第一篇:2016考研數(shù)學(xué)證明題解題三大思路剖析
2016考研數(shù)學(xué)證明題解題三大思路 考研數(shù)學(xué)一、三數(shù)學(xué)中概率統(tǒng)計占22%,數(shù)學(xué)二不考概率??忌肴〉酶叻郑怕蕦W(xué)科盡量拿滿分。老師將概率統(tǒng)計中重點內(nèi)容和典型題型做了總結(jié),希望對大家學(xué)習(xí)有幫助。
第1章 隨機事件和概率 1.1 重點內(nèi)容
事件的關(guān)系:包含,相等,互斥,對立,完全事件組,獨立;事件的運算:并,交,差;運算規(guī)律:交換律,結(jié)合律,分配律,對偶律;概率的基本性質(zhì)及五大公式:加法公式、減法公式、乘法公式、全概率公式、貝葉斯公式;利用獨立性進行概率計算,伯努力試驗計算。
近幾年單獨考查本章的考題相對較少,但是大多數(shù)考題中將本章的內(nèi)容作為基礎(chǔ)知識來考核。
1.2 常見題型 1.求隨機事件的概率;2.隨機事件的關(guān)系運算。第2章 隨機變量及其分布 2.1 重點內(nèi)容
隨機變量及其分布函數(shù)的概念和性質(zhì),分布律和概率密度,隨機變量的函數(shù)的分布,一些常見的分布:0-1分布、二項分布、超幾何分布、泊松分布、均勻分布、正態(tài)分布、指數(shù)分布及它們的應(yīng)用。而重點要求會計算與隨機變量相聯(lián)系的事件的概率,用泊松分布近似表示二項分布,以及隨機變量簡單函數(shù)的概率分布。
近幾年單獨考核本章內(nèi)容不太多,主要考一些常見分布及其應(yīng)用、隨機變量函數(shù)的分布。
2.2 常見題型
1.求一維隨機變量的分布律、分布密度或分布函數(shù);2.一個函數(shù)為某一隨機變量的分布函數(shù)或分布密度的判定;3.根據(jù)概率反求或判定分布中的參數(shù);4.求一維隨機變量在某一區(qū)間的概率;5.求一維隨機變量函數(shù)的分布。第3章 二維隨機變量及其分布 3.1 重點內(nèi)容
本章是概率論重點部分之一,尤其是二維隨機變量及其分布的概念和性質(zhì),邊緣分布,邊緣密度,條件分布和條件密度,隨機變量的獨立性及不相關(guān)性,一些常見分布:二維均勻分布,二維正態(tài)分布,幾個隨機變量的簡單函數(shù)的分布。
3.2 常見題型
1.求二維隨機變量的聯(lián)合分布律或分布函數(shù)或邊緣概率分布或條件分布和條件密度;2.已知部分邊緣分布,求聯(lián)合分布律;3.求二維連續(xù)型隨機變量的分布或分布密度或邊緣密度函數(shù)或條件分布和條件密度;4.兩個或多個隨機變量的獨立性或相關(guān)性的判定或證明;5.與二維隨機變量獨立性相關(guān)的命題;6.求兩個隨機變量的相關(guān)系數(shù);
7.求兩個隨機變量的函數(shù)的概率分布或概率密度或在某一區(qū)域的概率。1.結(jié)合幾何意義記住零點存在定理、中值定理、泰勒公式、極限存在的兩個準(zhǔn)則等基本原理,包括條件及結(jié)論。
知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度 不同會導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數(shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準(zhǔn)則之一:單調(diào)有界數(shù)列必有極限。只要知道這個準(zhǔn)則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。考研數(shù)學(xué)證明題解題三大思路" /> 2.借助幾何意義尋求證明思路
一個證明題,大多時候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點 之間的一個點。這樣很容易想到輔助函數(shù)F(x=f(x-g(x有三個零點,兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學(xué)一第18題(1是關(guān)于零點存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x及y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個端點處大小關(guān)系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結(jié)果。如果第二步實在無法完滿解決問題的話,轉(zhuǎn)第三步。
3.逆推法
從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況,這時需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x=ln*x-ln*a-4(x-a/e*,其中eF(a就是所要證的不等式。對于那些經(jīng)常使用如上方法的考生來說,利用三步走就能輕松收獲數(shù)學(xué)證明的12分,但對于從心理上就不自信能解決證明題的考生來說,卻常常輕易丟失12分,后一部分同學(xué)請按“證明三步走”來建立自信心,以阻止考試分?jǐn)?shù)的白白流失。
凱程教育:
凱程考研成立于2005年,國內(nèi)首家全日制集訓(xùn)機構(gòu)考研,一直從事高端全日制輔導(dǎo),由李海洋教授、張鑫教授、盧營教授、王洋教授、楊武金教授、張釋然教授、索玉柱教授、方浩教授等一批高級考研教研隊伍組成,為學(xué)員全程高質(zhì)量授課、答疑、測試、督導(dǎo)、報考指導(dǎo)、方法指導(dǎo)、聯(lián)系導(dǎo)師、復(fù)試等全方位的考研服務(wù)。
凱程考研的宗旨:讓學(xué)習(xí)成為一種習(xí)慣; 凱程考研的價值觀口號:凱旋歸來,前程萬里; 信念:讓每個學(xué)員都有好最好的歸宿;
使命:完善全新的教育模式,做中國最專業(yè)的考研輔導(dǎo)機構(gòu); 激情:永不言棄,樂觀向上; 敬業(yè):以專業(yè)的態(tài)度做非凡的事業(yè);
服務(wù):以學(xué)員的前途為已任,為學(xué)員提供高效、專業(yè)的服務(wù),團隊合作,為學(xué)員服務(wù),為學(xué)員引路。
如何選擇考研輔導(dǎo)班:
在考研準(zhǔn)備的過程中,會遇到不少困難,尤其對于跨專業(yè)考生的專業(yè)課來說,通過報輔導(dǎo)班來彌補自己復(fù)習(xí)的不足,可以大大提高復(fù)習(xí)效率,節(jié)省復(fù)習(xí)時間,大家可以通過以下幾個方面來考察輔導(dǎo)班,或許能幫你找到適合你的輔導(dǎo)班。
師資力量:師資力量是考察輔導(dǎo)班的首要因素,考生可以針對輔導(dǎo)名師的輔導(dǎo)年限、輔導(dǎo)經(jīng)驗、歷年輔導(dǎo)效果、學(xué)員評價等因素進行綜合評價,詢問往屆學(xué)長然后選擇。判斷師資力量關(guān)鍵在于綜合實力,因為任何一門課程,都不是由
一、兩個教師包到底的,是一批教師配合的結(jié)果。還要深入了解教師的學(xué)術(shù)背景、資料著述成就、輔導(dǎo)成就等。凱程考研名師云集,李海洋、張鑫教授、方浩教授、盧營教授、孫浩教授等一大批名師在凱程授課。而有的機構(gòu)只是很普通的老師授課,對知識點把握和命題方向,欠缺火候。
對該專業(yè)有輔導(dǎo)歷史:必須對該專業(yè)深刻理解,才能深入輔導(dǎo)學(xué)員考取該校。在考研輔導(dǎo)班中,從來見過如此輝煌的成績:凱程教育拿下2015五道口金融學(xué)院狀元,考取五道口15人,清華經(jīng)管金融碩士10人,人大金融碩士15個,中財和貿(mào)大金融碩士合計20人,北師大教育學(xué)7人,會計碩士保錄班考取30人,翻譯碩士接近20人,中傳狀元王園璐、鄭家威都是來自凱程,法學(xué)方面,凱程在人大、北大、貿(mào)大、政法、武漢大學(xué)、公安大學(xué)等院校斬獲多個法學(xué)和法碩狀元,更多專業(yè)成績請查看凱程網(wǎng)站。在凱程官方網(wǎng)站的光榮榜,成功學(xué)員經(jīng)驗談視頻特別多,都是凱程戰(zhàn)績的最好證明。對于如此高的成績,凱程集訓(xùn)營班主任邢老師說,凱程如此優(yōu)異的成績,是與我們凱程嚴(yán)格的管理,全方位的輔導(dǎo)是分不開的,很多學(xué)生本科都不是名校,某些學(xué)生來自二本三本甚至不知名的院校,還有很多是工作了多年才回來考的,大多數(shù)是跨專業(yè)考研,他們的難度大,競爭激烈,沒有嚴(yán)格的訓(xùn)練和同學(xué)們的刻苦學(xué)習(xí),是很難達(dá)到優(yōu)異的成績。最好的辦法是直接和凱程老師詳細(xì)溝通一下就清楚了。
建校歷史:機構(gòu)成立的歷史也是一個參考因素,歷史越久,積累的人脈資源更多。例如,凱程教育已經(jīng)成立10年(2005年),一直以來專注于考研,成功率一直遙遙領(lǐng)先,同學(xué)們有興趣可以聯(lián)系一下他們在線老師或者電話。
有沒有實體學(xué)校校區(qū):有些機構(gòu)比較小,就是一個在寫字樓里上課,自習(xí),這種環(huán)境是不太好的,一個優(yōu)秀的機構(gòu)必須是在教學(xué)環(huán)境,大學(xué)校園這樣環(huán)境。凱程有自己的學(xué)習(xí)校區(qū),有吃住學(xué)一體化教學(xué)環(huán)境,獨立衛(wèi)浴、空調(diào)、暖氣齊全,這也是一個考研機構(gòu)實力的體現(xiàn)。此外,最好還要看一下他們的營業(yè)執(zhí)照。
第二篇:考研數(shù)學(xué) 破解證明題三大思路
http://004km.cn
第一步:首先要記住零點存在定理,介值定理,中值定理、極限存在的兩個準(zhǔn)則等基本原理,包括條件及結(jié)論,中值定理最好能記住他們的推到過程,有時可以借助幾何意義去記憶。
因為知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數(shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準(zhǔn)則之一:單調(diào)有界數(shù)列必有極限。只要知道這個準(zhǔn)則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗證的。再比如2009年直接讓考生證明拉格朗日中值定理;但是像這樣直接可以利用基本原理的證明題在考研真題中并不是很多見,更多的是要用到第二步。
第二步:可以試著借助幾何意義尋求證明思路,以構(gòu)造出所需要的輔助函數(shù)。
一個證明題,大多時候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點中公考研 http://004km.cn
http://004km.cn 不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個端點處大小關(guān)系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結(jié)果。如果第二步實在無法完滿解決問題的話,轉(zhuǎn)第三步。
第三步:從要證的結(jié)論出發(fā),去尋求我們所需要的構(gòu)造輔助函數(shù),我們稱之為“逆推”。
如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。
以后同學(xué)們在做證明題時不妨試一試以上三種方法,慢慢建立自信心,以阻止考試分?jǐn)?shù)的白白流失。最后祝各位考生如愿以償。
中公考研 http://004km.cn
第三篇:考研數(shù)學(xué)證明題三大解題方法
考研數(shù)學(xué)證明題三大解題方法
縱觀近十年考研數(shù)學(xué)真題,大家會發(fā)現(xiàn):幾乎每一年的試題中都會有一個證明題,而且基本上都是應(yīng)用中值定理來解決問題的。但是要參加碩士入學(xué)數(shù)學(xué)統(tǒng)一考試的同學(xué)所學(xué)專業(yè)要么是理工要么是經(jīng)管,同學(xué)們在大學(xué)學(xué)習(xí)數(shù)學(xué)的時候?qū)τ谶壿嬐评矸矫娴挠?xùn)練大多是不夠的,這就導(dǎo)致數(shù)學(xué)考試中遇到證明推理題就發(fā)怵,以致簡單的證明題得分率卻極低。除了個別考研輔導(dǎo)書中有一些證明思路之外,大多數(shù)考研輔導(dǎo)書在這一方面沒有花太大力氣,本人自認(rèn)為在推理證明方面有不凡的效績,在此給大家簡單介紹一些解決數(shù)學(xué)證明題的入手點,希望對有此隱患的同學(xué)有所幫助。
一、結(jié)合幾何意義記住零點存在定理、中值定理、泰勒公式、極限存在的兩個準(zhǔn)則等基本原理,包括條件及結(jié)論。
知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數(shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準(zhǔn)則之一:單調(diào)有界數(shù)列必有極限。只要知道這個準(zhǔn)則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
二、借助幾何意義尋求證明思路
一個證明題,大多時候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個端點處大小關(guān)系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結(jié)果。如果第二步實在無法完滿解決問題的話,轉(zhuǎn)第三步。
三、逆推
從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。
對于那些經(jīng)常使用如上方法的同學(xué)來說,利用三步走就能輕松收獲數(shù)學(xué)證明的12分,但對于從心理上就不自信能解決證明題的同學(xué)來說,卻常常輕易丟失12分,后一部分同學(xué)請按“證明三步走”來建立自信心,以阻止考試分?jǐn)?shù)的白白流失。
第四篇:考研數(shù)學(xué)證明題三大解題方法
考研數(shù)學(xué)證明題三大解題方法
最專業(yè)的學(xué)習(xí)資料下載網(wǎng)站
歡迎下載http://NewDown.org的學(xué)習(xí)資料,為了您的電腦更安全,請從http://NewDown.org下載本站資料,其他網(wǎng)站下載的資料,均為非法盜鏈,并且不能保證您的電腦和上網(wǎng)安全。為了能更好的保證您的電腦和上網(wǎng)安全,請從http://NewDown.org下載所以本站提供的資料。
縱觀近十年考研數(shù)學(xué)真題,大家會發(fā)現(xiàn):幾乎每一年的試題中都會有一個證明題,而且基本上都是應(yīng)用中值定理來解決問題的。但是要參加碩士入學(xué)數(shù)學(xué)統(tǒng)一考試的同學(xué)所學(xué)專業(yè)要么是理工要么是經(jīng)管,同學(xué)們在大學(xué)學(xué)習(xí)數(shù)學(xué)的時候?qū)τ谶壿嬐评矸矫娴挠?xùn)練大多是不夠的,這就導(dǎo)致數(shù)學(xué)考試中遇到證明推理題就發(fā)怵,以致簡單的證明題得分率卻極低。除了個望對有此隱患的同學(xué)有所幫助。
2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明
2007年數(shù)學(xué)一第19題是一個關(guān)于中值定理的證明題,可以在直角坐標(biāo)系F(x)=f(x)-g(x)有三個零點,兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點存在y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個端點處大小關(guān)系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結(jié)果。如果第二步實在無法完滿解決問題的話,轉(zhuǎn)第三步。
三、逆推
從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。對于那些經(jīng)常使用如上方法的同學(xué)來說,利用三步走就能輕松收獲數(shù)學(xué)證明的12分,但對于從心理上就不自信能解決證明題的同學(xué)來說,卻常常輕易丟失12分,后一部分同學(xué)請按“證明三步走”來建立自信心,以阻止考試分?jǐn)?shù)的白白流失。
本站鄭重申明:為了您的電腦更安全,請從http://NewDown.org下載本站資料,其他網(wǎng)站下載的資料,本站一例不保證您的上網(wǎng)安全。
最專業(yè)的學(xué)習(xí)資料下載網(wǎng)站http://NewDown.org
第五篇:數(shù)學(xué)證明題解題方法
數(shù)學(xué)證明題解題方法
第一步:結(jié)合幾何意義記住零點存在定理、中值定理、泰勒公式、極限存在的兩個準(zhǔn)則等基本原理,包括條件及結(jié)論。知道基本原理是證明的基礎(chǔ),知道的程度(即就是對定理理解的深入程度)不同會導(dǎo)致不同的推理能力。如2006年數(shù)學(xué)一真題第16題(1)是證明極限的存在性并求極限。只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數(shù)學(xué)推理是環(huán)環(huán)相扣的,如果第一步未得到結(jié)論,那么第二步就是空中樓閣。這個題目非常簡單,只用了極限存在的兩個準(zhǔn)則之一:單調(diào)有界數(shù)列必有極限。只要知道這個準(zhǔn)則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,“單調(diào)性”與“有界性”都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
第二步:借助幾何意義尋求證明思路。一個證明題,大多時候是能用其幾何意義來正確解釋的,當(dāng)然最為基礎(chǔ)的是要正確理解題目文字的含義。如2007年數(shù)學(xué)一第19題是一個關(guān)于中值定理的證明題,可以在直角坐標(biāo)系中畫出滿足題設(shè)條件的函數(shù)草圖,再聯(lián)系結(jié)論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應(yīng)用羅爾中值定理就能得到所證結(jié)論。再如2005年數(shù)學(xué)一第18題(1)是關(guān)于零點存在定理的證明題,只要在直角坐標(biāo)系中結(jié)合所給條件作出函數(shù)y=f(x)及y=1-x在上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結(jié)論,重要的是寫出推理過程。從圖形也應(yīng)該看到兩函數(shù)在兩個端點處大小關(guān)系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內(nèi)有零點,這就證得所需結(jié)果。如果第二步實在無法完滿解決問題的話,轉(zhuǎn)第三步。
第三步:逆推。從結(jié)論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應(yīng)用不等式證明的一般步驟就能解決問題:即從結(jié)論出發(fā)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性推出結(jié)論。在判定函數(shù)的單調(diào)性時需借助導(dǎo)數(shù)符號與單調(diào)性之間的關(guān)系,正常情況只需一階導(dǎo)的符號就可判斷函數(shù)的單調(diào)性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導(dǎo)數(shù)的符號判定一階導(dǎo)數(shù)的單調(diào)性,再用一階導(dǎo)的符號判定原來函數(shù)的單調(diào)性,從而得所要證的結(jié)果。該題中可設(shè)F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。