第一篇:高中數(shù)學(xué)-公式-數(shù)列
數(shù)列
1、等差數(shù)列的通項(xiàng)公式是an?a1?(n?1)d,前n項(xiàng)和公式是:Sn?n(a1?an)1=na1?n(n?1)d。22.等差數(shù)列 {an} ?an?an?1?d(d為常數(shù))?2an?an?1?an?1(n?2,n?N*)?an?an?b?Sn?An2?Bn。
?na1(q?1)?nn?
12、等比數(shù)列的通項(xiàng)公式是an?a1q,前n項(xiàng)和公式是:Sn??a1(1?q)(q?1)??1?q
2n-13.等比數(shù)列 {an}?an?an-1?an?1(n?2,n?N)?an?a1?q;
*
4、當(dāng)m+n=p+q=2t(m、n、p、q∈N)時(shí),對(duì)等差數(shù)列{an}有:am?an?ap?aq?2at;對(duì)等比數(shù)列{an}
有:aman?apaq?at。
5、等差數(shù)列中, am=an+(n-m)d, d?am?an;等比數(shù)列中,an=amqn-m;q=n?m?n
{anbn}等也是等比數(shù)列。
7、設(shè)Sn表示數(shù)列前n項(xiàng)和;等差數(shù)列中有:Sn,S2n?Sn,S3n?S2n,??也是等差數(shù)列;在等比數(shù)列中,2an;am6、若{an}、{bn}是等差數(shù)列,則{kan?bbn}(k、b、a是非零常數(shù))是等差數(shù)列;若{an}、{bn}是等比數(shù)列,則{kankan}、Sn,S2n?Sn,S3n?S2n,??是等比數(shù)列。
8、等差(或等比)數(shù)列的“間隔相等的連續(xù)等長(zhǎng)片斷和序列”(如a1+a2+a3,a4+a5+a6,a7+a8+a9…)仍是等差(或等比)數(shù)列;
9、等差數(shù)列中:a1?an?a2?an?1?a3?an?2??;
等比數(shù)列中:a1an?a2an?1?a3an?2??
10、對(duì)等差數(shù)列{an},當(dāng)項(xiàng)數(shù)為2n時(shí),S偶?S奇?nd;項(xiàng)數(shù)為2n-1時(shí),S奇?S偶?a中項(xiàng)(n∈N*)。
11、由Sn求an,an={S1(n?1)
*Sn?Sn?1(n?2,n?N)
一般已知條件中含an與Sn的關(guān)系的數(shù)列題均可考慮用上述公式;
12、首項(xiàng)為正(或?yàn)樨?fù))的遞減(或遞增)的等差數(shù)列前n項(xiàng)和的最大(或最小)問(wèn)題,轉(zhuǎn)化為解不等式?an?0??an?0?解決; ?或?????a?0a?0?n?1??n?1? 注意驗(yàn)證a1是否包含在后面an 的公式中,若不符合要單獨(dú)列出。
13、熟記等差、等比數(shù)列的定義,通項(xiàng)公式,前n項(xiàng)和公式,在用等比數(shù)列前n項(xiàng)和公式時(shí),勿忘分類討論思想;
14、若一階線性遞歸數(shù)列an=kan-1+b(k≠0,k≠1),則總可以將其改寫變形成如下形
式:an?b?k(an?1?b)(n≥2),于是可依據(jù)等比數(shù)列的定義求出其通項(xiàng)公式; k?1k?115、當(dāng)?shù)缺葦?shù)列?an?的公比q滿足q<1時(shí),limSn=S=
n??a1。一般地,如果無(wú)窮數(shù)列?an?的前n項(xiàng)和的極限n??1?qlimSn存在,就把這個(gè)極限稱為這個(gè)數(shù)列的各項(xiàng)和(或所有項(xiàng)的和),用S表示,即S=limSn。n??
第二篇:高中數(shù)學(xué)公式
高中數(shù)學(xué)
乘法與因式分 a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理
判別式
b2-4ac=0 注:方程有兩個(gè)相等的實(shí)根
b2-4ac>0 注:方程有兩個(gè)不等的實(shí)根
b2-4ac<0 注:方程沒(méi)有實(shí)根,有共軛復(fù)數(shù)根
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑 余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標(biāo)
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py
第三篇:高中文科數(shù)學(xué)公式匯總
高中數(shù)學(xué)公式匯總(文科)
一、復(fù)數(shù)
1、復(fù)數(shù)的除法運(yùn)算
a?bi(a?bi)(c?di)(ac?bd)?(bc?ad)i.??22c?di(c?di)(c?di)c?d2、復(fù)數(shù)z?a?bi的模|z|=|a?
bi|
3、z?a?bi的共軛復(fù)數(shù)Z=a-bi二、三角函數(shù)、三角變換、解三角形、平面向量
4、同角三角函數(shù)的基本關(guān)系式sin??cos??1,tan?=22sin?.cos?
5、和角與差角公式
sin(???)?sin?cos??cos?sin?;cos(???)?cos?cos?sin?sin?;tan(???)?tan??tan?.1tan?tan?
6、二倍角公式
sin2??sin?cos?.cos2??cos2??sin2??2cos2??1?1?2sin2?.2tan?tan2??.1?tan2?
1?cos2?;2公式變形:1?cos2?2sin2??1?cos2?,sin2??;22cos2??1?cos2?,cos2??
7、三角函數(shù)的周期
函數(shù)y?sin(?x??),x∈R及函數(shù)y?cos(?x??),x∈R(A,ω,?為常數(shù),且A≠0,ω>0)的周期T?函數(shù)y?tan(?x??),x?k??2??;?
2,k?Z(A,ω,?為常數(shù),且A≠0,ω>0)的周期T?
b a?.?
8、函數(shù)y?sin(?x??)的周期、最值、單調(diào)區(qū)間、圖象變換
9、輔助角公式y(tǒng)?asinx?bcosx?
10、正弦定理a2?b2sin(x??)其中tan??abc???2R.sinAsinBsinC22222222211、余弦定理a?b?c?2bccosA;b?c?a?2cacosB;c?a?b?2abcosC.11112、三角形面積公式S?absinC?bcsinA?casinB.22213、三角形內(nèi)角和定理在△ABC中,有A?B?C???C???(A?B)
14、a與b的數(shù)量積(或內(nèi)積)a?b?|a|?|b|cos?
15、平面向量的坐標(biāo)運(yùn)算(1)設(shè)A(x1,y1),B(x2,y2),則AB?OB?OA?(x2?x1,y2?y1).(2)設(shè)a=(x1,y1),b=(x2,y2),則a?b=x1x2?y1y2.(3)設(shè)a=(x,y),則a?
16、兩向量的夾角公式 x2?y
2第1頁(yè)(共4頁(yè))
設(shè)=(x1,y1),=(x2,y2),且?,則 cos??
17、向量的平行與垂直a?bab?x1x2?y1y2x1?y1?x2?y2222
2//??? ?x1y2?x2y1?0;?(?)???0?x1x2?y1y2?0.三、函數(shù)、導(dǎo)數(shù)
18、函數(shù)的單調(diào)性
(1)設(shè)x1、x2?[a,b],x1?x2那么f(x1)?f(x2)?0?f(x)在[a,b]上是增函數(shù);
f(x1)?f(x2)?0?f(x)在[a,b]上是減函數(shù).(2)設(shè)函數(shù)y?f(x)在某個(gè)區(qū)間內(nèi)可導(dǎo),若f?(x)?0,則f(x)為增函數(shù);若f?(x)?0,則f(x)為減函數(shù).19、函數(shù)的奇偶性
對(duì)于定義域內(nèi)任意的x,都有f(?x)?f(x),則f(x)是偶函數(shù);
對(duì)于定義域內(nèi)任意的x,都有f(?x)??f(x),則f(x)是奇函數(shù)。
奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,偶函數(shù)的圖象關(guān)于y軸對(duì)稱。
20、函數(shù)y?f(x)在點(diǎn)x0處的導(dǎo)數(shù)的幾何意義
函數(shù)y?f(x)在點(diǎn)x0處的導(dǎo)數(shù)是曲線y?f(x)在P(x0,f(x0))處的切線的斜率f?(x0),相應(yīng)的切線方程是y?y0?f?(x0)(x?x0).21、幾種常見(jiàn)函數(shù)的導(dǎo)數(shù)
'①C?0;②(xn)'?nxn?1;③(sinx)'?cosx;④(cosx)'??sinx;
11';⑧(lnx)? xlnax
u'u'v?uv'
''''''(v?0).22、導(dǎo)數(shù)的運(yùn)算法則(1)(u?v)?u?v.(2)(uv)?uv?uv.(3)()?2vvx'xx'x⑤(a)?alna;⑥(e)?e;⑦(logax)?'
23、會(huì)用導(dǎo)數(shù)求單調(diào)區(qū)間、極值、最值
24、求函數(shù)y?f?x?的極值的方法是:解方程f??x??0.當(dāng)f??x0??0時(shí):
(1)如果在x0附近的左側(cè)f??x??0,右側(cè)f??x??0,那么f?x0?是極大值;
(2)如果在x0附近的左側(cè)f??x??0,右側(cè)f??x??0,那么f?x0?是極小值.
x?y?xy,當(dāng)x?y時(shí)等號(hào)成立。
2(1)若積xy是定值p,則當(dāng)x?y時(shí)和x?y有最小值2p;
12(2)若和x?y是定值s,則當(dāng)x?y時(shí)積xy有最大值s.4五、數(shù)列
四、不等式
25、已知x,y都是正數(shù),則有
26、數(shù)列的通項(xiàng)公式與前n項(xiàng)的和的關(guān)系
n?1?s1,(數(shù)列{an}的前n項(xiàng)的和為sn?a1?a2?an??s?s,n?2?nn?1?an).*
27、等差數(shù)列的通項(xiàng)公式an?a1?(n?1)d?dn?a1?d(n?N);
n(a1?an)n(n?1)d1?na1?d?n2?(a1?d)n.222
2ann?1*29、等比數(shù)列的通項(xiàng)公式an?a1q?1?q(n?N); q28、等差數(shù)列其前n項(xiàng)和公式為sn?
30、等比數(shù)列前n項(xiàng)的和公式為
?a1(1?qn)?a1?anq,q?1,q?1??sn??1?q 或 sn??1?q.?na,q?1?na,q?1?1?
1六、解析幾何
31、直線的五種方程
(1)點(diǎn)斜式 y?y1?k(x?x1)(直線l過(guò)點(diǎn)P1(x1,y1),且斜率為k).
(2)斜截式 y?kx?b(b為直線l在y軸上的截距).xy??1(a、b分別為直線的橫、縱截距,a、b?0)ab
(4)一般式 Ax?By?C?0(其中A、B不同時(shí)為0).(3)截距式
32、兩條直線的平行和垂直
若l1:y?k1x?b1,l2:y?k2x?b
2①l1||l2?k1?k2,b1?b2;
②l1?l2?k1k2??1.33、平面兩點(diǎn)間的距離公式dA,B
?
34、點(diǎn)到直線的距離
A(x1,y1),B(x2,y2)).d?(點(diǎn)P(x0,y0),直線l:Ax?By?C?0).22235、圓的三種方程(1)圓的標(biāo)準(zhǔn)方程(x?a)?(y?b)?r.22(2)圓的一般方程 x?y?Dx?Ey?F?0(D?E?4F>0).36、直線與圓的位置關(guān)系 2
2222直線Ax?By?C?0與圓(x?a)?(y?b)?r的位置關(guān)系有三種:
d?r?相離???0;
d?r?相切???0;
d?r?相交???0.弦長(zhǎng)=2r2?d2 Aa?Bb?C其中d?.22A?B37、橢圓、雙曲線、拋物線的圖形、定義、標(biāo)準(zhǔn)方程、幾何性質(zhì)
cx2y
2222橢圓:2?2?1(a?b?0),a?c?b,離心率e??1 aab
cx2y2b222雙曲線:2?2?1(a>0,b>0),c?a?b,離心率e??1,漸近線方程是y??x.aaab
pp2拋物線:y?2px,焦點(diǎn)(,0),準(zhǔn)線x??。拋物線上的點(diǎn)到焦點(diǎn)距離等于它到準(zhǔn)線的距離.22
八、立體幾何
38、證明直線與直線平行的方法
(1)三角形中位線(2)平行四邊形(一組對(duì)邊平行且相等)
39、證明直線與平面平行的方法
(1)直線與平面平行的判定定理(證平面外一條直線與平面內(nèi)的一條直線平行)
(2)先證面面平行
40、證明平面與平面平行的方法
平面與平面平行的判定定理(一個(gè)平面內(nèi)的兩條相交直線分別與另一平面平行)....
41、證明直線與直線垂直的方法
轉(zhuǎn)化為證明直線與平面垂直
42、證明直線與平面垂直的方法
(1)直線與平面垂直的判定定理(直線與平面內(nèi)兩條相交直線垂直)....
(2)平面與平面垂直的性質(zhì)定理(兩個(gè)平面垂直,一個(gè)平面內(nèi)垂直交線的直線垂直另一個(gè)平面)
43、證明平面與平面垂直的方法
平面與平面垂直的判定定理(一個(gè)平面內(nèi)有一條直線與另一個(gè)平面垂直)
44、異面直線所成角、直線與平面所成角、二面角的平面角的定義及計(jì)算
45、點(diǎn)到平面距離的計(jì)算(定義法、等體積法)
九、概率統(tǒng)計(jì)
46、平均數(shù)、方差、標(biāo)準(zhǔn)差的計(jì)算
x1?x2??xn12222方差:s?[(x1?x)?(x2?x)??(xn?x)] nn
1標(biāo)準(zhǔn)差:s?[(x1?x)2?(x2?x)2??(xn?x)2] n平均數(shù):x?
47、古典概型的計(jì)算(必須要用列舉法、列表法、樹(shù)狀圖的方法把所有基本事件表示出來(lái),不重復(fù)、不遺漏).........
第四篇:高中數(shù)學(xué)公式口訣
高中數(shù)學(xué)公式口訣
一、《集合與函數(shù)》
內(nèi)容子交并補(bǔ)集,還有冪指對(duì)函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。
復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細(xì)證明它,還須將那定義抓。
指數(shù)與對(duì)數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。
函數(shù)定義域好求。分母不能等于0,偶次方根須非負(fù),零和負(fù)數(shù)無(wú)對(duì)數(shù)
正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實(shí)數(shù)集,多種情況求交集。
兩個(gè)互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對(duì)稱,Y=X是對(duì)稱軸
求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來(lái)函數(shù)的值域。
冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負(fù)。
第五篇:高中數(shù)學(xué)公式和定理
高中數(shù)學(xué)公式和定理
數(shù)學(xué)公式和定理揭示了數(shù)學(xué)知識(shí)的基本規(guī)律,具有一定的形式符號(hào)化的抽象性和概括性的特征,是學(xué)生數(shù)學(xué)認(rèn)知水平發(fā)展的重要學(xué)習(xí)載體.要學(xué)好數(shù)學(xué),必須對(duì)公式和定理有十分正確透徹的理解,也就是說(shuō),牢固掌握并能靈活運(yùn)用數(shù)學(xué)公式和定理是提高數(shù)學(xué)能力的重要前提.在教學(xué)過(guò)程中我積累了一些經(jīng)驗(yàn),下面我就數(shù)學(xué)公式和定理的教學(xué)談?wù)勎业囊恍w會(huì).
在數(shù)學(xué)公式和定理的學(xué)習(xí)中,需要學(xué)生具備多方面的能力,如對(duì)新舊知識(shí)聯(lián)系的理解能力,對(duì)數(shù)學(xué)規(guī)律的歸納與探究能力,對(duì)公式與定理的推理與演繹能力,對(duì)知識(shí)的存儲(chǔ)、記憶與應(yīng)用能力等.
數(shù)學(xué)公式和定理教學(xué)容易產(chǎn)生“一背二套”、“公式加例題”的形式,這種形式的教學(xué)往往使學(xué)生頭腦里只留下公式、定理的外殼,忽視它們的來(lái)龍去脈,不明確它們運(yùn)用的條件和范圍.事實(shí)上在公式與定理的教學(xué)中一般應(yīng)有如下五個(gè)環(huán)節(jié):引入,推導(dǎo),條件和特例,應(yīng)用,最后把它們納入學(xué)生的知識(shí)體系.因此,教師在教學(xué)中注意創(chuàng)設(shè)情景、激發(fā)興趣,充分發(fā)揮學(xué)生在學(xué)習(xí)中的主體作用,就能避免學(xué)生的死記硬背,生搬硬套,做到“活學(xué)活用”.
一、知識(shí)引入多樣化,激發(fā)學(xué)生求知欲
公式、定理的引入是發(fā)展學(xué)生思維、培養(yǎng)探索能力的首要環(huán)節(jié).一開(kāi)始的引入如能把學(xué)生吸引住,將大大激發(fā)學(xué)生的求知欲,使他們的思維處于最亢奮的狀態(tài).在平時(shí)的教學(xué)中,我發(fā)現(xiàn),“開(kāi)門見(jiàn)山”式的引入雖然省時(shí)省力,但學(xué)生學(xué)習(xí)缺乏興趣,只等著老師講.而針對(duì)不同的公式與定理,采用多樣化的引入,能很好地吸引學(xué)生,激發(fā)他們的探究欲望.在教學(xué)實(shí)踐中,我常常采用以下幾種引入的方法:
1、實(shí)踐引入:
教師要善于搜集與公式和定理相關(guān)的、有趣味的模型,使學(xué)生在接觸課題時(shí),就產(chǎn)生強(qiáng)烈的探求欲望.例如在引入線面垂直的判定定理時(shí),先讓學(xué)生自己動(dòng)手做一個(gè)實(shí)驗(yàn):如圖,拿一張矩形紙片,對(duì)折后略為展開(kāi),使矩形被折的一邊緊貼在桌面上,教師告訴學(xué)生,折痕和桌面是垂直的,這是為什么呢?學(xué)生一下子被吸引住了,急切地想知道這是為什么.
2、類比引入:
數(shù)學(xué)具有系統(tǒng)性,因此新公式、新定理可以由舊公式、舊定理通過(guò)類比遷移而來(lái). 例如在引入余
選校網(wǎng)專業(yè)大全 歷年分?jǐn)?shù)線 上萬(wàn)張大學(xué)圖片 大學(xué)視頻 院校庫(kù)
弦定理時(shí),先給出三角形的三邊a、b、c,其中c為最大邊.討論c2與a2?b2的關(guān)系.同學(xué)們已經(jīng)學(xué)過(guò)勾股定理,?C?900時(shí)有c2?a2?b2.教師向?qū)W生提出這樣的問(wèn)題,在斜三角形中a2?b2與c2有什么關(guān)系?學(xué)生通過(guò)探究發(fā)現(xiàn),當(dāng)?C?900時(shí)有c2?a2?b2;當(dāng)?C?900時(shí)有c2?a2?b2.通過(guò)對(duì)三種三角形的類比,學(xué)生會(huì)有很大的興趣去討論它們之間存在怎樣的一種關(guān)系式.此時(shí)教師引導(dǎo)學(xué)生歸納出在△ABC中,三邊a、b、c有這樣一種關(guān)系:c2?a2?b2?m.進(jìn)而得出m的符號(hào)與?C的關(guān)系.這種引入方法,使學(xué)生對(duì)新公式、新定理不感到突然,而是舊公式、舊定理的延伸與擴(kuò)展.
3、發(fā)現(xiàn)法引入:
由于公式是對(duì)客觀實(shí)踐的抽象,為了完成這一過(guò)程,我?guī)ьI(lǐng)學(xué)生重涉前人探索之路去發(fā)現(xiàn)公式.這種發(fā)現(xiàn)式的引入,對(duì)培養(yǎng)學(xué)生觀察與探究能力有重要作用.在應(yīng)用這種引入方法時(shí),關(guān)鍵是創(chuàng)設(shè)使學(xué)生感興趣的情景.例如在學(xué)習(xí)等差數(shù)列求和公式時(shí),我給同學(xué)們講了他們都知道的高斯小時(shí)候求1?2???100的故事,并加上了故事的尾巴:“在高斯說(shuō)出了他的方法后,老師又提出了新的問(wèn)題,請(qǐng)學(xué)生計(jì)算1?4?7???98”,大家想一想,該如何計(jì)算?更一般的等差數(shù)列前n項(xiàng)a1?a2???an的計(jì)算公式我們能推導(dǎo)出來(lái)嗎?同學(xué)們興致盎然,通過(guò)獨(dú)立探究與合作討論,很快就得出了等差數(shù)列前n項(xiàng)和的公式.
二、重視推導(dǎo)和證明,弄清來(lái)龍去脈
公式的推導(dǎo)和定理的證明是教學(xué)的核心.由于第一環(huán)節(jié)恰當(dāng)?shù)匾耄瑢W(xué)生的心理狀態(tài)是“興趣被激發(fā),對(duì)證明、推導(dǎo)有迫切感”,因此我抓住機(jī)會(huì)給予證明.如果在教學(xué)中不重視推導(dǎo),學(xué)生對(duì)它們的來(lái)龍去脈就會(huì)很模糊.在推導(dǎo)過(guò)程的教學(xué)中,我盡量發(fā)揮學(xué)生的主體作用,能讓學(xué)生推導(dǎo)的就讓學(xué)生推導(dǎo),并注意指出學(xué)生推導(dǎo)中的錯(cuò)誤.有些推導(dǎo)過(guò)程繁瑣的公式與定理,教師注重分析,講清為什么用這樣的方法.如果公式和定理有幾種推導(dǎo)方法,教學(xué)中不是面面俱到,而是讓學(xué)生課后思考不同的推導(dǎo)方法,在下一節(jié)課上進(jìn)行交流.
三、強(qiáng)調(diào)條件和特例
公式成立是要有一定條件的.學(xué)生學(xué)習(xí)公式的最大弱點(diǎn)是把公式作為“萬(wàn)能公式”亂用亂套.因此教學(xué)中要強(qiáng)調(diào)公式成立的條件.如含有正切的三角公式的角的范圍是有限制的.在公式推導(dǎo)完成后,我常常讓學(xué)生做一個(gè)小練習(xí),從中發(fā)現(xiàn)他們忽略條件而產(chǎn)生的錯(cuò)誤,讓學(xué)生討論公式應(yīng)用中要注意公式成立的條件.
另外,公式雖具有一定的普遍意義,但對(duì)一些具有特殊條件的情形要給予注意,這就是公式的特例.如三角誘導(dǎo)公式及倍角公式是兩角和與差公式的特例.而一般結(jié)論往往是特例的發(fā)展與完善.如正弦定理是三角形面積公式的發(fā)展與推廣.
四、注重靈活應(yīng)用,提高學(xué)生學(xué)習(xí)能力數(shù)學(xué)教學(xué)的目的在于應(yīng)用,因此,在公式和定理的教學(xué)中,必須使學(xué)生靈活巧妙地應(yīng)用公式和定理,提高、培養(yǎng)學(xué)生實(shí)際運(yùn)用的能力.在此教學(xué)環(huán)節(jié)中要注意引導(dǎo)學(xué)生靈活應(yīng)用公式.
每個(gè)公式本身均可作各種變化,為了在更廣闊的背景中運(yùn)用公式,就需要對(duì)公式本身進(jìn)各種變形.這一層次的思維量大,可很好地培養(yǎng)學(xué)生思維的靈活性.例如:ai(i?1,2,?,n)為正數(shù),求證
222a12?a2?a2???an?a12?2(a1?a2???an),可把基本不等式a2?b2?2ab變形為
a2?b2?a?b
2來(lái)用.再如求tg200?tg400?tg200tg400的值,是將tg(???)的公式變形使用.
五、把公式和定理納入學(xué)生的知識(shí)體系
數(shù)學(xué)知識(shí)系統(tǒng)性強(qiáng).學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)后,可以形成相應(yīng)的認(rèn)知結(jié)構(gòu).認(rèn)知結(jié)構(gòu)的發(fā)展,是“同化”與“順應(yīng)”調(diào)節(jié)的辨證統(tǒng)一.“同化”指的是新知識(shí)與舊知識(shí)相一致時(shí),新知識(shí)被納入原有認(rèn)知結(jié)構(gòu)中;“順應(yīng)”指的是新知識(shí)與舊知識(shí)不一致時(shí),對(duì)原有的認(rèn)知結(jié)構(gòu)進(jìn)行調(diào)節(jié),以適應(yīng)新的知識(shí)結(jié)構(gòu).如在復(fù)數(shù)的教學(xué)中,判別式小于零的實(shí)系數(shù)一元兩次方程的根與系數(shù)的關(guān)系可同化到學(xué)生已有的知識(shí)結(jié)構(gòu)中;而|z|2?z?z,就要學(xué)生將舊知識(shí)“順應(yīng)”到新的知識(shí)機(jī)構(gòu)中去.因此,在教學(xué)中我們要注意把新知識(shí)納入學(xué)生的認(rèn)知結(jié)構(gòu)中.為此,我在教學(xué)中充分注意以下幾點(diǎn):
1、注意公式推導(dǎo)過(guò)程中包含的數(shù)學(xué)思想方法.
在公式與定理的推導(dǎo)過(guò)程中,常常要用到數(shù)形結(jié)合,從特殊到一般,分類討論等數(shù)學(xué)思想方法.在推導(dǎo)過(guò)程中,教師常從特殊的情景出發(fā)進(jìn)行分析.例如,在推導(dǎo)sinx?a(|a|?1)解集時(shí),從a的特殊值開(kāi)始進(jìn)行分析.在推導(dǎo)等比數(shù)列前n項(xiàng)和公式時(shí),要分q?1與q?1兩種情況討論.在教學(xué)中要充分挖掘公式與定理推導(dǎo)中的數(shù)學(xué)思想方法,可以有效地培養(yǎng)學(xué)生的思維的嚴(yán)密性與靈活性.
2、公式和定理的推廣及引申
由于學(xué)生學(xué)習(xí)的階段性和教材要求等原因,中學(xué)數(shù)學(xué)有許多公式和定理是可以推廣的,教會(huì)學(xué)生推廣,讓學(xué)生看清知識(shí)的內(nèi)部聯(lián)系,是把知識(shí)納入學(xué)生認(rèn)知結(jié)構(gòu)的有效途徑.例如三角形面積公式S?11absinC中bsinC就是a邊上的高,它其實(shí)就是初中所學(xué)的公式S?ah的另一種新的形式.再如學(xué)2
2習(xí)了祖暅原理后,讓學(xué)生把它引申到平面幾何的相應(yīng)命題.
3、比較與鑒別
比較與鑒別是把公式和定理納入學(xué)生認(rèn)知結(jié)構(gòu)的必由之路.在教學(xué)的后階段,一般是應(yīng)用所學(xué)新知識(shí)來(lái)解題.如果僅僅盯住新公式,學(xué)生就失去一次獨(dú)立選擇公式的機(jī)會(huì),這無(wú)助于學(xué)生認(rèn)知結(jié)構(gòu)的發(fā)展.特別是公式較多時(shí),學(xué)生一旦面臨復(fù)雜的問(wèn)題,他們會(huì)無(wú)所適從.因此在教學(xué)中用注意公式的比較
與鑒別,選擇合適的公式解題,使學(xué)生的解題能力得到發(fā)展.例如有這樣一道題:在△ABC中,已知a?3,b?1,?B?300 ,求c邊的長(zhǎng).如果用正弦定理來(lái)解,要分兩步而且面臨∠A是一解還是兩解的選擇,而直接用余弦定理就可一步到位.在數(shù)學(xué)公式和定理的教學(xué)中,教師必須使學(xué)生到達(dá)以下目標(biāo):一是要用準(zhǔn)確的數(shù)學(xué)語(yǔ)言表述公式與定理的內(nèi)容;二是要學(xué)會(huì)分析其條件與結(jié)論間的內(nèi)在關(guān)系;三是要正確地掌握其證明及推導(dǎo)方法;四是要明確其使用的條件和適用的范圍及應(yīng)用的規(guī)律;五是要考慮對(duì)一些重要的公式和定理能否作適當(dāng)?shù)囊昱c推廣.我們?cè)诮虒W(xué)中,必須以適當(dāng)?shù)姆绞綄⒐胶投ɡ淼陌l(fā)生發(fā)展過(guò)程展示給學(xué)生,讓學(xué)生通過(guò)自主學(xué)習(xí)獲取知識(shí),并領(lǐng)悟公式和定理所包含的教學(xué)思想方法,靈活地掌握知識(shí),應(yīng)用知識(shí),達(dá)到提高分析問(wèn)題,解決問(wèn)題的能力.
參考資料:
李果民《中學(xué)數(shù)學(xué)教學(xué)建?!?廣西教育出版社2003年
選校網(wǎng)高考頻道 專業(yè)大全 歷年分?jǐn)?shù)線 上萬(wàn)張大學(xué)圖片 大學(xué)視頻 院校庫(kù)(按ctrl 點(diǎn)擊打開(kāi))
選校網(wǎng)()是為高三同學(xué)和家長(zhǎng)提 供高考選校信息的一個(gè)網(wǎng)站。國(guó)內(nèi)目前有2000多所高校,高考過(guò)后留給考生和家長(zhǎng)選校的時(shí)間緊、高校多、專業(yè)數(shù)量更是龐大,高考選校信息紛繁、復(fù)雜,高三 同學(xué)在面對(duì)高考選校時(shí)會(huì)不知所措。選校網(wǎng)就是為考生整理高考信息,這里有1517專業(yè)介紹,近2000所高校簡(jiǎn)介、圖片、視頻信息。選校網(wǎng),力致成為您最 強(qiáng)有力的選校工具!
產(chǎn)品介紹:
1.大學(xué)搜索:介紹近2000所高校最詳細(xì)的大學(xué)信息,包括招生簡(jiǎn)章,以及考生最需要的學(xué)校招生辦公室聯(lián)系方式及學(xué)校地址等.2.高校專業(yè)搜索:這里包含了中國(guó)1517個(gè)專業(yè)介紹,考生查詢專業(yè)一目了然,同時(shí)包含了專業(yè)就業(yè)信息,給考生報(bào)考以就業(yè)參考。
3.圖片搜索:這里有11萬(wàn)張全國(guó)高校清晰圖片,考生查詢學(xué)校環(huán)境、校園風(fēng)景可以一覽無(wú)余。4視頻搜索:視頻搜索包含了6162個(gè)視頻信息,大學(xué)視頻、城市視頻、訪談視頻都會(huì)在考生選校時(shí)給考生很大幫助。
5.問(wèn)答:對(duì)于高考選校信息或者院校還有其他疑問(wèn)將自己的問(wèn)題寫在這里,你會(huì)得到詳盡解答。6新聞:高考新聞、大學(xué)新聞、報(bào)考信息等欄目都是為考生和家長(zhǎng)量身定做,和同類新聞網(wǎng)站相比更有針對(duì)性。
7.千校榜:把高校分成各類,讓考生選校時(shí)根據(jù)類別加以區(qū)分,根據(jù)排名選擇自己喜歡的高校。8選校課堂:這里全部的信息都是以考生選校、選校技巧、經(jīng)驗(yàn)為核心,讓專家為您解答高考選校的經(jīng)驗(yàn)和技巧。
9.陽(yáng)光大廳:考生經(jīng)過(guò)一年緊張的學(xué)習(xí)生活心理壓力有待緩解和釋放,陽(yáng)光大廳給家長(zhǎng)以心靈啟示,給考生心里以陽(yáng)光。
10.港澳直通:很多考生都?jí)粝肴ハ愀郯拈T讀大學(xué),港澳直通,給考生的夢(mèng)想一個(gè)放飛的地方,港澳直通囊括了港澳大學(xué)的所有信息,將一切更直觀的呈現(xiàn)給考生。
11.選校社區(qū):注冊(cè)您真是的信息,在這里可以和大家分享您所在城市的到校信息,讀到好的選校文章也可以拿到這里,讓大家共同品嘗,您還可以加入到不同的大學(xué)、專業(yè)、城市群組,和大家一起討論這些話題分享信息。
選校網(wǎng),為你整合眾多高考選校信息,只為考生、家長(zhǎng)能夠從中受益。讓我們共同為考生的未來(lái),努力!我們?cè)诓粩嗤晟疲愿臃霞议L(zhǎng)和同學(xué)們的需求。
陸續(xù)我們將推出城市印象頻道,讓大家了解學(xué)校所在城市的詳細(xì)情況;預(yù)報(bào)名系統(tǒng)(yubaoming.com),為您更加準(zhǔn)確地根據(jù)高考分?jǐn)?shù)填報(bào)志愿提供利器.......一切,貴在真實(shí)。