第一篇:數(shù)列極限的收斂準(zhǔn)則
第一講 數(shù)列極限
一、數(shù)列極限的收斂準(zhǔn)則
1.數(shù)列極限的夾逼準(zhǔn)則
a)數(shù)列{xn},{yn},{zn}滿足:
i.yn#xnzn(n N0)
ii.nlimyn=nlimzn=a
則數(shù)列{xn}的極限存在,且nlimxn=a
b)例
1、求極限n!
nlimnn=0 注:n!=1鬃23Ln
1例
2、求極限lim1+2n+nnn
n(3)注:nlima=1(a>0)
驏1n
練習(xí):
1、1n
nlim?? ??桫1+n+
1n÷÷
2÷÷ 注:運用重要極限nlim(1+n)=e2、求n?lim(其中 a1,a2,L,ak為正常數(shù), k?Z+.)
2.單調(diào)數(shù)列的收斂準(zhǔn)則
a)單調(diào)增加有上界的數(shù)列必收斂;
b)單調(diào)遞減有下界的數(shù)列必收斂;
通常說成:單調(diào)有界的數(shù)列必收斂。
例1. 證明lim(1
1n)n
n+=e 注:補(bǔ)充二項式定理
例2.
設(shè)x1=10,xn+1={xn}極限存在,并求其極限。例3.
設(shè)x1=xn+1={xn}極限存在,并求其極限。注:補(bǔ)充數(shù)學(xué)歸納法例
1、證明1+3+L+(2n-1)=n2 例
2、證明1+++L+<思考:
1、有界數(shù)列是否收斂?
2、數(shù)列{xn}收斂是否可推出數(shù)列xn}收斂?反之是否成立?
13、數(shù)列xn為有界數(shù)列,且limyn=0,數(shù)列數(shù)列xnyn是否收斂? n{}{}
二、收斂數(shù)列的性質(zhì)
1.極限的唯一性。
2.有界性。問題:有界數(shù)列是否收斂?
3.保號性。問題:若xn>0("n N),且limxn=a,是否一定有a>0? n
4.收斂數(shù)列的子數(shù)列必收斂。
思考:(1)數(shù)列xn與yn都發(fā)散,是否數(shù)列xnyn與xn+yn也都發(fā)散?
(2)若子列x2n-1與x2n均收斂,則數(shù)列xn是否收斂?
(3)設(shè)x1>0,xn+1{}{}{}{}{}{}{}1驏1÷÷=?x+,證明數(shù)列{xn}極限存在,并求其極限。?÷n?÷2?xn桫
nn(4)求lim2+3+4n(nn
驏12n÷÷(5)求lim ++L+÷222n÷n+n+1n+n+2n+n+n桫
(6)設(shè)數(shù)列xn滿足:0
A無窮小量B無窮大量C有界變量D無界變量2
第二篇:數(shù)列極限例題
三、數(shù)列的極限
(?1)n?1}當(dāng)n??時的變化趨勢.觀察數(shù)列{1?n問題:
當(dāng)n無限增大時, xn是否無限接近于某一確定的數(shù)值?如果是, 如何確定? 通過上面演示實驗的觀察:
(?1)n?1當(dāng)n無限增大時, xn?1?無限接近于1.n問題:“無限接近”意味著什么?如何用數(shù)學(xué)語言刻劃它.?xn?1?(?1)n?1給定
11? nn1111, 由?, 只要n?100時, 有xn?1?, 100n10010011,只要n?1000時, 有xn?1?, 給定1000100011,只要n?10000時, 有xn?1?, 給定10000100001給定??0,只要n?N(?[])時, 有xn?1??成立.?定義
如果對于任意給定的正數(shù)?(不論它多么小), 總存在正整數(shù)N, 使得對于n?N時的一切xn, 不等式xn?a??都成立, 那末就稱常數(shù)a是數(shù)列xn的極限, 或者稱數(shù)列xn收斂于a, 記為
limxn?a,或xn?a(n??).n??如果數(shù)列沒有極限, 就說數(shù)列是發(fā)散的.注意:
??N定義:limxn?a????0,?N?0, 使n?N時, 恒有xn?a??.n??其中記號?:每一個或任給的;?:至少有一個或存在.數(shù)列收斂的幾何解釋:
a??2?a??xN?2x2x1xN?1ax3x
當(dāng)n?N時, 所有的點xn都落在(a??,a??)內(nèi), 只有有限個(至多只有N個)落在其外.注意:數(shù)列極限的定義未給出求極限的方法.n?(?1)n?1?1.例1 證明limn??nn?(?1)n?11?1 ?.證
注意到xn?1 ?nn任給??0, 若要xn?1??, 只要
11??,或 n?, n?所以, 取 N?[], 則當(dāng)n?N時, 就有 1?n?(?1)n?1?1??.nn?(?1)n?1?1.即limn??n
重要說明:(1)為了保證正整數(shù)N,常常對任給的??0,給出限制0???1;
n?(?1)n?1?1??”的詳細(xì)推理
(2)邏輯“取 N?[], 則當(dāng)n?N時, 就有
n?1見下,以后不再重復(fù)說明或解釋,對函數(shù)極限同樣處理邏輯推理.由于N?????立.嚴(yán)格寫法應(yīng)該是:任給??0, 不妨取0???1,若要?1???1??N?1,所以當(dāng)n?N時一定成立n?N?1?1?,即得
1??成nn?(?1)n?1111?1? ,只要 n?,所以, 取 N?[], 則當(dāng)n?N時, 由于xn?1=?n??n11?1?1N?????N?1,所以當(dāng)n?N時一定成立n?N?1?,即得??成立.也就
?n????是成立
n?(?1)n?11?1???.xn?1=
nnn?(?1)n?1?1.即limn??n小結(jié): 用定義證數(shù)列極限存在時, 關(guān)鍵是任意給定??0,尋找N, 但不必要求最小的N.例3證明limq?0, 其中q?1.n??n證
任給??0(要求ε<1)若q?0, 則limq?lim0?0;
n??n??n若0?q?1, xn?0?q??, nlnq?ln?,n?n?ln?ln?, 取N?[](?1), 則當(dāng)n?N時, 就有qn?0??, lnqlnq?limqn?0.n???0, q?1,?q?1,??, n
說明:當(dāng)作公式利用:limq??
n??1, q?1,??不存在,q??1.?
第三篇:數(shù)列極限教案
數(shù)列的極限教案
授課人:###
一、教材分析
極限思想是高等數(shù)學(xué)的重要思想。極限概念是從初等數(shù)學(xué)向高等數(shù)學(xué)過渡所必須牢固掌握的內(nèi)容。
二、教學(xué)重點和難點
教學(xué)重點:數(shù)列極限概念的理解及數(shù)列極限??N語言的刻畫。
教學(xué)難點:數(shù)列極限概念的理解及數(shù)列極限??N語言的刻畫,簡單數(shù)列的極限進(jìn)行證明。
三、教學(xué)目標(biāo)
1、通過學(xué)習(xí)數(shù)列以及數(shù)列極限的概念,明白極限的思想。
2、通過學(xué)習(xí)概念,發(fā)現(xiàn)不同學(xué)科知識的融會貫通,從哲學(xué)的量變到質(zhì)變的思想的角度來看待數(shù)列極限概念。
四、授課過程
1、概念引入
例子一:(割圓術(shù))劉徽的割圓術(shù)來計算圓的面積。
.........內(nèi)接正六邊形的面積為A1,內(nèi)接正十二邊形的面積為A2......內(nèi)接正6?2n?1形的面積為An.A1,A2,A3......An......?圓的面積S.用圓的內(nèi)接正六n邊形來趨近,隨著n的不斷增加,內(nèi)接正六n邊形的面積不斷
1接近圓的面積。
例子二:莊子曰“一尺之錘,日取其半,萬世不竭”。
第一天的長度1第二天的剩余長度 第二天的剩余長度
第四天的剩余長度 8
.....第n天的剩余長度n?1.......2
隨著天數(shù)的增加,木桿剩余的長度越來越短,越來越接近0。
這里蘊含的就是極限的概念。
總結(jié):極限是變量變化趨勢結(jié)果的預(yù)測。例一中,內(nèi)接正六n邊形的邊數(shù)不斷增加,多邊形的面積無限接近圓面積;例二中,隨著天數(shù)的不斷增加,木桿的剩余長度無限接近0.在介紹概念之前看幾個具體的數(shù)列:
111?1?(1)??: 1,,......; 23n?n?
???1?n?1111:?1,?,?,......;(2)??n2345??
(3)n2:1,4,9,16,......;
(4)??1?:?1,1,?1,1,......,??1?,......; nn????
我們接下來討論一種數(shù)列?xn?,在它的變化過程中,當(dāng)n趨近于??時,xn不斷接近于某一個常數(shù)a。如隨著n的增大,(1),(2)中的數(shù)列越來越接近0;(3)
(4)中的數(shù)列卻沒有這樣的特征。
此處“n趨近于??時”,“xn無限接近于數(shù)a”主要強(qiáng)調(diào)的是“一個過程”和一種“接近”程度。
可是只憑定性的描述和觀察很難做到準(zhǔn)確無誤,所以需要精確的,定量的數(shù)學(xué)語言來刻畫數(shù)列的概念。本節(jié)課的重點就是將數(shù)列的這樣一個特征用數(shù)學(xué)語言刻畫出來,并引入數(shù)列極限的概念。
2、內(nèi)容講授
(定義板書)設(shè)?xn?是一個數(shù)列,a是實數(shù)。如果對于任意給定的數(shù)??0,總存在一個正整數(shù)N,當(dāng)n?N時,都有xn?a??,我們稱a是數(shù)列?x
n?的極限,或者說數(shù)列?xn?收斂且收斂于數(shù)a。
寫作:limxn?a或xn?a?n????。
n???
如果數(shù)列沒有極限,就說數(shù)列是發(fā)散的。
注意:(1)理解定義中的“任意給定”?:?是代表某一個正數(shù),但是這個數(shù)在選取時是任意的,選定以后就是固定的。不等式xn?a??是表示xn與a的接近程度,所以?可以任意的小。
(2)N的選取是與任意給定的?有關(guān)的。1?1?以數(shù)列??為例,欲若取??,則存在N?100,當(dāng)n?Nxn?a??; 100n??
若取??1,則存在N?1000,當(dāng)n?N時,xn?a??。1000
數(shù)列極限的??N語言:
limx
n???n?a????0,?N,n?Nxn?a??.數(shù)列極限的幾何解釋:
3、例題講解
n?2??1??1。例題1用數(shù)列極限的定義證明limn??nn
n?2??1?證明:設(shè)xn?,因為 nn
n?2??1?2??1?2???xn?1?nnnnn
???0,欲使xn???,只要22??即n?,n?
?2?我們?nèi)????1,當(dāng)n?N時,???
n?2??1?22?????.nnNn
n?2??1?所以lim?1.n??nn
?2?注:N的取法不是唯一的,在此題中,也可取N????10等。???
例題2 設(shè)xn?C(C為常數(shù)),證明limxn?C。n??
證明:任給的??0,對于一切正整數(shù)n,xn?C?C?C?0??,所以limxn?C。n??
小結(jié):用定義證數(shù)列極限存在時,關(guān)鍵是任意給定?尋找N,但不必要求最小的N.五、課后作業(yè)
第四篇:數(shù)列極限復(fù)習(xí)
數(shù)列極限復(fù)習(xí)題
姓名
2?4???2n1、lim=; n??1?3?9??(?3)n
an2?2n?1a2、若lim(2n?)?1,則=; n??bn?2b
1?an3、如果lim()?0,則實數(shù)a的取值范圍是;n??2a
n4、設(shè)數(shù)列{an}的通項公式為an?(1?4x),若liman存在,則x的取值范圍是n??
___;
?a?5.已知無窮等比數(shù)列n的前n項和
窮等比數(shù)列各項的和是;
6、數(shù)列?an?滿足a1?Sn?1?a(n?N*)n3,且a是常數(shù),則此無1,且對任意的正整數(shù)m,n都有am?n?am?an,則數(shù)列?an?的3所有項的和為;
7、無窮等比數(shù)列?an?的首項是某個自然數(shù),公比為單位分?jǐn)?shù)(即形如:數(shù),m為正整數(shù)),若該數(shù)列的各項和為3,則a1?a2;
8、無窮等比數(shù)列?an?的各項和為2,則a1的取值范圍是
1的分m
??
9、無窮等比數(shù)列an中,為;
lim(a2?a3?...?an)
n??
=1,則a1的取值范圍
cosn??sinn??
10、計算: lim,??[0,]?
n??cosn??sinn?
222n?a2n111、若lim2n?1,則實數(shù)a的取值范圍是; ?2n?
12?a
23?n?2?n?(?1)n(3?n?2?n)
12、若數(shù)列{an}的通項公式是an=,n=1,2,?,則
lim(a1?a2???an)__________;
n??
1?
1?n?2012?n(n?1)?
13、若an??,Sn為數(shù)列?an?的前n項和,求limSn?____;
n??
?3?1n?2013n?1??
214、等差數(shù)列?an?,?bn?的前n項和分別為Sn,Tn且
an
? n??bn
Sn2n
?,則Tn3n?
1lim15、設(shè)數(shù)列?an?、?bn?都是公差不為0的等差數(shù)列,且lim
lim
b1?b2???b3n
na4n
an
?3,則bn16、已知數(shù)
列為等差數(shù)列,且,則
a117、設(shè)等比數(shù)列{an}的公比為q,且lim1?qn)?,則a1的取值范圍是
n??1?q
2__________;
18、已知等比數(shù)列{an}的首項a1?1,公比為q(q?0),前n項和為Sn,若
lim
Sn?
1?1,則公比q的取值范圍是.;
n??Sn19、已知數(shù)列{an}的各項均為正數(shù),滿足:對于所有n?N*,有4Sn?(an?1)2,n
?()其中Sn表示數(shù)列{an}的前n項和.則limn??an
A.0B.1C.D.
220、下列命題正確的是 ?????????????????????????()
(A)liman?A, limbn?B則lim
n??
n??
anA
?(bn?0,n?N)
n??bBn
(B)若數(shù)列{an}、{bn}的極限都不存在,則{an?bn}的極限也不存在(C)若數(shù)列{an}、{an?bn}的極限都存在,則{bn}的極限也存在(D)設(shè)Sn?a1?a2???an,若數(shù)列{an}的極限存在,則數(shù)列{Sn}的極限也存在21、用記號“○+”表示求兩個實數(shù)a與b的算術(shù)平均數(shù)的運算, 即a○+b=已知數(shù)列{xn}滿足x1=0,x2=1,xn=xn-1○+xn-2(n≥3),則limxn等于()
n???
a?b
.2A.2
3B.12
C.0D.122、連結(jié)?ABC的各邊中點得到一個新的?A1B1C1,又?A1B1C1的各邊中點得到一個新的?A2B2C2,如此無限繼續(xù)下去,得到一系列三角形,?A1B1C1,?A2B2C2,?A3B3C3,?, 這一系列三角形趨向于一個點M。已知
A?0,0?,B?3,0?,C?2,2?,則點M的坐標(biāo)是()
52522A、(,)B、(,1)C、(,1)D、(1,)
3333323、已知數(shù)列
lim
{an},{bn}
都是無窮等差數(shù)列,其中
a1?3,b1?2,b2是a2和a
3的等差中
an1111?lim(??...?)n??bn??2,求極限a1b1a2b2anbn的值; n項,且
24、設(shè)正數(shù)數(shù)列
lga?
lin?
1n??
?an?
為一等比數(shù)列,且a2?4,a4?16,求
lag????n2n
2al2ng;
bn?lgan,25、數(shù)列{an}是由正數(shù)組成的數(shù)列,其中c為正常數(shù),數(shù)列?bn?a1?c,成等差數(shù)列且公差為lgc(1)求證?an?是等比數(shù)列;(2)?an?的前n項和為Sn,求lim26、已知f(x)?logax(a?o且a?1),an
n??Sn
且2,f(a1),f(a2),f(a3),?,f(an),2n?1,?(n?N?)成等差數(shù)列,(1)求數(shù)列?an?的通項公式;
(2)若數(shù)列?an?的前n項和為Sn,當(dāng)a?1時,求lim
Sn
n??an
第五篇:數(shù)列極限的證明
例1 設(shè)數(shù)列?xn?滿足0?x1??,xn?1?sinxn?n?1,2,??。(Ⅰ)證明limxn存在,并求該極限;
n??
?xn?1?xn(Ⅱ)計算lim??。n??
?xn?
解(Ⅰ)用歸納法證明?xn?單調(diào)下降且有下界,由0?x1??,得
0?x2?sinx1?x1??,設(shè)0?xn??,則
0?xn?1?sinxn?xn??,所以?xn?單調(diào)下降且有下界,故limxn存在。
n??
記a?limxn,由xn?1?sinxn得
x??
a?sina,所以a?0,即limxn?0。
n??
(Ⅱ)解法1 因為
?sinx?lim??x?0
?x?
1x?lime
x?0
1sinxlnx2x
?lime
x?0
1?cosx1?
???
2x?sinxx?
?xsinx6x2
xcosx?sinx
?lime
x?0
2x3
?lime
x?0
?e
?
又由(Ⅰ)limxn?0,所以
n??
1xn
?xn?1??sinxn?xn2
lim???lim??n??n??xx?n??n?
?sinx?
?lim??x?0x??
解法2 因為
1xx?e
?
sinx?x
?sinx????x?
?
?sinx?x????1????x??
xsinx?x
????
x3,又因為
limsinx?x1?sinx?x???,lim?1??x?0x36x?0?x?
xnxsinx?x?e,??sinx?6所以lim?,?e?x?0?x?1
故
11?x?lim?n?1?n???xn?xn?sinxn??lim??n??x?n?
?sinx??lim??x?0?x?xn1x ?e?1
6.