第一篇:開關(guān)電源EMI整改頻段干擾原因及抑制辦法(最終版)
開關(guān)電源EMI整改頻段干擾原因及抑制辦法
開關(guān)電源EMI整改中,關(guān)于不同頻段干擾原因及抑制辦法:
1MHZ以內(nèi)以差模干擾為主
1.增大X電容量;
2.添加差模電感;
3.小功率電源可采用PI型濾波器處理(建議靠近變壓器的電解電容可選用較大些)。
1MHZ-5MHZ差模共?;旌?/p>
采用輸入端并聯(lián)一系列X電容來濾除差摸干擾并分析出是哪種干擾超標(biāo)并以解決,1.對于差模干擾超標(biāo)可調(diào)整X電容量,添加差模電感器,調(diào)差模電感量;
2.對于共模干擾超標(biāo)可添加共模電感,選用合理的電感量來抑制;
3.也可改變整流二極管特性來處理一對快速二極管如FR107一對普通整流二極管1N4007。
5M以上以共摸干擾為主,采用抑制共摸的方法。
對于外殼接地的,在地線上用一個磁環(huán)串繞2-3圈會對10MHZ以上干擾有較大的衰減作用;
可選擇緊貼變壓器的鐵芯粘銅箔,銅箔閉環(huán).處理后端輸出整流管的吸收電路和初級大電路并聯(lián)電容的大小。
20-30MHZ
1.對于一類產(chǎn)品可以采用調(diào)整對地Y2電容量或改變Y2電容位置;
2.調(diào)整一二次側(cè)間的Y1電容位置及參數(shù)值;
3.在變壓器外面包銅箔;變壓器最里層加屏蔽層;調(diào)整變壓器的各繞組的排布。
4.改變PCBLAYOUT;
5.輸出線前面接一個雙線并繞的小共模電感;
6.在輸出整流管兩端并聯(lián)RC濾波器且調(diào)整合理的參數(shù);
7.在變壓器與MOSFET之間加BEADCORE;
8.在變壓器的輸入電壓腳加一個小電容。
9.可以用增大MOS驅(qū)動電阻.30-50MHZ 普遍是MOS管高速開通關(guān)斷引起
1.可以用增大MOS驅(qū)動電阻;
2.RCD緩沖電路采用1N4007慢管;
3.VCC供電電壓用1N4007慢管來解決;
4.或者輸出線前端串接一個雙線并繞的小共模電感; 5.在MOSFET的D-S腳并聯(lián)一個小吸收電路; 6.在變壓器與MOSFET之間加BEADCORE; 7.在變壓器的輸入電壓腳加一個小電容;
8.PCB心LAYOUT時大電解電容,變壓器,MOS構(gòu)成的電路環(huán)盡可能的??; 9.變壓器,輸出二極管,輸出平波電解電容構(gòu)成的電路環(huán)盡可能的小。
50-100MHZ普遍是輸出整流管反向恢復(fù)電流引起
1.可以在整流管上串磁珠;
2.調(diào)整輸出整流管的吸收電路參數(shù);
3.可改變一二次側(cè)跨接Y電容支路的阻抗,如PIN腳處加BEADCORE或串接適當(dāng)?shù)碾娮瑁?/p>
4.也可改變MOSFET,輸出整流二極管的本體向空間的輻射(如鐵夾卡MOSFET;鐵夾卡DIODE,改變散熱器的接地點(diǎn))。
5.增加屏蔽銅箔抑制向空間輻射.補(bǔ)充說明:
開關(guān)電源高頻變壓器初次間一般是屏蔽層的,以上未加綴述.開關(guān)電源是高頻產(chǎn)品,PCB的元器件布局對EMI.,請密切注意此點(diǎn).開關(guān)電源若有機(jī)械外殼,外殼的結(jié)構(gòu)對輻射有很大的影響.請密切注意此點(diǎn).主開關(guān)管,主二極管不同的生產(chǎn)廠家參數(shù)有一定的差異,對EMC有一定的影響.200MHZ以上開關(guān)電源已基本輻射量很小,一般可過EMI標(biāo)準(zhǔn)
第二篇:開關(guān)電源電磁干擾抑制技術(shù)
開關(guān)電源電磁干擾抑制技術(shù)
0 引言
隨著現(xiàn)代電子技術(shù)和功率器件的發(fā)展,開關(guān)電源以其體積小,重量輕,高性能,高可靠性等特點(diǎn)被廣泛應(yīng)用于計算機(jī)及外圍設(shè)備通信、自動控制、家用電器等領(lǐng)域,為人們的生產(chǎn)生活和社會的建設(shè)提供了很大幫助。但是,隨著現(xiàn)代電子技術(shù)的快速發(fā)展,電子電氣設(shè)備的廣泛應(yīng)用,處于同一工作環(huán)境的各種電子、電氣設(shè)備的距離越來越近,電子電路工作的外部環(huán)境進(jìn)一步惡化。由于開關(guān)電源工作在高頻開關(guān)狀態(tài),內(nèi)部會產(chǎn)生很高的電流、電壓變化率,導(dǎo)致開關(guān)電源產(chǎn)生較強(qiáng)的電磁干擾。電磁干擾信號不僅對電網(wǎng)造成污染,還直接影響到其他用電設(shè)備甚至電源本身的正常工作,而且作為輻射干擾闖入空間,造成電磁污染,制約著人們的生產(chǎn)和生活。國內(nèi)在20世紀(jì)80一90年代,為了加強(qiáng)對當(dāng)前國內(nèi)電磁污染的治理,制定了一些與CISPR標(biāo)準(zhǔn)、IEC801等國際標(biāo)準(zhǔn)相對應(yīng)的標(biāo)準(zhǔn)。自從2003年8月1日中國強(qiáng)制實(shí)施3C認(rèn)證(china compulsory certification)工作以來,掀起了“電磁兼容熱”,近距離的電磁干擾研究與控制愈來愈引起電子研究人員們的關(guān)注,當(dāng)前已成為當(dāng)前研究領(lǐng)域的一個新熱點(diǎn)。本文將針對開關(guān)電源電磁干擾的產(chǎn)生機(jī)理系統(tǒng)地論述相關(guān)的抑制技術(shù)。
l 開關(guān)電源電磁干擾的抑制 形成電磁干擾的三要素是干擾源、傳播途徑和受擾設(shè)備。因而,抑制電磁干擾應(yīng)從這三方面人手。抑制干擾源、消除干擾源和受擾設(shè)備之間的耦合和輻射、提高受擾設(shè)備的抗擾能力,從而改善開關(guān)電源的電磁兼容性能的目的。1.1 采用濾波器抑制電磁干擾 濾波是抑制電磁干擾的重要方法,它能有效地抑制電網(wǎng)中的電磁干擾進(jìn)入設(shè)備,還可以抑制設(shè)備內(nèi)的電磁干擾進(jìn)入電網(wǎng)。在開關(guān)電源輸入和輸出電路中安裝開關(guān)電源濾波器,不但可以解決傳導(dǎo)干擾問題,同時也是解決輻射干擾的重要武器。濾波抑制技術(shù)分為無源濾波和有源濾波2種方式。
1.1.1 無源濾波技術(shù) 無源濾波電路簡單,成本低廉,工作性能可靠,是抑制電磁干擾的有效方式。無源濾波器由電感、電容、電阻元件組成,其直接作用是解決傳導(dǎo)發(fā)射。開關(guān)電源中應(yīng)用的無源濾波器的原理結(jié)構(gòu)圖如圖1所示。
由于原電源電路中濾波電容容量大,整流電路中會產(chǎn)生脈沖尖峰電流,這個電流由非常多的高次諧波電流組成,對電網(wǎng)產(chǎn)生干擾;另外電路中開關(guān)管的導(dǎo)通或截止、變壓器的初級線圈都會產(chǎn)生脈動電流。由于電流變化率很高,對周圍電路會產(chǎn)生出不同頻率的感應(yīng)電流,其中包括差模和共模干擾信號,這些干擾信號可以通過2根電源線傳導(dǎo)到電網(wǎng)其他線路和干擾其他的電子設(shè)備。圖中差模濾波部分可以減少開關(guān)電源內(nèi)部的差模干擾信號,又能大大衰減設(shè)備本身工作時產(chǎn)生的電磁干擾信號傳向電網(wǎng)。又根據(jù)電磁感應(yīng)定律,得E=Ldi/dt,其中:E為L兩端的電壓降;L為電感量;di/dt為電流變化率。顯然要求電流變化率越小,則要求電感量就越大。脈沖電流回路通過電磁感應(yīng)其他電路與大地或機(jī)殼組成的回路產(chǎn)生的干擾信號為共模信號;開關(guān)電源電路中開關(guān)管的集電極與其他電路之間產(chǎn)生很強(qiáng)的電場,電路會產(chǎn)生位移電流,而這個位移電流也屬于共模干擾信號。圖1中共模濾波器就是用來抑制共模干擾,使之受到衰減。1.1.2 有源濾波技術(shù)
有源濾波技術(shù)是抑制共模干擾的一種有效方法。該方法從噪聲源出發(fā)而采取的措施(如圖2所示),其基本思想是設(shè)法從主回路中取出一個與電磁干擾信號大小相等、相位相反的補(bǔ)償信號去平衡原來的干擾信號,以達(dá)到降低干擾水平的目的。如圖2所示,利用晶體管的電流放大作用,通過把發(fā)射極的電流折合到基極,在基極回路來濾波。R1,C2組成的濾波器使基極紋波很小,這樣射極的紋波也很小。由于C2的容量小于C3,減小了電容的體積。這種方式僅適合低壓小功率電源的情況。另外,在設(shè)計和選用濾波器時應(yīng)注意頻率特性、耐壓性能、額定電流、阻抗特性、屏蔽和可靠性。濾波器的安裝位置要恰當(dāng),安裝方法要正確,才能對干擾起到預(yù)期的濾波作用。1.2 屏蔽技術(shù)和接地技術(shù) 采用屏蔽技術(shù)可以有效地抑制開關(guān)電源的電磁輻射干擾。屏蔽一般分為2種:一種是靜電屏蔽,主要用于防止靜電場和恒定磁場的影響;另一種是電磁屏蔽,主要用于防止交變電場、磁場以及交變電磁場的影響。屏蔽技術(shù)分為對發(fā)出電磁波部位的屏蔽和受電磁波影響的元器件的屏蔽。在開關(guān)電源中,可發(fā)出電磁波的元器件是指變壓器、電感器、功率器件等,通常在其周圍采用銅板或鐵板作為屏蔽,以使電磁波產(chǎn)生衰減。此外,為了抑制開關(guān)電源產(chǎn)生的輻射向外部發(fā)散,為了減少電磁干擾對其他電子設(shè)備的影響,應(yīng)采取整體屏蔽。可完全按照對磁場屏蔽的方法來加工屏蔽罩,然后將整個屏蔽罩與系統(tǒng)的機(jī)殼和地連接為一體,就能對電磁場進(jìn)行有效的屏蔽。然而在使用整體屏蔽時應(yīng)充分考慮屏蔽材料的接縫、電線的輸入/輸出端子和電線的引出口等處的電磁泄露,且不易散熱,結(jié)構(gòu)成本大幅度增加等因素。為使電磁屏蔽能同時發(fā)揮靜電屏蔽的作用,加強(qiáng)屏蔽效果,同時保障人身和設(shè)備的安全,應(yīng)將系統(tǒng)與大地相連,即為接地技術(shù)。接地是指在系統(tǒng)的某個選定點(diǎn)與某個接地面之間建立導(dǎo)電的通路設(shè)計。這一過程是至關(guān)重要的,將接地和屏蔽正確結(jié)合起來可以更好地解決電磁干擾問題,又可提高電子產(chǎn)品的抗干擾能力。1.3 PCB設(shè)計技術(shù) 為更好地抑制開關(guān)電源的電磁干擾,其印制電路板(PCB)的抗干擾技術(shù)尤為重要。為減少PCB的電磁輻射和PCB上電路間的串?dāng)_,要非常注意PCB布局、布線和接地。如減少輻射干擾是減小通路面積,減小干擾源和敏感電路的環(huán)路面積,采用靜電屏蔽。而抑制電場與磁場的耦合,應(yīng)盡量增大線間距離。在開關(guān)電源中接地是抑制干擾的重要方法。接地有安全接地、工作接地和屏蔽接地等3種基本類型。地線設(shè)計應(yīng)注意以下幾點(diǎn):交流電源地與直流電源地分開;功率地與弱電地分開;模擬電路與數(shù)字電路的電源地分開;盡量加粗地線。1.4 擴(kuò)頻調(diào)制技術(shù) 對于一個周期信號尤其是方波來說,其能量主要分布在基頻信號和諧波分量中,諧波能量隨頻率的增加呈級數(shù)降低。由于n次諧波的帶寬是基頻帶寬的n倍,通過擴(kuò)頻技術(shù)將諧波能量分布在一個更寬的頻率范圍上。由于基頻和各次諧波能量減少,其發(fā)射強(qiáng)度也應(yīng)該相應(yīng)降低。要在開關(guān)電源中采用擴(kuò)頻時鐘信號,需要對該電源開關(guān)脈沖控制電路輸出的脈沖信號進(jìn)行調(diào)制,形成擴(kuò)頻時鐘(如圖3所示)。與傳統(tǒng)的方法相比,采用擴(kuò)頻技術(shù)優(yōu)化開關(guān)電源EMI既高效又可靠,無需增加體積龐大的濾波器件和繁瑣的屏蔽處理,也不會對電源的效率帶來任何負(fù)面影響。
1.5 一次整流電路中加功率因數(shù)校正(PFC)網(wǎng)絡(luò) 對于直流穩(wěn)壓電源,電網(wǎng)電壓通過變壓器降壓后直接通過整流電路進(jìn)行整流,所以整流過程中產(chǎn)生的諧波分量作為干擾直接影響交流電網(wǎng)的波形,使波形畸變,功率因數(shù)偏低。為了解決輸入電流波形畸變和降低電流諧波含量,將功率因數(shù)校正(PFC)技術(shù)應(yīng)用于開關(guān)電源中是非常必要的。PFC技術(shù)使得電流波形跟隨電壓波形,將電流波形校正成近似的正弦波,從而降低了電流諧波含量,改善了橋式整流電容濾波電路的輸入特性,提高了開關(guān)電源的功率因數(shù)。其中無源功率因數(shù)校正電路是利用電感和電容等元件組成濾波器,將輸入電流波形進(jìn)行移相和整形過程來實(shí)現(xiàn)提高功率因數(shù)的。而有源功率因數(shù)校正電路是依據(jù)控制電路強(qiáng)迫輸入交流電流波形跟蹤輸入交流電壓波形的原理來實(shí)現(xiàn)交流輸入電流正弦化,并與交流輸入電壓同步。兩種方法均使功率因數(shù)提高,后者效果更加明顯,但電路復(fù)雜。結(jié)語 本文的設(shè)計方法正確,仿真結(jié)果正常,克服了傳統(tǒng)方案中所存在的一些問題,使電磁干擾的抑制技術(shù)得到進(jìn)一步優(yōu)化。從開關(guān)電源電磁干擾產(chǎn)生的機(jī)理來看,有多種方式可抑制電磁干擾,除本文中分析的幾種主要方法外,還可以采用光電隔離器、LSA系列浪涌吸收器、軟開關(guān)技術(shù)等。抑制開關(guān)電源的電磁干擾,目的是使其能在各領(lǐng)域得到有效應(yīng)用的同時,盡量減少電磁污染,實(shí)現(xiàn)了對電磁污染問題的有效治理。而在實(shí)際設(shè)計時,應(yīng)全面考慮開關(guān)電源的各種電磁干擾,選用多種抑制電磁干擾的方法加以綜合利用,使電磁干擾降到最低,從而提高電子產(chǎn)品的質(zhì)量與可靠性。
第三篇:開關(guān)電源電磁干擾標(biāo)準(zhǔn)與EMI電磁干擾抑制措施
開關(guān)電源電磁干擾標(biāo)準(zhǔn)與EMI電磁干擾抑制措施
電磁兼容性(EMC)是指電子設(shè)備或系統(tǒng)在規(guī)定的電磁環(huán)境電平下不因電磁干擾而降低性能指標(biāo),同時它們本身產(chǎn)生的電磁輻射不大于規(guī)定的極限電平,不影響其它電子設(shè)備或系統(tǒng)的正常運(yùn)行,并達(dá)到設(shè)備與設(shè)備、系統(tǒng)與系統(tǒng)之間互不干擾、共同可靠地工作的目的。
世界各國都相應(yīng)制定了自己的EMC標(biāo)準(zhǔn)。比如國際電工委員會的1EC61000及(C1SPR系列標(biāo)準(zhǔn)、歐洲共同體的FN系列標(biāo)準(zhǔn)、美國聯(lián)邦通信委的FCC系列標(biāo)準(zhǔn)和我國現(xiàn)行的GT3/T13926系列EMC標(biāo)準(zhǔn)等。隨著國際電磁兼容法規(guī)的日益嚴(yán)格,產(chǎn)品的電磁兼容性能越來越受到重視。
開關(guān)電源作為一種電源設(shè)備,其應(yīng)用越來越廣泛。隨著電力電子器件的不斷更新?lián)Q代,開關(guān)電源的開關(guān)頻率及開關(guān)速度不斷提高,但開關(guān)的快速通斷,引起電壓和電流的快速變化。這些瞬變的電壓和電流,通過電源線路、寄生參數(shù)和雜散的電磁場耦合,會產(chǎn)生大量的電磁干擾。
二、開關(guān)電源的干擾源分析
開關(guān)電源產(chǎn)生的電磁干擾(EMI),按耦合通道來分,可分為傳導(dǎo)干擾和輻射干擾;按噪聲干擾源種類來分可分為尖峰干擾和諧波干擾。開關(guān)電源在工作過程中所產(chǎn)生的浪涌電流和尖峰電壓就形成了干擾源,工頻整流濾波使用的大電容充電放電、開關(guān)管高頻工作時的電壓切換以及輸出整流二極管的反向恢復(fù)電流都是這類干擾源。
三、電磁干擾的抑制措施
電磁干擾由三個基本要素組合而產(chǎn)生:電磁干擾源;對該干擾能量敏感的設(shè)備;將電磁干擾源傳輸?shù)矫舾性O(shè)備的媒介即傳輸通道或藕合途徑。
對開關(guān)電源產(chǎn)生的電磁干擾所采取的抑制措施,主要從兩個方而考慮:一是減小干擾源的干擾強(qiáng)度;一是切斷干擾傳播途徑。
常用的抗干擾措施包括電路的隔離、屏蔽、接地、加裝EMI濾波器以及PCB板的合理布局與布線。
1.電路的隔離
在開關(guān)電源中,電路的隔離主要有:模擬電路的隔離、數(shù)字電路的隔離、數(shù)字電路與模擬電路之間的隔離。主要目的是通過隔離元器件把噪聲干擾的路徑切斷,從而達(dá)到抑制噪聲干擾的效果。對于開關(guān)電源的模擬信號控制系統(tǒng)的隔離,交流信號一般采用變壓器隔離,直流信號一般采用線性隔離器(如線性光電耦器)隔離。
數(shù)字電路的隔離主要有:脈沖變壓器隔離、光電耦合器隔離等。其中數(shù)字量輸入隔離方式主要采用脈沖變壓器隔離、光電耦合器隔離;而數(shù)字量輸出隔離方式主要采用光電耦合器隔離、高頻變壓器隔離。
2.屏蔽
屏蔽一般分為兩類,一類是靜電屏蔽,主要用于防止靜電場和恒定磁場的影響;另一類是電磁屏蔽,主要用于防止交變電場、交變磁場以及交變電磁場的影響。屏蔽是抑制開關(guān)電源輻射干擾的有效方法??梢杂脤?dǎo)電良好的材料對電場屏蔽,而用導(dǎo)磁率高的材料對磁場屏蔽。
3.接地
為防止各種電路在工作中產(chǎn)生互相干擾,使之能相互兼容地工作,根據(jù)電路的性質(zhì),將工作接地分為不同的種類。比如直流地、交流地、數(shù)字地、模擬地、信號地、功率地、電源地等。在電路的設(shè)計中,應(yīng)將交流電源地與直流電源地分開,模擬電路與數(shù)字電路的電源地分開,功率地與弱電地分開。
4.加裝EMI濾波器
電源濾波器安裝在電源線與電子設(shè)備之間,用于抑制電源線引出的傳導(dǎo)干擾,又可以降低從電網(wǎng)引入的傳導(dǎo)干擾,對提高設(shè)備的可靠性有重要的作用。開關(guān)電源產(chǎn)生的電磁干擾以傳導(dǎo)干擾為主,而傳導(dǎo)干擾又分差模騷擾和共模干擾兩種。構(gòu)成開關(guān)電源EMI濾波器的基本網(wǎng)絡(luò)如圖1所示。該濾波器由共模扼流圈L、差模電容Cx和共模電容Cy組成。共模扼流圈L由兩個繞在同一個高磁導(dǎo)率磁芯上的繞組構(gòu)成,其結(jié)構(gòu)使差模電流產(chǎn)生的磁通相互抵消。這種結(jié)構(gòu)以較小體積獲得較大的電感值,并且不用擔(dān)心由于工作電流導(dǎo)致飽和。每個繞組與電容Cy分別組成L-E和N-E兩對獨(dú)立端口的低通濾波器,形成共模濾波網(wǎng)絡(luò),用來抑制電源線上存在的共模干擾。至于共模扼流圈L、差模電容Cx和共模電容Cy的取值大小,應(yīng)盡量做到濾波器的諧振頻率低于開關(guān)電源的工作頻率,這樣可以實(shí)現(xiàn)對整個頻段的濾波。
第四篇:解析幾種有效開關(guān)電源電磁干擾抑制
解析幾種有效開關(guān)電源電磁干擾抑制
前關(guān)于開關(guān)電源EMI(Electromagnetic Interference)的研究,有些從EMI產(chǎn)生的機(jī)理出發(fā),有些 從EMI 產(chǎn)生的影響出發(fā),都提出了許多實(shí)用有價值的方案。這里分析與比較了幾種有效的方案,并為開關(guān) 電源EMI 的抑制措施提出新的參考建議。
◆ 開關(guān)電源電磁干擾的產(chǎn)生機(jī)理
開關(guān)電源產(chǎn)生的干擾,按噪聲干擾源種類來分,可分為尖峰干擾和諧波干擾兩種;若按耦合通路來分,可 分為傳導(dǎo)干擾和輻射干擾兩種?,F(xiàn)在按噪聲干擾源來分別說明:
1、二極管的反向恢復(fù)時間引起的干擾
高頻整流回路中的整流二極管正向?qū)〞r有較大的正向電流流過,在其受反偏電壓而轉(zhuǎn)向截止時, 由于PN結(jié)中有較多的載流子積累,因而在載流子消失之前的一段時間里,電流會反向流動,致使載流子消失的反向恢復(fù)電流急劇減少而發(fā)生很大的電流變化(di/dt)。
2、開關(guān)管工作時產(chǎn)生的諧波干擾
功率開關(guān)管在導(dǎo)通時流過較大的脈沖電流。例如正激型、推挽型和橋式變換器的輸入電流波形在 阻性負(fù)載時近似為矩形波,其中含有豐富的高次諧波分量。當(dāng)采用零電流、零電壓開關(guān)時,這種諧 波干擾將會很小。另外,功率開關(guān)管在截止期間,高頻變壓器繞組漏感引起的電流突變,也會產(chǎn)生 尖峰干擾。
3、交流輸入回路產(chǎn)生的干擾
無工頻變壓器的開關(guān)電源輸入端整流管在反向恢復(fù)期間會引起高頻衰減振蕩產(chǎn)生干擾。開關(guān)電源產(chǎn)生的尖峰干擾和諧波干擾能量,通過開關(guān)電源的輸入輸出線傳播出去而形成的干擾稱 之為傳導(dǎo)干擾;而諧波和寄生振蕩的能量,通過輸入輸出線傳播時,都會在空間產(chǎn)生電場和磁場。這 種通過電磁輻射產(chǎn)生的干擾稱為輻射干擾。
4、其他原因
元器件的寄生參數(shù),開關(guān)電源的原理圖設(shè)計不夠完美,印刷線路板(PCB)走線通常采用手工布 置,具有很大的隨意性,PCB的近場干擾大,并且印刷板上器件的安裝、放置,以及方位的不合理都會造成EMI干擾。
◆ 開關(guān)電源EMI的特點(diǎn)
作為工作于開關(guān)狀態(tài)的能量轉(zhuǎn)換裝置,開關(guān)電源的電壓、電流變化率很高,產(chǎn)生的干擾強(qiáng)度較大;干擾源主要集中在功率開關(guān)期間以及與之相連的散熱器和高平變壓器,相對于數(shù)字電路干擾源的位置較為清楚;開關(guān)頻率不高(從幾十千赫和數(shù)兆赫茲),主要的干擾形式是傳導(dǎo)干擾和近場干擾;而印刷線路板(PCB)走線通常采用手工布線,具有更大的隨意性,這增加了PCB分布參數(shù)的提取和近場干擾估計的難度。
◆ EMI測試技術(shù)
目前診斷差模共模干擾的三種方法:射頻電流探頭、差模抑制網(wǎng)絡(luò)、噪聲分離網(wǎng)絡(luò)。用射頻電流探頭是測量差模 共模干擾最簡單的方法,但測量結(jié)果與標(biāo)準(zhǔn)限值比較要經(jīng)過較復(fù)雜的換算。差模抑制網(wǎng)絡(luò)結(jié)構(gòu)比較簡單,測量結(jié)果可直接與標(biāo)準(zhǔn)限值比較,但只能測量共模干擾。噪聲分離網(wǎng)絡(luò)是最理想的方法,但其關(guān)鍵部件變壓器的制造要求很高。
◆ 目前抑制干擾的幾種措施
形成電磁干擾的三要素是干擾源、傳播途徑和受擾設(shè)備。因而,抑制電磁干擾也應(yīng)該從這三方面著手。首先應(yīng)該抑制干擾源,直接消除干擾原因;其次是消除干擾源和受擾設(shè)備之間的耦合和輻射,切斷電磁干擾的傳播途徑;第三是提高受擾設(shè)備的抗擾能力,減低其對噪聲的敏感度。目前抑制干擾的幾種措施基本上 都是用切斷電磁干擾源和受擾設(shè)備之間的耦合通道,它們確是行之有效的辦法。常用的方法是屏蔽、接地和濾波。采用屏蔽技術(shù)可以有效地抑制開關(guān)電源的電磁輻射干擾。例如,功率開關(guān)管和輸出二極管通常有較大的功率損耗,為了散熱往往需要安裝散熱器或直接安裝在電源底板上。器件安裝時需要導(dǎo)熱性能好的絕緣片進(jìn)行絕緣,這就使器件與底板和散熱器之間產(chǎn)生了分布電容,開關(guān)電源的底板是交流電源的地線,因而通過 器件與底板之間的分布電容將電磁干擾耦合到交流輸入端產(chǎn)生共模干擾,解決這個問題的辦法是采用兩層絕緣片之間夾一層屏蔽片,并把屏蔽片接到直流地上,割斷了射頻干擾向輸入電網(wǎng)傳播的途徑。為了抑制開關(guān)電源產(chǎn)生的輻射,電磁干擾對其他電子設(shè)備的影響,可完全按照對磁場屏蔽的方法來加工屏蔽罩,然后將整個屏蔽罩與系統(tǒng)的機(jī)殼和地連接為一體,就能對電磁場進(jìn)行有效的屏蔽。電源某些部分與大地相連可
以起到抑制干擾的作用。例如,靜電屏蔽層接地可以抑制變化電場的干擾;電磁屏蔽用的導(dǎo)體原則上可以不接地,但不接地的屏蔽導(dǎo)體時常增強(qiáng)靜電耦合而產(chǎn)生所謂“負(fù)靜電屏蔽”效應(yīng),所以仍以接地為好,這樣 使電磁屏蔽能同時發(fā)揮靜電屏蔽的作用。電路的公共參考點(diǎn)與大地相連,可為信號回路提供穩(wěn)定的參考電位。因此,系統(tǒng)中的安全保護(hù)地線、屏蔽接地線和公共參考地線各自形成接地母線后,最終都與大地相連.在電路系統(tǒng)設(shè)計中應(yīng)遵循“一點(diǎn)接地”的原則,如果形成多點(diǎn)接地,會出現(xiàn)閉合的接地環(huán)路,當(dāng)磁力線穿過該回路時將產(chǎn)生磁感應(yīng)噪聲,實(shí)際上很難實(shí)現(xiàn)“一點(diǎn)接地”。因此,為降低接地阻抗,消除分布電容的影響而采取平面式或多點(diǎn)接地,利用一個導(dǎo)電平面(底板或多層印制板電路的導(dǎo)電平面層等)作為參考地,需要接地的各部分就近接到該參考地上。為進(jìn)一步減小接地回路的壓降,可用旁路電容減少返回電流的幅 值。在低頻和高頻共存的電路系統(tǒng)中,應(yīng)分別將低頻電路、高頻電路、功率電路的地線單獨(dú)連接后,再連接到公共參考點(diǎn)上。濾波是抑制傳導(dǎo)干擾的一種很好的辦法。例如,在電源輸入端接上濾波器,可以抑制開關(guān)電源產(chǎn)生并向電網(wǎng)反饋的干擾,也可以抑制來自電網(wǎng)的噪聲對電源本身的侵害。在濾波電路中,還采用很多專用的濾波元件,如穿心電容器、三端電容器、鐵氧體磁環(huán),它們能夠改善電路的濾波特性。恰當(dāng)?shù)卦O(shè)計或選擇濾波器,并正確地安裝和使用濾波器,是抗干擾技術(shù)的重要組成部分。EMI濾波技術(shù)是一種抑制尖脈沖干擾的有效措施,可以濾除多種原因產(chǎn)生的傳導(dǎo)干擾。一種由電容、電感組成的EMI濾波器,接在開關(guān)電源的輸入端。電路中,C1、C5是高頻旁路電容,用于濾除兩輸入電源線間的差模干擾;L1與C2、C4;L2與C3、C4組成共模干擾濾波環(huán)節(jié),用于濾除電源線與地之間非對稱的共模干擾;L3、L4的初次級匝數(shù)相等、極性相反,交流電流在磁芯中產(chǎn)生的磁通相反,因而可有效地抑制共模干擾。測試表明,只要適當(dāng)選擇元器件的參數(shù),便可較好地抑制開關(guān)電源產(chǎn)生的傳導(dǎo)干擾。
◆ 目前開關(guān)電源EMI抑制措施的不足之處 現(xiàn)有的抑制措施大多從消除干擾源和受擾設(shè)備之間的耦合和輻射,切斷電磁干擾的傳播途徑出發(fā),這確是抑制干擾的一種行之有效的辦法,但很少有人涉及直接控制干擾源,消除干擾,或提高受擾設(shè)備的抗擾能力,殊不知后者還有許多發(fā)展的空間。
◆ 改進(jìn)措施的建議
我認(rèn)為目前從電磁干擾的傳播途徑出發(fā)來抑制干擾,已漸進(jìn)成熟。我們的視點(diǎn)要回到開關(guān)電源器件本身來。從多年的工作實(shí)踐來看,在電路方面要注意以下幾點(diǎn):
(1)印制板布局時,要將模擬電路區(qū)和數(shù)字電路區(qū)合理地分開,電源和地線單獨(dú)引出,電源供給處匯集到一點(diǎn);PCB布線時,高頻數(shù)字信號線要用短線,主要信號線最好集中在PCB板中心,同時電 源線盡可能遠(yuǎn)離高頻數(shù)字信號線或用地線隔開。其次,可以根據(jù)耦合系數(shù)來布線,盡量減少干擾耦合。
(2)印制板的電源線和地線印制條盡可能寬,以減小線阻抗,從而減小公共阻抗引起的干擾噪聲。
(3)器件多選用貼片元件和盡可能縮短元件的引腳長度,以減小元件分布電感的影響。
(4)在Vdd及Vcc電源端盡可能靠近器件接入濾波電容,以縮短開關(guān)電流的流通途徑,如用10μF鋁電解和0 1μF電容并聯(lián)接在電源腳上。對于高速數(shù)字IC的電源端可以用鉭電解電容代替鋁電解電容,因?yàn)殂g電解的對地阻抗比鋁電解小得多。產(chǎn)生開關(guān)電源電磁干擾的因素還很多,抑制電磁干擾還有大量的工作。全面抑制開關(guān)電源的各種噪聲 才會使開關(guān)電源得到更廣泛的應(yīng)用。
第五篇:繼電器電磁干擾的分析及抑制
繼電器電磁干擾的分析及抑制
轉(zhuǎn)載▼
(2012-06-06 10:38:50)
標(biāo)簽:
分類: 其它知識 繼電器
it
摘要:本文主要介紹了對電氣設(shè)備中繼電器及其開關(guān)觸點(diǎn)干擾抑制的機(jī)理,提出了抑制干擾的有效措施。
關(guān)鍵詞:繼電器 電磁干擾 分析 抑制
1前言
隨著科學(xué)技術(shù)的飛速發(fā)展,電子、電力電子、電氣設(shè)備應(yīng)用越來越廣泛,它們在運(yùn)行過程中會產(chǎn)生較強(qiáng)的電磁干擾和諧波干擾。其中,電磁干擾具有很寬的頻率范圍(從幾百Hz到MHz),又有一定的幅度,經(jīng)過傳導(dǎo)和輻射會污染電磁環(huán)境,對電子設(shè)備造成干擾,有時甚至危及操作人員的安全。特別是大功率中、短波廣播發(fā)射中心,其周圍電磁環(huán)境尤為復(fù)雜,要想保證設(shè)備安全穩(wěn)定運(yùn)行,電子設(shè)備及電源必須具有更高的電磁兼容性。
2電磁干擾的抑制
電磁干擾EMI(Electromagnetic Interference)是指由無用信號或電磁騷擾(噪聲)對有用電磁信號的接收或傳輸所造成的損害。一個系統(tǒng)或系統(tǒng)內(nèi),某一線路受到電磁干擾的程度可以表示為如下關(guān)系式:
N=G×C/I
其中:G為噪聲源強(qiáng)度;
I為受干擾電路的敏感程度;
C為噪聲通過某種途徑傳導(dǎo)受干擾處的耦合因素。
從上式可以看出,電磁干擾抑制的技術(shù)就是圍繞這三個要素所采取的各種措施,歸納起來就是:
(1)抑制電磁干擾源;
(2)切斷電磁干擾耦合途徑;
(3)降低電磁敏感裝置的敏感性。
2.1抑制電磁干擾源
首先必須確定干擾源在何處,越靠近干擾源的地方采取措施抑制效果越好,一般來說,電流電壓瞬變的地方(即di/dt或du/dt)即是干擾源,如:繼電器開合、電容充放電、電機(jī)運(yùn)轉(zhuǎn)、集成電路開關(guān)工作等都可能成為干擾源。另外,市電并非理想的50Hz正弦波,其中充滿各種頻率噪聲,也是不可忽視的干擾源。
抑制干擾源就是盡可能的減小di/dt或du/dt,這是抗干擾設(shè)計時最優(yōu)先和最重要的原則。減小di/dt的干擾源,主要是在干擾回路串聯(lián)電感或電阻以及增加續(xù)流二極管來實(shí)現(xiàn);減小du/dt的干擾源,則是通過在干擾源兩端并聯(lián)電容來實(shí)現(xiàn)。
抑制方法通常采用低噪聲電路、瞬態(tài)抑制電路、穩(wěn)壓電路等,所選用的器件應(yīng)盡可能采用低噪聲、高頻特性好、穩(wěn)定性高的電子元件,特別要注意,抑制電路中不適當(dāng)?shù)钠骷x擇可能會產(chǎn)生新的干擾源。
2.2切斷電磁干擾耦合的途徑
電磁干擾耦合途徑主要包括傳導(dǎo)和輻射兩種。
所謂傳導(dǎo)干擾是指通過導(dǎo)線傳播到敏感器件的干擾,抑制傳導(dǎo)干擾主要是通過在導(dǎo)線上增加濾波器的方法切斷干擾源,有時也可加隔離光耦來解決。濾波器分為低通(LPF)、高通(HPF)、帶阻(BEF)、帶通(BPF)等四種,可根據(jù)信號與噪聲頻率的差別選擇不同類型的濾波器,對于要求較高的設(shè)備,則必須采用穿心濾波器。
輻射干擾是指通過空間輻射傳播到敏感器件的干擾,對于輻射干擾,主要是采用屏蔽技術(shù)和分層技術(shù)。屏蔽技術(shù)是一門科學(xué),選擇合適的屏蔽材料,在適當(dāng)?shù)奈恢眠M(jìn)行屏蔽,對于屏蔽效果至關(guān)重要,尤其是屏蔽室的設(shè)計??晒┻x擇的屏蔽材料種類繁多,有各種金屬板、銅絲網(wǎng)、導(dǎo)電橡膠、導(dǎo)電膠、導(dǎo)電玻璃等等,應(yīng)根據(jù)需要進(jìn)行選擇。屏蔽室的設(shè)計應(yīng)充分考慮門窗、通風(fēng)口、進(jìn)出線口的屏蔽與搭接,除靜電屏蔽外,還應(yīng)考慮磁屏蔽及接地。
2.3降低電磁敏感裝置的靈敏度
電磁敏感裝置的靈敏度本身具有矛盾的雙重性,一方面,人們希望電磁敏感裝置靈敏度高一些,以提高對信號的接收能力;另一方面,其靈敏度越高,受噪聲影響的可能性也就越大。因此,應(yīng)根據(jù)具體情況,采用降額設(shè)計、屏蔽設(shè)計、網(wǎng)絡(luò)鈍化、功能鈍化等方法使問題得到解決。
電磁干擾抑制方法很多,可以選擇一種或多種綜合應(yīng)用,但不論選擇什么方法,都應(yīng)從設(shè)計之初就著手系統(tǒng)電磁兼容性的考慮。
3繼電器及其開關(guān)觸點(diǎn)干擾的抑制
繼電器是具有隔離功能的自動開關(guān)元件,廣泛應(yīng)用于遙控、遙測、通訊、自動控制、機(jī)電一體化及電力電子等設(shè)備中,是最重要的控制元件之一。繼電器的開合本身所產(chǎn)生的電磁干擾是絕對不能忽視的,為保證各種設(shè)備的安全穩(wěn)定運(yùn)行,對繼電器及其開關(guān)觸點(diǎn)電磁干擾的抑制尤為重要。
3.1繼電器線圈瞬變干擾的抑制
繼電器線圈(以直流繼電器為例)是感性負(fù)載,在電源斷電瞬間會產(chǎn)生瞬變電壓,有時高達(dá)幾kV,如此高的電壓足以損壞相關(guān)元器件;不僅如此,由于其含有豐富的諧波,可通過線路間的分布電容、絕緣電阻侵入控制系統(tǒng),導(dǎo)致誤動作。為防止元器件損壞、電路誤動作等,就必須采取抑制措施,由于斷路產(chǎn)生的瞬變電壓能量大、頻譜寬,僅僅采用濾波或隔離措施難以湊效,抑制瞬變干擾,通常采用如下幾種常見的方式:
(1)并聯(lián)電阻
圖1為并聯(lián)電阻抑制瞬變干擾電路,在圖1中,K為電路的控制開關(guān),L為繼電器線圈的電感。該抑制電路的關(guān)鍵是正確選擇所并聯(lián)的電阻值,阻值過大起不了作用,過小增加功耗,且易燒壞開關(guān)觸點(diǎn)。例如,48V直流繼電器以并聯(lián)1kΩ/5W電阻為宜,連接不必考慮電源的極性。
圖1并聯(lián)電阻方式
(2)并聯(lián)二極管
圖2為并聯(lián)二極管抑制瞬變干擾電路,電源與二極管極性的相對關(guān)系不可任意改變。采用這種方式,能量損耗小,瞬變電壓低,但是該種方式延長了放電時間,導(dǎo)致繼電器線包延時釋放,降低了動態(tài)響應(yīng)性能。二極管峰值耐壓應(yīng)為負(fù)載電壓的3倍以上。
圖2并聯(lián)二極管方式
(3)并聯(lián)RC支路
并聯(lián)RC支路如圖3所示。該種方式抑制效果好,但使用元器件較多,R、C數(shù)值的選擇與線圈的電感及內(nèi)阻有關(guān),與電源極性無關(guān),通常R在10~100Ω之間,C在0.1~0.5μF之間,選用無極性電容器,且其耐壓應(yīng)高于電源電壓的峰值。
圖3并聯(lián)RC支路方式
(4)其他方式
另外,還有并聯(lián)電阻+二極管支路方式(如圖4所示)和并聯(lián)雙向二極管或穩(wěn)壓管方式(如圖5所示)。并聯(lián)電阻+二極管支路方式中,電源與二極管的極性不能顛倒,采用這種方式能減少釋放時間,提高動態(tài)特性。并聯(lián)雙向穩(wěn)壓二極管方式不必考慮電源極性,延遲時間短,但必須保證穩(wěn)壓二極管的耐壓至少是電源電壓的2倍。
3.2 開關(guān)觸點(diǎn)干擾的抑制
斷開繼電器負(fù)載時,為防止開關(guān)觸點(diǎn)產(chǎn)生火花放電,除了在線圈兩端加能量釋放通路外,也可在開關(guān)觸點(diǎn)兩端增加并聯(lián)保護(hù)網(wǎng)絡(luò),一般最常用的是RC保護(hù)網(wǎng)絡(luò)。該保護(hù)網(wǎng)絡(luò)可延長接點(diǎn)的耐久性,防止噪音及減小電弧引起接點(diǎn)燒毀。圖6為繼電器開關(guān)觸點(diǎn)干擾抑制的典型電路。
在圖6中,R、C串聯(lián)后跨接在開關(guān)觸點(diǎn)兩端,當(dāng)開關(guān)斷開時電感性負(fù)載中存儲的能量通過RC網(wǎng)絡(luò)放電,避免了觸點(diǎn)間產(chǎn)生放電。R、C的選擇應(yīng)根據(jù)接點(diǎn)的電流和電壓來確定,電阻R相對于接點(diǎn)電壓為1V時,通常選擇0.5~1Ω;電容C相對于接點(diǎn)電流為1A時,通常選擇0.5~1μF。但是由于負(fù)載的性質(zhì)和離散特性等的不同,必須考慮電容C具有抑制接點(diǎn)斷開時的放電效果,在一般情況下使用200~300V的電容器耐壓。電阻R的選擇應(yīng)考慮兩個方面的因素,一方面,在開關(guān)斷開瞬間,希望R越小越好,以便電感上存儲的能量變成電容器上的能量;另一方面,當(dāng)開關(guān)閉合時,希望R盡可能的大,以免電容器上的能量通過開關(guān)觸點(diǎn)放電時電流太大而燒毀觸點(diǎn)。一般情況下,開關(guān)觸點(diǎn)間存在兩種形式的擊穿電壓,即氣體火花放電和金屬弧光放電。要防止氣體火花放電,應(yīng)控制觸點(diǎn)間電壓低于300V;要防止金屬弧光放電,應(yīng)控制觸點(diǎn)間的起始電壓上升率小于1V/μs,并把觸點(diǎn)間的瞬態(tài)電流控制在0.4A以下。
圖7為一種改進(jìn)型的抑制電路,即在電阻R上并聯(lián)一只二極管D。在開關(guān)斷開時,電感中的能量通過由R、C、D組成的電路釋放,由于二極管正向?qū)?,?nèi)阻很小,能量很快釋放;當(dāng)開關(guān)閉合時,充滿電的電容C通過電阻R和開關(guān)觸點(diǎn)放電,由于二極管是反向偏置不導(dǎo)通,釋放電流僅從電阻R上流過,如R選取足夠大,就不會引起觸點(diǎn)燒壞。
另外,還可采用在開關(guān)觸點(diǎn)兩端并聯(lián)穩(wěn)壓二極管的抑制電路,如圖8所示。
圖8并聯(lián)穩(wěn)壓二極管方式
在圖8中,當(dāng)開關(guān)觸點(diǎn)斷開時,觸點(diǎn)兩端出現(xiàn)高電壓形成火花放電,由于穩(wěn)壓管的穩(wěn)壓特性,使觸點(diǎn)兩端的電壓不會大于電源電壓的1.5倍,從而抑制了瞬變電壓和火花。這種電路由于僅用一個元件,電路簡單而且效果不錯。
一般情況下,電感性負(fù)載比純阻性負(fù)載更容易產(chǎn)生氣體火花放電和金屬弧光放電,只要選擇適當(dāng)?shù)囊种齐娐?,可以達(dá)到和純阻性負(fù)載相同的效果。
由于抑制電路的種類很多,在此不再作詳細(xì)介紹。
4結(jié)束語
隨著信息技術(shù)的不斷發(fā)展,電臺自動化建設(shè)不斷深入,干擾問題已成為制約系統(tǒng)自動化控制的瓶頸,如何減小相互間的電磁干擾,使各種設(shè)備和系統(tǒng)能正常運(yùn)轉(zhuǎn),是一個亟待解決的問題。在采用不同的方法對電磁干擾進(jìn)行抑制時,應(yīng)分析其綜合效應(yīng),并對所采用的干擾抑制手段的作用進(jìn)行恰當(dāng)?shù)念A(yù)估,才能獲得較理想的效果。
參考文獻(xiàn):
[1] 蔡仁鋼.電磁兼容原理和預(yù)測技術(shù), 北京航空航天大學(xué)出版社,1997
[2] 張乃國.電源干擾與抗干擾, 華港出版社, 2003
(作者單位系國家廣電總局2022臺)