wèn)題解決了。
設(shè)計(jì)意圖:理解系數(shù)化為1的理論依據(jù)是等式性質(zhì)2,進(jìn)一步滲透化歸思想?!編熒顒?dòng)】:教師用課件展示這個(gè)方程的具體步驟,以及這個(gè)問(wèn)題1的具體解題過(guò)程。
x+2x+4x=140 ↓ 合并同類項(xiàng)
7x=140 ↓ 系數(shù)化為1
X=20 設(shè)計(jì)意圖:教師通過(guò)演示解方程以及列方程解應(yīng)用題的過(guò)程,可以提高學(xué)生解題的規(guī)范性,而采取用框圖表示解方程的過(guò)程,是為使解法中個(gè)步驟的先后順序清晰,滲透算法程序化的思想。
問(wèn)題4合并同類項(xiàng)的依據(jù)是什么?
【師生活動(dòng)】:教師提出問(wèn)題,學(xué)生思考后回答,是應(yīng)用乘法分配律。問(wèn)題5以上解方程中“合并同類項(xiàng)”起到了什么作用? 【師生活動(dòng)】:學(xué)生思考后回答,教師出示課件進(jìn)行總結(jié)整理。
設(shè)計(jì)意圖:結(jié)合解方程的過(guò)程,讓學(xué)生思考合并同類項(xiàng)的作用,讓學(xué)生體會(huì)化歸的思想。
問(wèn)題6對(duì)于問(wèn)題1,如果所求問(wèn)題是求去年購(gòu)買數(shù)量?或者是今年購(gòu)買數(shù)量?應(yīng)如何設(shè)未知數(shù)呢?是設(shè)去年購(gòu)買數(shù)量為x臺(tái)?;蛑O(shè)今年購(gòu)買數(shù)量為y臺(tái)嗎? 【師生活動(dòng)】:學(xué)生思考后回答。
設(shè)計(jì)意圖:對(duì)于實(shí)際問(wèn)題中所求的問(wèn)題,有時(shí)可以直接設(shè)所求問(wèn)題為未知數(shù)x,有時(shí)可以間接的設(shè)未知數(shù),分析比較多種解決方案中的簡(jiǎn)易,找到最簡(jiǎn)方法.
學(xué)生練習(xí)
1.小明在解方程20x-28x=-6-10時(shí),是這樣寫(xiě)解的過(guò)程的:-8x =-16 = x = 2(1)小明這樣寫(xiě)對(duì)不對(duì)?(2)應(yīng)該怎樣寫(xiě)?
2.判斷下列各題 打“√”或“×”(1)-3x+7x的結(jié)果等于10x.()(2)解方程2x+x=9時(shí),合并同類項(xiàng)得,3x=9.()1(3)解方程 x?4 得,x=2.()2(4)方程x-4x=15的解是x=-5.()(5)方程-x+6x=-2-8的解是x=-1.()(三)例題示范,鞏固新知
例1 解下列方程
5(1)2x-x=6-8(2)7x-2.5x+3x-1.5x=-15×4-6×3 2
【師生活動(dòng)】:學(xué)生口述解題,教師板書(shū)規(guī)范思路、格式。
設(shè)計(jì)意圖:進(jìn)一步鞏固合并同類項(xiàng)解方程的方法。將方程一邊含未知數(shù)的項(xiàng),另一邊的常數(shù)項(xiàng),分別合并成一項(xiàng)。使方程化成ax=b的形式,兩邊除以a,將方程化成x=a/b(a≠0)的形式。
(四)課堂練習(xí),鞏固新知
1.下列合并同類項(xiàng),結(jié)果正確的是()A.3a+3b=6ab B.3m-2m=1 C.2y+3y+y=5y D.1x+3x=210 的解為()2A.x=20 B.x=40 C.x=60 D.x=80 m-1.5m=0 22.方程.已知x=2,y=1時(shí),kx+k=y+5,那么k的值是_______ 4.關(guān)于x的兩個(gè)方程5x- 4x =3與ax=120的解相同,則a=_______。5.若4x-5x與-3+7的值相等,則x=_______ 6.解下列方程。
1-3x+ x=10 7x-4.5x=2.5×3-5 5x-2x=9 0.5x+1.5x=7 2設(shè)計(jì)意圖:通過(guò)練習(xí),及時(shí)鞏固新知識(shí),加深對(duì)化歸思想的理解。
(五)小結(jié)
教師與學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并回答下列問(wèn)題 1 你今天所學(xué)方程的特點(diǎn)是什么?解這樣的方程有哪些步驟? 2:如何列方程?分哪些步驟?列方程的關(guān)鍵是什么?
設(shè)計(jì)意圖:教師引導(dǎo)學(xué)生歸納本節(jié)課的重點(diǎn),使學(xué)生對(duì)方程的解法以及列方程有一個(gè)全面的認(rèn)識(shí),同時(shí)養(yǎng)成反思的總結(jié)的習(xí)慣。
(六)作業(yè)
教科書(shū)習(xí)題3.2第1題6題
教學(xué)設(shè)計(jì)說(shuō)明
對(duì)于本節(jié)課的教學(xué),我首先以一首古詩(shī)引入,新穎活潑,能一下子抓住學(xué)生求知的欲望,然后介紹數(shù)學(xué)史上對(duì)解方程頗有影響的一部著作,既為后面討論方程的解法的引子,同時(shí)感受數(shù)學(xué)知識(shí)悠久的歷史。
在對(duì)問(wèn)題1的的教學(xué)時(shí),讓學(xué)生掌握“總體等于各部分之和”是一種基本的等量關(guān)系,教師設(shè)置一些問(wèn)題由學(xué)生思考,列出方程。對(duì)于方程的解法,讓學(xué)生觀察思考方程的結(jié)構(gòu)特點(diǎn),如何轉(zhuǎn)化成x=a的形式,自己嘗試獲得方程的具體解法。通過(guò)學(xué)生反思解這類方程的步驟,思考解方程時(shí)“合并同類項(xiàng)”作用,以及合并同類項(xiàng)的理論依據(jù)。另外我對(duì)問(wèn)題一通過(guò)改變所求問(wèn)題,滲透列方程解應(yīng)用題方法的多樣性和如何選擇最簡(jiǎn)便的方法解決問(wèn)題。
對(duì)于例題由學(xué)生口述解題,教師板書(shū)規(guī)范思路、格式,目的為了提醒學(xué)生解題的規(guī)范性。通過(guò)例題進(jìn)一步鞏固合并同類項(xiàng)解方程的方法,就是將方程一邊含未知數(shù)的項(xiàng),一邊的常數(shù)項(xiàng),分別合并成一項(xiàng),使方程化成ax=b的形式,兩邊除以a,將方程化成x=a/b(a≠0)的形式。滲透化歸思想一直貫穿于解方程的整個(gè)過(guò)程。
接下來(lái)通過(guò)練習(xí)來(lái)反饋。我設(shè)計(jì)了一些練習(xí),從合并同類項(xiàng)、已知某些字母的值代入法求未知數(shù)的值、兩個(gè)方程同解、兩個(gè)代數(shù)式的值相等來(lái)求未知數(shù)的值等多種方法鞏固解方程的知識(shí)。通過(guò)改錯(cuò)、選擇、判斷、具體解方程等多種題型對(duì)學(xué)生加以訓(xùn)練。
接下來(lái)學(xué)以致用來(lái)解答古詩(shī)中所求的問(wèn)題,使整個(gè)課堂前后呼應(yīng),有問(wèn)有答。
最后通過(guò)小結(jié)來(lái)回顧本節(jié)課所學(xué)的內(nèi)容,使知識(shí)系統(tǒng)化,形成一個(gè)完整的課堂結(jié)構(gòu)。
第四篇:(教學(xué)反思)3.2解一元一次方程(一)合并同類項(xiàng)與移項(xiàng)__教學(xué)反思
寧陜縣蒲河九年制學(xué)校
3.2解一元一次方程
(一)——合并同類項(xiàng)與移項(xiàng) 第三課時(shí)“移項(xiàng)”
教學(xué)反思
課時(shí):第一課時(shí)
年級(jí):九年級(jí)
教師:唐志康
解一元一次方程 ——合并同類項(xiàng)與移項(xiàng)
教學(xué)反思
本節(jié)課是在學(xué)生學(xué)習(xí)了用字母表示有理數(shù),列代數(shù)式、依據(jù)相等關(guān)系列出含未知數(shù)的等式——方程,合并同類項(xiàng)與移項(xiàng)以及有理數(shù)運(yùn)算律,整式加減運(yùn)算等基礎(chǔ)知識(shí)之后來(lái)學(xué)習(xí)的。人們對(duì)方程的研究有悠久的歷史,方程是重要的數(shù)學(xué)基本概念,它隨著實(shí)踐需要而產(chǎn)生,并且具有極其廣泛的應(yīng)用。以方程為工具分析問(wèn)題、解決問(wèn)題,即根據(jù)問(wèn)題中的等量關(guān)系建立方程模型是全章的重點(diǎn),而對(duì)一元一次方程的有關(guān)概念和解法的討論,是在建立和運(yùn)用方程這種數(shù)學(xué)模型的大背景之下進(jìn)行的。列方程中蘊(yùn)涵的“數(shù)學(xué)建模思想”和解方程中蘊(yùn)涵的“化歸思想”,是本節(jié)乃至全章始終滲透的主要數(shù)學(xué)思想。教材在第3課時(shí)結(jié)合這一實(shí)際問(wèn)題展開(kāi),重點(diǎn)討論兩方面的問(wèn)題:(1)如何根據(jù)實(shí)際問(wèn)題列方程?(這是貫穿全章的中心問(wèn)題).(2)如何解一元一次方程?(這節(jié)重點(diǎn)討論用“移項(xiàng)”法解方程)。
首先用教材問(wèn)題2說(shuō)明什么是移項(xiàng),再安排例3教學(xué),給用移項(xiàng)方法解一元一次方程以鞏固、提高、拓展。
通過(guò)本節(jié)教學(xué),使學(xué)生認(rèn)識(shí)到方程是更方便、更有力的數(shù)學(xué)工具,體會(huì)解法中蘊(yùn)涵的化歸思想,這將為后面幾節(jié)進(jìn)一步討論一元一次方程中的 “去括號(hào)”和“去分母”解法準(zhǔn)備理論依據(jù)。因此這節(jié)課是一節(jié)承上啟下的課。也是今后進(jìn)一步研究實(shí)際問(wèn)題與一元一次方程的基礎(chǔ)。
通過(guò)這節(jié)課的教學(xué),我有以下幾點(diǎn)反思: 成功方面:
1、絕大多數(shù)學(xué)生都能積極參與到數(shù)學(xué)活動(dòng)中來(lái)。
2、絕大多數(shù)學(xué)生掌握了分析應(yīng)用題,列方程的方法;
3、通過(guò)本節(jié)課的合作學(xué)習(xí),絕大多數(shù)學(xué)生掌握了用移項(xiàng)方法解一元一次方程的方法;
4、絕大多數(shù)學(xué)生會(huì)解形如“ax+b+cx+d”形式的一元一次方程;
5、絕大多數(shù)學(xué)生在學(xué)習(xí)中都能積極主動(dòng)的展示自己的學(xué)習(xí)成果;
6、大多數(shù)學(xué)的較好的學(xué)生都能積極幫助學(xué)的較差的學(xué)生,精神可嘉。
7、教學(xué)中注重讓不同的學(xué)生得到不同的發(fā)展。
8、本節(jié)課完成了教學(xué)任務(wù),基本實(shí)現(xiàn)了教學(xué)目標(biāo)。存在的不足之處是:
1、少數(shù)學(xué)生不理解移項(xiàng)的概念,移項(xiàng)時(shí)不變號(hào),導(dǎo)致移項(xiàng)出錯(cuò);
2、學(xué)生獨(dú)立完成題量不多,主要是學(xué)生做題速度慢;
3、雖然讓學(xué)生進(jìn)行了“觀察→分析→思考→比較→探索→聯(lián)想→猜測(cè)→類比→歸納,但大膽放手不夠,不相信學(xué)生的能力;
4、讓學(xué)生展示自己的機(jī)會(huì)還不夠;
5、課堂練習(xí)方法單一,且沒(méi)有梯度,沒(méi)有給優(yōu)秀學(xué)生提供機(jī)會(huì)。
6、學(xué)生做練習(xí)時(shí)不細(xì)心,出現(xiàn)常規(guī)錯(cuò)誤,做題的正確率較低;
7、由于學(xué)生基礎(chǔ)差,配合不夠默契,導(dǎo)致課堂氣氛不活躍,教學(xué)效果一般。
第五篇:解一元一次方程-合并同類項(xiàng)說(shuō)課稿
解一元一次方程----合并同類項(xiàng)
說(shuō) 課 稿
尊敬的各位專家評(píng)委、各位同仁:
大家好!能參加這次說(shuō)課評(píng)比活動(dòng),我感到十分高興,同時(shí)也非常珍惜這樣一個(gè)難得的交流和學(xué)習(xí)的機(jī)會(huì),希望大家多多指教。我今天的說(shuō)課課題是“解一元一次方程
(一)----合并同類項(xiàng)與”。以下我就五個(gè)方面來(lái)介紹這堂課的說(shuō)課內(nèi)容:
一、教材分析
(一).教材地位、作用
本節(jié)課選自人教版《數(shù)學(xué)》七年級(jí)上§3.2節(jié)第1課時(shí)內(nèi)容,是一堂探究用“合并同類項(xiàng)法”來(lái)解一元一次方程的探究活動(dòng)課。人們對(duì)方程的研究有悠久的歷史,方程是重要的數(shù)學(xué)基本概念,它隨著實(shí)踐需要而產(chǎn)生,并且具有極其廣泛的應(yīng)用。以方程為工具分析問(wèn)題、解決問(wèn)題,即根據(jù)問(wèn)題中的等量關(guān)系建立方程模型是全章的重點(diǎn),而對(duì)一元一次方程的有關(guān)概念和解法的討論,是在建立和運(yùn)用方程這種數(shù)學(xué)模型的大背景之下進(jìn)行的。列方程中蘊(yùn)涵的“數(shù)學(xué)建模思想”和解方程中蘊(yùn)涵的“化歸思想”,是本節(jié)乃至全章始終滲透的主要數(shù)學(xué)思想。
教材在第一課時(shí)結(jié)合一實(shí)際問(wèn)題展開(kāi),重點(diǎn)討論兩方面的問(wèn)題:
(1)如何根據(jù)實(shí)際問(wèn)題列方程?(這是貫穿全章的中心問(wèn)題).
(2)如何解方程?(這節(jié)重點(diǎn)討論用“合并同類項(xiàng)”法解方程)。
本節(jié)教材安排上,首先提及在數(shù)學(xué)史上對(duì)解方程頗有影響的一部著作,即生活在約公元825年間的阿拉伯?dāng)?shù)學(xué)家阿爾-花拉子米所著的《對(duì)消與還原》一書(shū),提問(wèn)“對(duì)消”與“還原”是什么意思,作為后面要討論的內(nèi)容的引子,在本節(jié)內(nèi)容展開(kāi)中引出問(wèn)題1以及“合并同類項(xiàng)”,得到一元一次方程的一種新解法,然后再安排例1教學(xué),予以鞏固提高、拓展。
用字母表示有理數(shù),列代數(shù)式、依據(jù)相等關(guān)系列出含未知數(shù)的等式——方程,合并同類項(xiàng)以及有理數(shù)運(yùn)算律,整式加減運(yùn)算等以前所學(xué)知識(shí)是本節(jié)課的基礎(chǔ)知識(shí)。
通過(guò)本節(jié)教學(xué),使學(xué)生認(rèn)識(shí)到方程是更方便、更有力的數(shù)學(xué)工具,體會(huì)解法中蘊(yùn)涵的化歸思想,這將為后面幾節(jié)進(jìn)一步討論一元一次方程中的“移項(xiàng)”、“去括號(hào)”和“去分母”解法準(zhǔn)備理論依據(jù). 因此這節(jié)課是一節(jié)承上啟下的課。
基與上面對(duì)教材與學(xué)情的分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,結(jié)合新課改理念,結(jié)合《新課標(biāo)》的要求,我確定以下教學(xué)目標(biāo)、教學(xué)重點(diǎn)和難點(diǎn):
(二)、教學(xué)目標(biāo)
1、知識(shí)技能目標(biāo):會(huì)應(yīng)用合并同類項(xiàng)法解一些簡(jiǎn)單的一元一次方程.進(jìn)一步探索方程的解法.2、情感態(tài)度目標(biāo):進(jìn)一步認(rèn)識(shí)解方程的基本變形,感悟解方程過(guò)程中的轉(zhuǎn)化思想.3.能力目標(biāo)
(1)、通過(guò)具體情境的觀察、思考、類比、探索、交流和反思等數(shù)學(xué)活動(dòng)培養(yǎng)學(xué)生創(chuàng)新意識(shí)和化歸思想,使學(xué)生掌握研究問(wèn)題的方法,從而學(xué)會(huì)學(xué)習(xí)。
(2)、通過(guò)具體情境貼近學(xué)生生活,讓學(xué)生在生活中挖掘數(shù)學(xué)問(wèn)題,解決數(shù)學(xué)問(wèn)題,使數(shù)學(xué)生活化,生活數(shù)學(xué)化。會(huì)利用合并同類項(xiàng)的知識(shí)解決一些實(shí)際問(wèn)題。
(3)、通過(guò)知識(shí)梳理,培養(yǎng)學(xué)生的概括能力、表達(dá)能力和邏輯思維能力。
4.德育目標(biāo)
(1)、通過(guò)本節(jié)教學(xué),可以培養(yǎng)學(xué)生由特殊到一般的思維認(rèn)知規(guī)律。
(2)、通過(guò)具體情境的探索、交流等數(shù)學(xué)活動(dòng)培養(yǎng)學(xué)生的團(tuán)體合作精神和積極參與、勤于思考意識(shí)。
5.美育目標(biāo)
使學(xué)生們?cè)趯W(xué)習(xí)中能明顯地感覺(jué)到數(shù)學(xué)的形式美、簡(jiǎn)潔美,感悟到學(xué)數(shù)學(xué)是一種美的享受,愛(ài)學(xué)、樂(lè)學(xué)數(shù)學(xué)。
(三)、教學(xué)重難點(diǎn):
重點(diǎn):
用一元一次方程分析和解決實(shí)際問(wèn)題;用“合并同類項(xiàng)“法解一元一次方程的方法。
難點(diǎn):
會(huì)用“數(shù)學(xué)建模思想”、“化歸思想”分析和解決實(shí)際問(wèn)題.二、教學(xué)方法、手段
(一)、教學(xué)設(shè)想
突出以學(xué)生的“數(shù)學(xué)活動(dòng)”為主線,激發(fā)學(xué)生學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),幫助他們?cè)谧灾魈剿骱秃献鹘涣鬟^(guò)程中真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能、數(shù)學(xué)思想與方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。
(二)、設(shè)計(jì)思路:、1.采用“問(wèn)題情境——建立模型——講解——鞏固練習(xí)”的模式展開(kāi)教學(xué)。這樣設(shè)計(jì),能讓學(xué)生經(jīng)歷知識(shí)的形成與應(yīng)用過(guò)程,從而更好地理解知識(shí),掌握其思想方法和應(yīng)用技能。
2、引導(dǎo)學(xué)生主動(dòng)地從事觀察、猜想、推理、論證、交流與反思等數(shù)學(xué)活動(dòng);鼓勵(lì)學(xué)生自主探索與合作交流,使學(xué)生主動(dòng)地獲取知識(shí),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),學(xué)會(huì)探索、學(xué)會(huì)學(xué)習(xí)。
3、關(guān)注學(xué)生的情感與態(tài)度,實(shí)施開(kāi)放性教學(xué),讓學(xué)生獲得成功的體驗(yàn)。
(三)、教學(xué)方法
本節(jié)是新課內(nèi)容的學(xué)習(xí)。為了達(dá)到教學(xué)目標(biāo),實(shí)現(xiàn)我的設(shè)計(jì)效果,在教學(xué)過(guò)程中,我注重體現(xiàn)教師的導(dǎo)向作用和學(xué)生的主體地位,采用引導(dǎo)、探究法為主的教學(xué)法,盡力引導(dǎo)學(xué)生成為知識(shí)的發(fā)現(xiàn)者,把教師的點(diǎn)撥和學(xué)生解決問(wèn)題結(jié)合起來(lái),為學(xué)生創(chuàng)設(shè)情境,從而不斷激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣,使學(xué)生輕松愉快地學(xué)習(xí)不斷克服學(xué)生學(xué)習(xí)中的被動(dòng)情況,使其在教學(xué)過(guò)程中在掌握知識(shí)同時(shí)、發(fā)展智力、受到教育。
(四)、教學(xué)手段
新課標(biāo)提倡教學(xué)中要重視現(xiàn)代教育技術(shù)、要引導(dǎo)學(xué)生獨(dú)立思考、自主探索與合作交流,讓學(xué)生掌握知識(shí)的發(fā)生發(fā)展過(guò)程,主動(dòng)去獲得新的知識(shí),學(xué)會(huì)獲取知識(shí)的方法,因而在教學(xué)中創(chuàng)設(shè)情境讓學(xué)生樂(lè)意并全身心投入到現(xiàn)實(shí)的、探索性的數(shù)學(xué)活動(dòng)中去。所以本節(jié)課充分利用多媒體課件等教學(xué)手段創(chuàng)設(shè)教學(xué)情境,引導(dǎo)學(xué)生觀察、探索、發(fā)現(xiàn)、歸納來(lái)激發(fā)學(xué)生學(xué)習(xí)興趣、激活學(xué)生思維,以利于突破教學(xué)重點(diǎn)和難點(diǎn),提高課堂教學(xué)效益。
三、學(xué)法指導(dǎo)
自主探究法:主動(dòng)觀察→分析→思考→比較→探索→歸納→例題探索→練習(xí)挑戰(zhàn)→鞏固提高→總結(jié)。
四、教學(xué)程序
為達(dá)到教學(xué)目標(biāo),充分發(fā)揮學(xué)生的主體作用,最大限度地激發(fā)學(xué)生學(xué)習(xí)的主動(dòng)性、自覺(jué)性、積極性,本節(jié)課教學(xué)程序設(shè)計(jì)如下:
1、引入:創(chuàng)設(shè)問(wèn)題情境:目的在于引發(fā)學(xué)生學(xué)習(xí)的積極性,啟發(fā)學(xué)生的探索欲望,同時(shí)為本課學(xué)習(xí)做好準(zhǔn)備和鋪墊。
2、探索規(guī)律,總結(jié)方法:出示引例并鼓勵(lì)學(xué)生通過(guò)自主探索與合作交流認(rèn)識(shí)用“合并同類項(xiàng)“法解一元一次方程的方法,學(xué)會(huì)應(yīng)用,對(duì)有困難的同學(xué),教師通過(guò)適當(dāng)?shù)恼Z(yǔ)言提示,引導(dǎo)學(xué)生體驗(yàn)探求規(guī)律的思想方法。這樣學(xué)生能夠全副身心的投入到思考問(wèn)題中去,讓學(xué)生親身參加了探索發(fā)現(xiàn),獲取知識(shí)和技能的全過(guò)程。最后由學(xué)生對(duì)規(guī)律進(jìn)行歸納總結(jié)補(bǔ)充,體驗(yàn)合作的愉快與收獲。感受成功的喜悅。
通過(guò)過(guò)對(duì)問(wèn)題1解方程中“ '合并同類項(xiàng)'起了什么作用?”探究,讓學(xué)生加深認(rèn)識(shí),掌握列方程中蘊(yùn)涵的“數(shù)學(xué)建模思想”和解方程中蘊(yùn)涵的“化歸思想”的實(shí)質(zhì),感到學(xué)習(xí)它的重要性、必要性。
3、例題講解:對(duì)于例1,首先鼓勵(lì)學(xué)生試著解方程,只要學(xué)生的解法合理就鼓勵(lì)。教師注意發(fā)現(xiàn)學(xué)生可能出現(xiàn)的錯(cuò)誤,把錯(cuò)誤集中起來(lái),組織學(xué)生進(jìn)行組織交流。最后規(guī)范書(shū)寫(xiě)格式。
教師指導(dǎo)與板書(shū),使學(xué)生形成一個(gè)完整的解題過(guò)程,進(jìn)一步理解解方程中蘊(yùn)涵的“化歸思想”。
4、鞏固練習(xí):讓學(xué)生熟練掌握解一元一次方程的技能,在習(xí)題的配備上,我注意了學(xué)生的思維是一個(gè)循序漸進(jìn)的過(guò)程,所以習(xí)題的配備由易而難,使學(xué)生在練習(xí)的過(guò)程中能夠逐步的提高能力,得到發(fā)展。分層次練習(xí),及時(shí)反饋、鞏固提高、拓展,使不同程度的學(xué)生都能得到不同的發(fā)展,使學(xué)生知識(shí)技能螺旋式上升。男好生分組競(jìng)爭(zhēng),活躍課堂氣氛,充分調(diào)動(dòng)學(xué)生的積極性。使學(xué)生在一種比較活躍的氛圍中,解決各種問(wèn)題。
5、課堂小結(jié):教師引導(dǎo)學(xué)生做出本節(jié)課小結(jié),歸納解方程的方法及易出錯(cuò)的地方。通過(guò)學(xué)生的自我反思,將知識(shí)條理化、系統(tǒng)化。
五、反思
我將本節(jié)課定位為探究式教學(xué)活動(dòng),通過(guò)對(duì)教材進(jìn)行適當(dāng)?shù)恼?。讓學(xué)生帶著原有的知識(shí)背景、生活體驗(yàn)和理解走進(jìn)學(xué)習(xí)活動(dòng),并通過(guò)自己的主動(dòng)探索,與同學(xué)交流、反思等,構(gòu)建對(duì)知識(shí)的形成和運(yùn)用。
注重引導(dǎo)學(xué)生在課堂活動(dòng)過(guò)程中感悟知識(shí)的生成、發(fā)展和變化,每個(gè)問(wèn)題的設(shè)計(jì)都以問(wèn)題串的形式前后聯(lián)系,由淺入深,從具體到抽象,再通過(guò)探索交流、反思、歸納,形成一個(gè)完整的思考過(guò)程,使學(xué)生學(xué)會(huì)探索規(guī)律的方法。這樣的安排符合掌握知識(shí)與發(fā)展思維、能力相統(tǒng)一的原則、教師的主導(dǎo)作用與學(xué)生的主體作用相結(jié)合的原則。