第一篇:開關電源EMC產生機理及其對策
開關電源EMC產生機理及其對策
EMI可分為傳導Conduction及輻射Radiation兩部分,Conduction規(guī)范一般可分為: FCC Part 15J Class B;CISPR 22(EN55022, EN61000-3-2, EN61000-3-3)Class B;國標IT類(GB9254,GB17625)和AV類(GB13837,GB17625)。FCC測試頻率在450K-30MHz,CISPR 22測試頻率在150K--30MHz,Conduction可以用頻譜分析儀測試,Radiation則必須到專門的實驗室測試。
EN55022為Radiation Test & Conduction Test(傳導 & 輻射測試); EN61000-3-2為Harmonic Test(電源諧波測試);EN61000-3-3為Flicker Test(電壓變動測試)。
CISPR22(Comite Special des Purturbations Radioelectrique)應用于信息技術類裝置, 適用于歐洲和亞洲地區(qū);EN55022為歐洲標準,F(xiàn)CC Part 15(Federal Communications Commission)適用于美國,EN30220歐洲EMI測試標準,功率輻射測試標準是EN55013頻率在30MHZ-300MHz。
EN55011輻射測試標準是:有的頻率段要求較高,有的頻率段要求較低。傳導(150KHZ-30MHZ)LISN主要是差模電流, 其共模阻抗為100歐姆(50 + 50);LISN主要是共模電流, 其總的電路阻抗為25歐姆(50 // 50)。
4線
AV
60dB/uV
150KHZ-2MHZ
start 9KHZ
5線
PEAK
100dB/uV
150KHZ-3MHZ
6線
PEAK
100dB/uV
2MHZ-30MHZ
7線
QP
70dB/uV
150KHZ-500KHZ
Radiated(30MHZ-1GHZ): ADD 4N7/250V Y CAP
90dB/uV
30MHZ-300MHZ
EMI為電磁干擾,EMI是EMC其中的一部分,EMI(Electronic Magnetic Interference)電磁干擾,EMI包括傳導、輻射、電流諧波、電壓閃爍等等。電磁干擾是由干擾源、藕合通道和接收器三部分構成的,通常稱作干擾的三要素。EMI線性正比于電流,電流回路面積以及頻率的平方即:EMI = K*I*S*F2。I是電流,S是回路面積,F(xiàn)是頻率,K是與電路板材料和其他因素有關的一個常數(shù)。
EMI是指產品的對外電磁干擾。一般情況下分為 Class A & Class B 兩個等級。Class A為工業(yè)等級,Class B 為民用等級。民用的要比工業(yè)的嚴格,因為工業(yè)用的允許輻射稍微大一點。同樣產品在測試EMI中的輻射測試來講,在30-230MHz下,B類要求產品的輻射限值不能超過40dBm 而A類要求不能超過50dBm(以三米法電波暗室測量為例)相對要寬松的多,一般來說CLASS A是指在EMI測試條件下,無需操作人員介入,設備能按預期持續(xù)正常工作,不允許出現(xiàn)低于規(guī)定的性能等級的性能降低或功能損失。
EMI是設備正常工作時測它的輻射和傳導。在測試的時候,EMI的輻射和傳導在接收機上有兩個上限,分別代表Class A和Class B,如果觀察的波形超過B的線但是低于A的線,開關電源EMC產生機理及其對策
那么產品就是A類的。EMS是用測試設備對產品干擾,觀察產品在干擾下能否正常工作,如果正常工作或不出現(xiàn)超過標準規(guī)定的性能下降,為A級。能自動重啟且重啟后不出現(xiàn)超過標準規(guī)定的性能下降,為B級。不能自動重啟需人為重啟為C級,掛掉為D級。國標有D級的規(guī)定,EN只有A,B,C。EMI在工作頻率的奇數(shù)倍是最不好過的。
EMS(Electmmagnetic Suseeptibilkr)電磁敏感度一般俗稱為 “電磁免疫力”, 是設備抗外界騷擾干擾之能力,EMI是設備對外的騷擾。
EMS中的等級是指:Class A,測試完成后設備仍在正常工作;Class B,測試完成或測試中需要重啟后可以正常工作;Class C,需要人為調整后可以正常重啟并正常工作;Class D,設備已損壞,無論怎樣調整也無法啟動。嚴格程度EMI是B>A,EMS是A>B>C>D。
電磁兼容三要素:任何電磁兼容性問題都包含三個要素,即干擾源、敏感源和耦合路徑,這三個要素中缺少一個,電磁兼容問題就不會存在。
產生電磁干擾的條件: 突然變化的電壓或電流,即dV/dt或dI/dt很大;輻射天線或傳導導體。
電磁兼容標準對設備的要求有兩個方面:一個是工作時不會對外界產生不良的電磁干擾影響,另一個是不能對外界的電磁干擾過度敏感。前一個方面的要求稱為干擾發(fā)射要求,后一個方面的要求稱為敏感度要求。
電磁能量從設備內傳出或從外界傳入設備的途徑只有兩個,一個是以電磁波的形式從空間傳播,另一個是以電流的形式沿導線傳播。因此,電磁干擾發(fā)射可以分為:傳導發(fā)射和輻射發(fā)射;敏感度也可以分為傳導敏感度和輻射敏感度。
電磁兼容標準分為基礎標準、通用標準、產品類標準和專用產品標準。
基礎標準:描述了EMC現(xiàn)象、規(guī)定了EMC測試方法、設備,定義了等級和性能判據(jù)?;A標準不涉及具體產品。
產品類標準:針對某種產品系列的EMC測試標準。往往引用基礎標準,但根據(jù)產品的特殊性提出更詳細的規(guī)定。
通用標準:按照設備使用環(huán)境劃分的,當產品沒有特定的產品類標準可以遵循時,使用通用標準來進行EMC測試。對使設備的功能完全正常,也要滿足這些標準的要求。
關于制訂電磁兼容標準的組織和標準的介紹:
IEC(國際電工委員會):有兩個平行的組織制訂EMC標準,CISPR和TC77。
CISPR(國際無線電
EMI可分為傳導Conduction及輻射Radiation兩部分,Conduction規(guī)范一般可分為: FCC Part 15J Class B;CISPR 22(EN55022, EN61000-3-2, EN61000-3-3)Class B;國標IT類(GB9254,開關電源EMC產生機理及其對策
GB17625)和AV類(GB13837,GB17625)。FCC測試頻率在450K-30MHz,CISPR 22測試頻率在150K--30MHz,Conduction可以用頻譜分析儀測試,Radiation則必須到專門的實驗室測試。
EN55022為Radiation Test & Conduction Test(傳導 & 輻射測試); EN61000-3-2為Harmonic Test(電源諧波測試);EN61000-3-3為Flicker Test(電壓變動測試)。
CISPR22(Comite Special des Purturbations Radioelectrique)應用于信息技術類裝置, 適用于歐洲和亞洲地區(qū);EN55022為歐洲標準,F(xiàn)CC Part 15(Federal Communications Commission)適用于美國,EN30220歐洲EMI測試標準,功率輻射測試標準是EN55013頻率在30MHZ-300MHz。
EN55011輻射測試標準是:有的頻率段要求較高,有的頻率段要求較低。傳導(150KHZ-30MHZ)LISN主要是差模電流, 其共模阻抗為100歐姆(50 + 50);LISN主要是共模電流, 其總的電路阻抗為25歐姆(50 // 50)。
4線
AV
60dB/uV
150KHZ-2MHZ
start 9KHZ
5線
PEAK
100dB/uV
150KHZ-3MHZ
6線
PEAK
100dB/uV
2MHZ-30MHZ
7線
QP
70dB/uV
150KHZ-500KHZ
Radiated(30MHZ-1GHZ): ADD 4N7/250V Y CAP
90dB/uV
30MHZ-300MHZ
EMI為電磁干擾,EMI是EMC其中的一部分,EMI(Electronic Magnetic Interference)電磁干擾,EMI包括傳導、輻射、電流諧波、電壓閃爍等等。電磁干擾是由干擾源、藕合通道和接收器三部分構成的,通常稱作干擾的三要素。EMI線性正比于電流,電流回路面積以及頻率的平方即:EMI = K*I*S*F2。I是電流,S是回路面積,F(xiàn)是頻率,K是與電路板材料和其他因素有關的一個常數(shù)。
EMI是指產品的對外電磁干擾。一般情況下分為 Class A & Class B 兩個等級。Class A為工業(yè)等級,Class B 為民用等級。民用的要比工業(yè)的嚴格,因為工業(yè)用的允許輻射稍微大一點。同樣產品在測試EMI中的輻射測試來講,在30-230MHz下,B類要求產品的輻射限值不能超過40dBm 而A類要求不能超過50dBm(以三米法電波暗室測量為例)相對要寬松的多,一般來說CLASS A是指在EMI測試條件下,無需操作人員介入,設備能按預期持續(xù)正常工作,不允許出現(xiàn)低于規(guī)定的性能等級的性能降低或功能損失。
EMI是設備正常工作時測它的輻射和傳導。在測試的時候,EMI的輻射和傳導在接收機上有兩個上限,分別代表Class A和Class B,如果觀察的波形超過B的線但是低于A的線,那么產品就是A類的。EMS是用測試設備對產品干擾,觀察產品在干擾下能否正常工作,如果正常工作或不出現(xiàn)超過標準規(guī)定的性能下降,為A級。能自動重啟且重啟后不出現(xiàn)超
開關電源EMC產生機理及其對策
過標準規(guī)定的性能下降,為B級。不能自動重啟需人為重啟為C級,掛掉為D級。國標有D級的規(guī)定,EN只有A,B,C。EMI在工作頻率的奇數(shù)倍是最不好過的。
EMS(Electmmagnetic Suseeptibilkr)電磁敏感度一般俗稱為 “電磁免疫力”, 是設備抗外界騷擾干擾之能力,EMI是設備對外的騷擾。
EMS中的等級是指:Class A,測試完成后設備仍在正常工作;Class B,測試完成或測試中需要重啟后可以正常工作;Class C,需要人為調整后可以正常重啟并正常工作;Class D,設備已損壞,無論怎樣調整也無法啟動。嚴格程度EMI是B>A,EMS是A>B>C>D。
電磁兼容三要素:任何電磁兼容性問題都包含三個要素,即干擾源、敏感源和耦合路徑,這三個要素中缺少一個,電磁兼容問題就不會存在。
產生電磁干擾的條件: 突然變化的電壓或電流,即dV/dt或dI/dt很大;輻射天線或傳導導體。
電磁兼容標準對設備的要求有兩個方面:一個是工作時不會對外界產生不良的電磁干擾影響,另一個是不能對外界的電磁干擾過度敏感。前一個方面的要求稱為干擾發(fā)射要求,后一個方面的要求稱為敏感度要求。
電磁能量從設備內傳出或從外界傳入設備的途徑只有兩個,一個是以電磁波的形式從空間傳播,另一個是以電流的形式沿導線傳播。因此,電磁干擾發(fā)射可以分為:傳導發(fā)射和輻射發(fā)射;敏感度也可以分為傳導敏感度和輻射敏感度。
電磁兼容標準分為基礎標準、通用標準、產品類標準和專用產品標準。
基礎標準:描述了EMC現(xiàn)象、規(guī)定了EMC測試方法、設備,定義了等級和性能判據(jù)。基礎標準不涉及具體產品。
產品類標準:針對某種產品系列的EMC測試標準。往往引用基礎標準,但根據(jù)產品的特殊性提出更詳細的規(guī)定。
通用標準:按照設備使用環(huán)境劃分的,當產品沒有特定的產品類標準可以遵循時,使用通用標準來進行EMC測試。對使設備的功能完全正常,也要滿足這些標準的要求。
關于制訂電磁兼容標準的組織和標準的介紹:
IEC(國際電工委員會):有兩個平行的組織制訂EMC標準,CISPR和TC77。
CISPR(國際無線電擾特別委員會):1934年成立。目前有七個分會:A分會(無線電干擾測量方法與統(tǒng)計方法)、B分會(工、科、醫(yī)療射頻設備的無線電干擾)、C分會(電力線、高壓設備和電牽引系統(tǒng)的無線電干擾)、D分會(機動車和內燃機的無線電干擾)、E分會(無線接收設備干擾特性)、F分會(家電、電動工具、照明設備及類似電器的無線電干擾)、G分會(信息設備的無線電干擾)。
開關電源EMC產生機理及其對策
TC77(第77技術委員會):1981年成立。目前有3個分會:SC77A(低頻現(xiàn)象)、SC77B(高頻現(xiàn)象)、SC77C(對高空核電磁脈沖的抗擾性)。
CENELEC(歐洲電工標準化委員會):由歐共體委員會授權制訂歐洲標準。EN標準中引用了很多CISPR和IEC標準,其對應關系如下:
EN55××× = CISPR標準,(例: EN55011 = CISPR Pub.11)
EN6×××× = IEC標準,(例: EN61000-4-3 = IEC61000-4-3 Pub.11)
EN50××× = CENELEC自定標準,(例: EN50801)
FCC(聯(lián)邦通信委員會)全名為Federal Communications Commission:是管理電腦, 周邊及通信產品等銷售美國之審核授權機抅, 主要制訂民用產品標準,關于電磁兼容的標準主要包括在FCC Part15和FCC Part 18中。
FCC Part 15 subpart B規(guī)定: 凡利用數(shù)位技術之電子裝置或系統(tǒng), 及使用或產生脈波頻率超過10KHz之器材,皆須依規(guī)定進行測試認證后, 才可以在美國市場銷售。
MIL-STD(美軍標):典型的是MIL-STD –461D。這個標準不僅規(guī)定了最大輻射發(fā)射和傳導發(fā)射的限制,還規(guī)定了系統(tǒng)對輻射和傳導干擾的敏感度要求。配套標準MIL-STD-462規(guī)定了必要的測試裝置。商業(yè)公司經常將MIL-STD-461中的某些部分作為產品內部EMC規(guī)范。
VCCI(干擾自愿控制委員會):民間機構,其標準與CISPR和IEC一致
GB(中國國家標準):基本采用CISPR和IEC標準,目前已發(fā)布57個。
GJB(中國軍用標準):基本采用美軍標,例如GJB151A = MIL-STD –461D。
軍用設備
為軍用設計的電子系統(tǒng)必須滿足MIL-STD-461D的要求,另一個關于EMI的軍用標準是保密的TEMPEST計劃,這是用來保證保密通信系統(tǒng)安全的?,F(xiàn)在可以接收并復現(xiàn)出大多數(shù)電子設備政黨工作時所發(fā)射的功率很低的射頻信號。象對電子竊聽很脆弱的CRT終端那樣的軍用產品就屬于TEMPEST的范疇。在實踐中,TEMPEST控制設備和系統(tǒng)的發(fā)射,使無法解譯攜帶信息的信號。
由于關于EMC的法規(guī)和標準十分復雜,關于信息技術設備的相關標準總結在表1.9中。一些標準的頻率范圍在圖1-3中標明。
CE標示: 源自歐共體各會員國(European Community)縮寫的總稱, 并以此為標志。規(guī)范產品是否符合歐體為保障民眾安全健康以及環(huán)境保護等利益所訂定之基本安全要求。
開關電源EMC產生機理及其對策
CE = EMC + LVD
EMC : 電磁干擾及電磁相容性
LVD : 低電壓指令
測量場地:GB要求在開闊場地中測量,GJB要求在屏蔽半無反射室中測量,由于電磁環(huán)境日趨惡化,開闊場中的背景干擾往往嚴重影響測量,因此,GB測量也開始在屏蔽半無反射室中做,但要求半無反射室中的電磁場分布與開闊場近似。
天線到EUT(受試設備)的距離:GB要求為3米、10米或30米,GJB要求為1米;
測量內容:GB僅測量電場輻射發(fā)射,GJB對電場輻射和磁場輻射都要測量;
測量頻率范圍:GB規(guī)定的測量范圍為30MHz ~ 1GHz,隨著時鐘頻率的升高,有擴展到18GHz的趨勢,GJB規(guī)定的測量頻率范圍為10kHz ~ 18GHz。
EUT的布置:GB和GJB都要求EUT按照實際工作狀態(tài)布置(互聯(lián)電纜和所連接的外部設備全部按實際狀態(tài)連接),GB要求EUT放置在木制測試臺上,GJB要求EUT放置在金屬板上。距離地面的距離為0.8米;
檢波方式:干擾測量儀的讀數(shù)與檢波方式有關,因此標準中都明確規(guī)定檢波方式,GB要求準峰值檢波,GJB要求峰值檢波;
最大輻射點:與處理電磁兼容問題的原則相同,僅關心最壞情況。因此,以EUT的最大輻射值為測量結果。最大輻射值的含義有4個,第一:EUT的工作狀態(tài)處于最大輻射狀態(tài),第二:EUT最大輻射面對著天線,第三:天線的極化方向為接收最大場強的方向,第四:天線的高度為接收最大場強的位置。GJB中,沒有第四點的要求,即,天線的高度是固定的。
測量設備:
騷擾測量設備:用來定量計量騷擾強度的設備,可以是EMI測量接收機,也可以是頻譜分析儀,頻率范圍要覆蓋150KHz~30MHz,具有峰值、準峰值和平均值檢波功能。
線路阻抗穩(wěn)定網絡(LISN):由于電源端子傳導發(fā)射的強度與電網的阻抗有關,因此為了使測量具有唯一性,必須在特定的阻抗條件下測量,LISN就提供了這樣一個環(huán)境,GB9254標準中使用的LISN為50Ω/50μH。
接地平板:受試設備要放置在接地金屬板上進行試驗,該金屬板比被測設備邊框大0.5米,最小尺寸為2m×2m。
電快速脈沖試驗模擬電網中的感性負載斷開時產生的干擾。這種干擾不僅會出現(xiàn)在電源線上,而且會耦合到信號線上。因此,這個試驗要對電源線和信號線做。設備能夠通過浪涌試驗,并不意味著也能通過電快速脈沖試驗。一方面是因為后者的頻率成份遠高于前者,具備不同的干擾機理,令一方面是因為電快速脈沖試驗中施加的干擾是重復性,這對電路具有一種積分效應,是電路中的積分型抗干擾電路實效。
頻譜分析儀能夠快速地在較寬的頻率范圍內掃描,因此是診斷電磁干擾發(fā)射的方便工具。使
開關電源EMC產生機理及其對策
用頻譜分析儀時需要注意的問題:頻譜分析儀不能觀測瞬間干擾,如靜電放電、雷電等;頻譜分析儀的掃描時間不能設置得太短,即不能使掃描速度太快;從頻譜分析儀屏幕上讀取頻率與幅度數(shù)據(jù)時,其精度與頻譜儀的掃描范圍有關,范圍越窄,精度越高;當輸入信號過大時,頻譜分析儀會發(fā)生過載,使讀取的幅度數(shù)據(jù)比實際的小,用輸入衰減器可以避免過載;減小頻譜儀的中頻帶寬可以提高儀器的靈敏度(和選擇性),但掃描時間會更長;寬帶信號的幅度會隨著中頻分辨帶寬的增加而增加。
電磁干擾(EMI)接收機是另一種測量電磁干擾的設備,許多人在選購儀器時搞不懂接收機與頻譜儀之間的區(qū)別,下面做一簡單比較:
所有的接收機都標準配置預選器(頻譜儀需要選配),能夠有效地抑制帶外噪聲;所有的接收機用基頻混頻方式(頻譜儀使用基頻和諧頻混頻),具有較高的靈敏度;接收機的中頻濾波器為矩形(頻譜儀的中頻濾波器為高斯形),具有更好的選擇性;接收機適合于正式測量,不適合于診斷。
EMC試驗室有華測(CTI)、SGS、信測、信華、華通威、冠準、莫特、廣州ETL、廣州五所、東莞經續(xù)、東莞沃特、厚街北南、長安世鴻、長安碩信(ATT)、大朗信寶、塘夏歐標、摩爾實驗室、經續(xù)檢驗技術有限公司等。像美國的FCC只測EMI中的輻射和傳導,不測EMS。有些國家EMI和EMS是分開測的,有些國家是一起像CCC認證CE認證?,F(xiàn)在很多電器類產品做CE還要加測電磁波騷擾EMF,標準是EN-50336。電源EMI技術就算能達到標準,有的產品要求要達一定的濕度測試。在深圳濕試控制都比較難做。深圳幾家大實驗室,都比較難,空間問題。EMI不只包括傳導,輻射,電流諧波與電壓閃爍也是EMI的部分。諧波和閃爍是設備對外的,而不是外界對設備的,所以是EMI,不是EMS。
開關電源電磁干擾的產生機理及其傳播途徑
功率開關器件的高額開關動作是導致開關電源產生電磁干擾(EMI)的主要原因。開關頻率的提高一方面減小了電源的體積和重量,另一方面也導致了更為嚴重的EMI問題。開關電源工作時,其內部的電壓和電流波形都是在非常短的時間內上升和下降的,因此,開關電源本身是一個噪聲發(fā)生源。開關電源產生的干擾,按噪聲干擾源種類來分,可分為尖峰干擾和諧波干擾兩種;若按耦合通路來分,可分為傳導干擾和輻射干擾兩種。使電源產生的干擾不至于對電子系統(tǒng)和電網造成危害的根本辦法是削弱噪聲發(fā)生源,或者切斷電源噪聲和電子系統(tǒng)、電網之間的耦合途徑?,F(xiàn)在按噪聲干擾源來分別說明:
1、二極管的反向恢復時間引起的干擾
交流輸入電壓經功率二極管整流橋變?yōu)檎颐}動電壓,經電容平滑后變?yōu)橹绷?,但電容電流的波形不是正弦波而是脈沖波。由電流波形可知,電流中含有高次諧波。大量電流諧波分量流入電網,造成對電網的諧波污染。另外,由于電流是脈沖波,使電源輸入功率因數(shù)降低。
高頻整流回路中的整流二極管正向導通時有較大的正向電流流過,在其受反偏電壓而轉向截止時,由于PN結中有較多的載流子積累,因而在載流子消失之前的一段時間里,電流會反向流動,致使載流子消失的反向恢復電流急劇減少而發(fā)生很大的電流變化(di/dt)。
開關電源EMC產生機理及其對策
2、開關管工作時產生的諧波干擾
功率開關管在導通時流過較大的脈沖電流。例如正激型、推挽型和橋式變換器的輸入電流波形在 阻性負載時近似為矩形波,其中含有豐富的高次諧波分量。當采用零電流、零電壓開關時,這種諧 波干擾將會很小。另外,功率開關管在截止期間,高頻變壓器繞組漏感引起的電流突變,也會產生 尖峰干擾。
3、交流輸入回路產生的干擾
無工頻變壓器的開關電源輸入端整流管在反向恢復期間會引起高頻衰減振蕩產生干擾。開關電源產生的尖峰干擾和諧波干擾能量,通過開關電源的輸入輸出線傳播出去而形成的干擾稱之為傳導干擾;而諧波和寄生振蕩的能量,通過輸入輸出線傳播時,都會在空間產生電場和磁場。這種通過電磁輻射產生的干擾稱為輻射干擾。
4、其他原因
元器件的寄生參數(shù),開關電源的原理圖設計不夠完美,印刷線路板(PCB)走線通常采用手工布 置,具有很大的隨意性,PCB的近場干擾大,并且印刷板上器件的安裝、放置,以及方位的不合理都會造成EMI干擾。這增加了PCB分布參數(shù)的提取和近場干擾估計的難度。
Flyback 架構noise 在頻譜上的反應
0.15 MHz處產生的振蕩是開關頻率的3次諧波引起的干擾。
0.2 MHz處產生的振蕩是開關頻率的4次諧波和Mosfet 振蕩2(190.5KHz)基波的迭加,引起的干擾;所以這部分較強。
0.25 MHz處產生的振蕩是開關頻率的5次諧波引起的干擾;
0.35 MHz處產生的振蕩是開關頻率的7次諧波引起的干擾;
0.39 MHz處產生的振蕩是開關頻率的8次諧波和Mosfet 振蕩2(190.5KHz)基波的迭加引起的干擾;
1.31MHz處產生的振蕩是Diode 振蕩1(1.31MHz)的基波引起的干擾;
3.3 MHz處產生的振蕩是Mosfet 振蕩1(3.3MHz)的基波引起的干擾;
開關管、整流二極管的振蕩會產生較強的干擾
設計開關電源時防止EMI的措施:
1.把噪音電路節(jié)點的PCB銅箔面積最大限度地減小;如開關管的漏極、集電極,初次級繞組的節(jié)點,等。
開關電源EMC產生機理及其對策
2.使輸入和輸出端遠離噪音元件,如變壓器線包,變壓器磁芯,開關管的散熱片,等等。
3.使噪音元件(如未遮蔽的變壓器線包,未遮蔽的變壓器磁芯,和開關管,等等)遠離外殼邊緣,因為在正常操作下外殼邊緣很可能靠近外面的接地線。
4.如果變壓器沒有使用電場屏蔽,要保持屏蔽體和散熱片遠離變壓器。
5.盡量減小以下電流環(huán)的面積:次級(輸出)整流器,初級開關功率器件,柵極(基極)驅動線路,輔助整流器。
6.不要將門極(基極)的驅動返饋環(huán)路和初級開關電路或輔助整流電路混在一起。
7.調整優(yōu)化阻尼電阻值,使它在開關的死區(qū)時間里不產生振鈴響聲。
8.防止EMI濾波電感飽和。
9.使拐彎節(jié)點和 次級電路的元件遠離初級電路的屏蔽體或者開關管的散熱片。
10.保持初級電路的擺動的節(jié)點和元件本體遠離屏蔽或者散熱片。
11.使高頻輸入的EMI濾波器靠近輸入電纜或者連接器端。
12.保持高頻輸出的EMI濾波器靠近輸出電線端子。
13.使EMI濾波器對面的PCB板的銅箔和元件本體之間保持一定距離。
14.在輔助線圈的整流器的線路上放一些電阻。
15.在磁棒線圈上并聯(lián)阻尼電阻。
16.在輸出RF濾波器兩端并聯(lián)阻尼電阻。
17.在PCB設計時允許放1nF/ 500 V陶瓷電容器或者還可以是一串電阻,跨接在變壓器的初級的靜端和輔助繞組之間。
18.保持EMI濾波器遠離功率變壓器;尤其是避免定位在繞包的端部。
19.在PCB面積足夠的情況下, 可在PCB上留下放屏蔽繞組用的腳位和放RC阻尼器的位置,RC阻尼器可跨接在屏蔽繞組兩端。
20.空間允許的話在開關功率場效應管的漏極和門極之間放一個小徑向引線電容器(米勒電容,10皮法/ 1千伏電容)。
開關電源EMC產生機理及其對策
21.空間允許的話放一個小的RC阻尼器在直流輸出端。
22.不要把AC插座與初級開關管的散熱片靠在一起。
開關電源EMI的特點
作為工作于開關狀態(tài)的能量轉換裝置,開關電源的電壓、電流變化率很高,產生的干擾強度較大;干擾源主要集中在功率開關期間以及與之相連的散熱器和高平變壓器,相對于數(shù)字電路干擾源的位置較為清楚;開關頻率不高(從幾十千赫和數(shù)兆赫茲),主要的干擾形式是傳導干擾和近場干擾;而印刷線路板(PCB)走線通常采用手工布線,具有更大的隨意性,這增加了PCB分布參數(shù)的提取和近場干擾估計的難度。
1MHZ以內----以差模干擾為主,增大X電容就可解決
1MHZ---5MHZ---差模共?;旌?采用輸入端并一系列X電容來濾除差摸干擾并分析出是哪種干擾超標并解決;
5M---以上以共摸干擾為主,采用抑制共摸的方法.對于外殼接地的,在地線上用一個磁環(huán)繞2圈會對10MHZ以上干擾有較大的衰減(diudiu2006);對于25--30MHZ不過可以采用加大對地Y電容、在變壓器外面包銅皮、改變PCB LAYOUT、輸出線前面接一個雙線并繞的小磁環(huán),最少繞10圈、在輸出整流管兩端并RC濾波器.30---50MHZ
普遍是MOS管高速開通關斷引起,可以用增大MOS驅動電阻,RCD緩沖電路采用1N4007慢管,VCC供電電壓用1N4007慢管來解決.100---200MHZ 普遍是輸出整流管反向恢復電流引起,可以在整流管上串磁珠
100MHz-200MHz之間大部分出于PFC MOSFET及PFC 二極管,現(xiàn)在MOSFET及PFC二極管串磁珠有效果,水平方向基本可以解決問題,但垂直方向就很無奈了
開關電源的輻射一般只會影響到100M 以下的頻段.也可以在MOS,二極管上加相應吸收回路,但效率會有所降低。
1MHZ 以內----以差模干擾為主
1.增大X 電容量;
2.添加差模電感;
3.小功率電源可采用PI 型濾波器處理(建議靠近變壓器的電解電容可選用較大些)。
1MHZ---5MHZ---差模共?;旌希捎幂斎攵瞬⒙?lián)一系列X 電容來濾除差摸干擾并分析出是哪種干擾超標并以解決,開關電源EMC產生機理及其對策
1.對于差模干擾超標可調整X 電容量,添加差模電感器,調差模電感量;
2.對于共模干擾超標可添加共模電感,選用合理的電感量來抑制;
3.也可改變整流二極管特性來處理一對快速二極管如FR107 一對普通整流二極管1N4007。
5M---以上以共摸干擾為主,采用抑制共摸的方法。
對于外殼接地的,在地線上用一個磁環(huán)串繞2-3 圈會對10MHZ 以上干擾有較大的衰減作用;可選擇緊貼變壓器的鐵芯粘銅箔, 銅箔閉環(huán).處理后端輸出整流管的吸收電路和初級大電路并聯(lián)電容的大小。
對于20--30MHZ,1.對于一類產品可以采用調整對地Y2 電容量或改變Y2 電容位置;
2.調整一二次側間的Y1 電容位置及參數(shù)值;
3.在變壓器外面包銅箔;變壓器最里層加屏蔽層;調整變壓器的各繞組的排布。
4.改變PCB LAYOUT;
5.輸出線前面接一個雙線并繞的小共模電感;
6.在輸出整流管兩端并聯(lián)RC 濾波器且調整合理的參數(shù);
7.在變壓器與MOSFET 之間加BEAD CORE;
8.在變壓器的輸入電壓腳加一個小電容。
9.可以用增大MOS 驅動電阻.30---50MHZ 普遍是MOS 管高速開通關斷引起,1.可以用增大MOS 驅動電阻;
2.RCD 緩沖電路采用1N4007 慢管;
3.VCC 供電電壓用1N4007 慢管來解決;
4.或者輸出線前端串接一個雙線并繞的小共模電感;
5.在MOSFET 的D-S 腳并聯(lián)一個小吸收電路;
開關電源EMC產生機理及其對策
6.在變壓器與MOSFET 之間加BEAD CORE;
7.在變壓器的輸入電壓腳加一個小電容;
8.PCB 心LAYOUT 時大電解電容,變壓器,MOS 構成的電路環(huán)盡可能的??;
9.變壓器,輸出二極管,輸出平波電解電容構成的電路環(huán)盡可能的小。
50---100MHZ 普遍是輸出整流管反向恢復電流引起,1.可以在整流管上串磁珠;
2.調整輸出整流管的吸收電路參數(shù);
3.可改變一二次側跨接Y電容支路的阻抗,如PIN腳處加BEAD CORE或串接適當?shù)碾娮瑁?/p>
4.也可改變MOSFET,輸出整流二極管的本體向空間的輻射(如鐵夾卡MOSFET;鐵夾卡DIODE,改變散熱器的接地點)。
5.增加屏蔽銅箔抑制向空間輻射.200MHZ 以上 開關電源已基本輻射量很小,一般可過EMI 標準。
第二篇:開關電源EMC 傳導整改總結
三合一主板的傳導整改記錄
要理解傳導干擾測試,首先要清楚一個概念:差模干擾與共模干擾
差模干擾:存在于L-N線之間,電流從L進入,流過整流二極管正極,再流經負載,通過熱地,到整流二極管,再回到N,在這條通路上,有高速開關的大功率器件,有反向恢復時間極短的二極管,這些器件產生的高頻干擾,都會從整條回路流過,從而被接收機檢測到,導致傳導超標。
共模干擾:共模干擾是因為大地與設備電纜之間存在寄生電容,高頻干擾噪聲會通過該寄生電容,在大地與電纜之間產生共模電流,從而導致共模干擾。
下圖為差模干擾引起的傳導FALL數(shù)據(jù),該測試數(shù)據(jù)前端超標,為差模干擾引起:
下圖為開關電源EMI原理部分:
圖中CX2001為安規(guī)薄膜電容(當電容被擊穿或損壞時,表現(xiàn)為開路)其跨在L線與N線之間,當L-N之間的電流,流經負載時,會將高頻雜波帶到回路當中。此時X電容的作用就是在負載與X電容之間形成一條回路,使的高頻分流,在該回路中消耗掉,而不會進入市電,即通過電容的短路交流電讓干擾有回路不串到外部。
對差模干擾的整改對策: 1.增大X電容容值
2.增大共模電感感量,利用其漏感,抑制差模噪聲(因為共模電感幾種繞線方式,雙線并繞或雙線分開繞制,不管哪種繞法,由于繞制不緊密,線長等的差異,肯定會出現(xiàn)漏磁現(xiàn)象,即一邊線圈產生的磁力線不能完全通過另一線圈,這使得L-N線之間有感應電動勢,相當于在L-N之間串聯(lián)了一個電感)
下圖為共模干擾測試FALL數(shù)據(jù):
電源線纜與大地之間的寄生電容,使得共模干擾有了回路,干擾噪聲通過該電容,流向大地,在LISN-線纜-寄生電容-地之間形成共模干擾電流,從而被接收機檢測到,導致傳導超標(這也可以解釋為什么有的主板傳導測試時,不接地通過,一夾地線就超標。USB模式下不接地時,電流回路只能通過L-二極管-負載-熱地-二極管-N,共模電流不能回到LISN,LISN檢測到的噪聲較小,而當主板的冷地與大地直接相連時,線纜與大地之間有了回路,此時若共模噪聲未被前端LC濾波電路吸收的話,就會導致傳導超標)
對共模干擾的整改對策: 1.加大共模電感感量
2.調整L-GND,N-GND上的LC濾波器,濾掉共模噪聲
3.主板盡可能接地,減小對地阻抗,從而減小線纜與大地的寄生電容。
第三篇:通信開關電源的EMI/EMC設計
通信開關電源的EMI/EMC設計 引言
通信開關電源一般都采用脈沖寬度調制(PWM)技術,其特點是頻率高、效率高、功率密度高、可靠性高,另外還有體積小、重量輕、具有遠程監(jiān)控等優(yōu)點,因此被廣泛地應用于程控交換、光數(shù)據(jù)傳輸、無線基站、有線電視系統(tǒng)及IP網絡中,是信息技術設備正常工作的核心動力。然而,由于其開關器件工作在高頻通斷狀態(tài),高頻的快速瞬變過程本身就是電磁干擾(EMD)源,他產生的電磁干擾EMI信號有很寬的頻率范圍,又有一定的幅度,經傳導和輻射會污染電磁環(huán)境,對通信設備和電子產品造成干擾。同時,通信開關電源要有很強的抗電磁干擾的能力,特別是對雷擊、浪涌、電網電壓、電場、磁場、電磁波、靜電放電、脈沖串、電壓跌落、射頻電磁場傳導抗擾性、輻射抗擾性、傳導發(fā)射、輻射發(fā)射等項目需要滿足有關EMC標準的規(guī)定。開關電源引起電磁兼容性的原因
通信開關電源因工作在高電壓大電流的開關工作狀態(tài)下,其引起電磁兼容性問題的原因是相當復雜的。按耦合通路來分,可分為傳導干擾和輻射干擾兩種;按照干擾信號對于電路作用的形態(tài)不同,可將電源系統(tǒng)內的干擾分為共模干擾和差模干擾兩種。通常,線路電源線上的任何傳導干擾信號,都
可表示成共模和差模干擾兩種方式。
在開關電源中,主功率開關管在高電壓、大電流或以高頻開關方式工作下,開關電壓及開關電流的波形在阻性負載時近似為方波,其中含有豐富的高次諧波分量。由于電壓差可以產生電場、電流的流動可以產生磁場,以及豐富的諧波電壓電流的高頻部分在設備內部產生電磁場,從而造成設備內部工作的不穩(wěn)定,使設備的性能降低。同時,由于電源變壓器的漏電感及分布電容,以及主功率開關器件的工作狀態(tài)非理想,在高頻開或關時,常常產生高頻高壓的尖峰諧波振蕩,該諧波振蕩產生的高次諧波,通過開關管與散熱器問的分布電容傳人內部電路或通過散熱器及變壓器向空間輻射。
如圖1所示,電網中含有的共模和差模噪聲對開關電源產生干擾,開關電源在受到電磁干擾的同時也對電網其他設備以及負載產生電磁干擾,例如返回噪聲、輸出噪聲和輻射干擾等。進行開關電源EMI/EMC設計時,一方面要防止開關電源對電網和附近的電子設備產生干擾;另一方面要加強開關電源本身對電磁干擾環(huán)境的適應能力。下面用等效電路分別介紹共模和差模干擾產生的原因及路徑。
如圖2所示,當開關管轉為“關”時,集電極與發(fā)射極間的電壓快速上升達500 V,他產生的電流經集電極與地之間的分布電容返回整流橋,這個按開關頻率工作的脈沖串電流是共模噪聲。這個電壓會引起共模電流Icm2向CP2充電和共模電流Icm1向CP1充電,其中CP1為變壓器初、次級之間的分布電容,CP2為開關電源與散熱器之間的分布電容(即開關管集電極與地之間的分布電容)。則線路中共模電流總大小為Icm1+Icm2。如圖3所示,當開關管轉為“開”時,儲能電容Cs的能量由AC電網和整流橋提供,他被開關管變換器的快速開關頻率所變換,并通過變壓器形成脈沖電流IL,他具有非常豐富的開關頻率諧波。儲能電容不是一個純電容,他有串聯(lián)電阻和電感。當整流橋處開關管“開”時,在AC電網端,IL會產生一個由電容的L,R,C所呈現(xiàn)的阻抗電壓,這就是開關電源產生差模發(fā)射源的原理。差模電流Idm和信號電流IL沿著導線、變壓器初級、開關管組成的回路流通。開關電源的電磁兼容性設計
電磁兼容性(Electromagnetic Compatibility,EMC)是指在有限的空間、時間和頻譜范圍內,各種電氣設備共存而不引起性能的下降。形成電磁干擾的三要素是干擾源、傳播途徑和受擾設備,因而,抑制電磁干擾也應該從這3個方面著手。首先應該抑制干擾源,直接消除干擾原因;其次是消除干擾源和受擾設備之間的耦合和輻射,切斷電磁干擾的傳播途徑;第三是提高受擾設備的抗擾能力,降低其對噪聲的敏感度。目前抑制開關電源EMI的幾種措施基本上都是用切斷電磁干擾源和受擾設備之間的耦合通道,常用的方法是屏蔽和濾波,他們的確是行之有效的辦法。
3.1 無源補償濾波技術
濾波是抑制傳導干擾的一種很好的辦法。在電源輸入端接上濾波器,即可以抑制開關電源產生并向電網反饋的干擾,也可以抑制來自電網的噪聲對電源本身的侵害。開關電源的工作頻率一般在10~130 kHz,對開關電源產生的高頻段EMI信號,只要選擇相應的去耦電路或網絡結構較為簡單的EMI濾波器,就能達到理想的濾波效果。干擾抑制電路如圖4所示,CX1和CX2叫做差模電容,L1叫做共模電感,CY1和CY2叫做共模電容。電阻R用于消除可能在濾波器中出現(xiàn)的靜電積累。IEC-380安全技術條件標準的8.8部分指出,若CX>0.1 μF則R=t/2.2C(t=1 s,C=2CX μF)。由這些集中參數(shù)元件構成無源低通網絡,抑制開關電源產生的向電網反饋的傳導干擾,同時抑制來自電網的噪聲對開關電源本身的侵害,為了使通過濾波電容C流入地的漏電流維持在安全范圍內,CX=0.1~0.2 μF,CY的值一般適合取在0.1~0.33μF之間,不宜過大,相應的扼流線圈L應選大些,一般適合取在0.5μH~8 mH之間,這樣既符合安全要求,又能抑制電磁干擾。
共模電感L1是在同一個磁環(huán)上由繞向相反、匝數(shù)相同的兩個繞組構成。使濾波器接入電路后,兩只線圈內電流產生的磁通在磁環(huán)內相互抵消,不會使磁環(huán)達到磁飽和狀態(tài),從而使兩只線圈的電感值保持不變。通常使用環(huán)形磁芯,漏磁小,效率高。但是繞線困難,如磁環(huán)的材料不可能做到絕對均勻,兩個線圈的繞制也不可能完全對稱等,使得兩個繞組的電感量是不相等的,于是,形成差模電感。所以,一般電路中不必再設置獨立的差模電感了。共模電感的差值電感與電容CX1及CX2構成了一個Ⅱ型濾波器。這種濾波器對差模干擾有較好的衰減。除了共模電感以外,圖4中的電容CY1及CY2也是用來濾除共模干擾的。共模濾波的衰減在低頻時主要由電感器起作用,而在高頻時大部分由電容CY1及CY2起作用。電容CY的選擇要根據(jù)實際情況來定,由于電容CY接于電源線和地線之間,承受的電壓比較高,所以,需要有高耐壓、低漏電流特性。
使用LC濾波電路,可根據(jù)公式計算電路的諧振頻率,調整電感、電容,使諧振頻率與干擾頻率相近或接近干擾頻率的中心頻率。對頻率很高的電磁干擾,可以使用三端電容或穿心電容進行濾波。
3.2 屏蔽技術
屏蔽是抑制開關電源輻射干擾的有效方法。一般分為兩類:一類是靜電屏蔽,主要用于防止靜電場和恒定磁場的影響;另一類是電磁屏蔽,主要用于防止交變電場,交變磁場以及交變電磁場的影響??梢杂脤щ娦阅芰己玫牟牧蠈﹄妶鲞M行屏蔽,用磁導率高的材料對磁場進行屏蔽。實際應用中,主要是應用于隔離變壓器。變壓器繞組間的交叉耦合電容為共模噪聲流過整個系統(tǒng)提供了通路。這一交叉耦合電容可以在變壓器結構中采用法拉第屏蔽(Faraday shield)來減小。法拉第屏蔽簡單來說就是用銅箔或鋁箔包繞在原方和副方繞組之間形成一個靜電屏蔽層隔離區(qū)并接地,以減小交叉耦合電容。
圖5為變壓器原邊繞組和副邊繞組。其中N1A,N1B是原邊繞組,分兩次繞;N2A,N2B是副邊繞組;N3,N4分別是輔助繞組;SCREEN為銅箔屏蔽。安規(guī)上一般要求散熱器接地,那么開關管漏極與散熱器之間的寄生電容就為共模噪聲提供了通路,可以在漏極和散熱器之間加一銅箔或鋁箔并接地以減小此寄生電容。采用磁屏蔽效果比較好的鐵氧體磁芯如PQ型或者P型來制作變壓器可以很大程度上減小變壓器漏磁從而減小原副方繞組漏感,有效抑制了EMI的傳播。
結 語
隨著開關電源不斷向高頻化發(fā)展,其抗干擾問題顯得越發(fā)重要。在開發(fā)和設計開關電源中,如何有效抑制開關電源的電磁干擾,同時提高開關電源本身對電磁干擾的抗干擾能力是一個重要課題。幾種抗干擾措施既相互獨立又相互聯(lián)系,必須同時采用多種措施才能達到良好的抗干擾效果。
第四篇:開關電源EMC的三個規(guī)律及三個要素
開關電源EMC的三個規(guī)律及三個要素
深圳市森樹強電子科技有限公司
1、EMC三個重要規(guī)律
1.1、環(huán)路電流頻率f越高,引起的EMI輻射越嚴重,電磁輻射場強隨電流頻率f的平方成正比增大。減少輻射騷擾或提高射頻輻射抗干擾能力的最重要途徑之二,就是想方設法減小騷擾源高頻電流頻率f,即減小騷擾電磁波的頻率f。
1.2、EMC費效比關系規(guī)律: EMC問題越早考慮、越早解決,費用越小、效果越好。在新產品研發(fā)階段就進行EMC設計,比等到產品EMC測試不合格才進行改進,費用可以大大節(jié)省,效率可以大大提高;反之,效率就會大大降低,費用就會大大增加。經驗告訴我們,在功能設計的同時進行EMC設計,到樣板、樣機完成則通過EMC測試,是最省時間和最有經濟效益的。相反,產品研發(fā)階段不考慮EMC,投產以 后發(fā)現(xiàn)EMC不合格才進行改進,非但技術上帶來很大難度、而且返工必然帶來費用和時間的大大浪費,甚至由于涉及到結構設計、PCB設計的缺陷,無法實施改 進措施,導致產品不能上市。
1.3、高頻電流環(huán)路面積S越大, EMI輻射越嚴重。
高頻信號電流流經電感最小路徑。當頻率較 高時,一般走線電抗大于電阻,連線對高頻信號就是電感,串聯(lián)電感引起輻射。電磁輻射大多是EUT被測設備上的高頻電流環(huán)路產生的,最惡劣的情況就是開路 之天線形式。對應處理方法就是減少、減短連線,減小高頻電流回路面積,盡量消除任何非正常工作需要的天線,如不連續(xù)的布線或有天線效應之元器件過長的插 腳。
減少輻射騷擾或提高射頻輻射抗干擾能力的最重要任務之一,就是想方設法減小高頻電流環(huán)路面積S。
2、EMC問題三要素
開關電源及數(shù)字設備由于脈沖電流和電壓具有很豐富的高頻諧波,因此會 產生很強的輻射。電磁干擾包括輻射型(高頻)EMI、傳導型(低頻)EMI,即產生 EMC問題主要通過兩個途徑:一個是空間電磁波干擾的形式;另一個是通過傳導的形式,換句話說,產生EMC問題的三個要素是:電磁干擾源、耦合途徑、敏感 設備。輻射干擾主要通過殼體和連接線以電磁波形式污染空間電磁環(huán)境;傳導干擾是通過電源線騷擾公共電網或通過其他端子(如:射頻端子,輸入端子)影響相連 接的設備。
2.1、電磁騷擾的特性
2.1.1、晶體振蕩電平必須滿足一定幅度, 數(shù)字電路才能按一定的時序工作,使晶振產生的騷擾呈現(xiàn)覆蓋帶寬、騷擾電平高的特點;
2.1.2、電源線傳導騷擾主要由共模電流產生;
2.1.3、單位脈沖的頻譜最寬;
2.1.4、輻射騷擾主要由差模電流形成的環(huán)路產生;
2.1.5、頻譜中低頻含量取決于脈沖的面積,高頻分量取決于脈沖前后沿的陡度;
2.1.6、收發(fā)天線極化、方向特性相同時,EMI輻射和接受最嚴重;收發(fā)天線面積越大, EMI危害逾大;
2.1.7、騷擾途徑:輻射,傳導,耦合和輻射、傳導、耦合的組合;2.2、IT、AV設備可能的騷擾源
2.2.1、數(shù)字電路工作需要的各種時鐘信號及高頻諧波、以及它們的組合,各種時鐘如CPU芯片工作時鐘、MPEG解碼器工作時鐘、視頻同步時鐘(27MHz,16.9344MHz ,40.5MHz)等;
2.2.2、F)對于敏感受體通過耦合途徑接受的外部騷擾包括浪涌、快速脈沖群、靜電、電壓跌落、電壓變化和各種電磁場;
2.2.3、FM接收機、TV接收機本機振蕩,基波及諧波由高頻頭、本機振蕩電路產生;
2.2.4、數(shù)字信號方波及高頻諧波,晶振產生的高次諧波,非線性電路現(xiàn)象(非線性失真、互調、飽和失真、截止失真)等引起的無用信號、雜散信號;
2.2.5、非正弦波波形,波形毛剌、過沖、振鈴,電路設計存在的寄生頻率點;
2.2.6、開關電源的開關脈沖及高次諧波,同步信號方波及高頻諧波,行掃描顯像電路產生的行、場信號及高頻諧波。
第五篇:大功率開關電源的EMC測試分析及正確選擇EMI濾波器
大功率開關電源的EMC測試分析及正確選擇
EMI濾波器
開關電源具有體積小、重量輕、效率高等優(yōu)點,廣泛應用于各個領域。由于開關電源固有的特點,自身產生的各種噪聲卻形成一個很強的電磁干擾源。所產生的干擾隨著輸出功率的增大而明顯地增強,使整個電網的諧波污染狀況愈加嚴重。對電子設備的正常運行構成了潛在的威脅,因此解決開關電源的電磁干擾是減小電網污染的必要手段,本文對一臺15kW開關電源的EMC測試,分析其測試結果,并介紹如何合理地正確選擇EMI濾波器,以達到理想的抑制效果。開關電源產生電磁干擾的機理
圖1為所測的15kW開關電源的傳導騷擾值,由圖中可以看出在0、15~15MHz大范圍超差。這是因為開關電源所產生的干擾噪聲所為。開關電源所產生的干擾噪聲分為差模噪聲和共模噪聲。
圖1未加任何抑制措施所測得的傳導騷擾
1.1共模噪聲
共模噪聲是由共模電流,IcM所產生,其特征是以相同幅度、相同相位往返于任一電源線(L、N)與地線之間的噪聲電流所產生。圖2為典型的開關電源共模噪聲發(fā)射路徑的電原理圖。
圖2 共模噪聲電原理圖
由于開關電源的頻率較高,在開關變壓器原、副邊及開關管外殼及其散熱器(如接地)之間存在分布電容。當開關管由導通切換到關斷狀態(tài)時,開關變壓器分布電容(漏感等)存儲的能量會與開關管集電極與地之問的分布電容進行能量交換,產生衰減振蕩,導致開關管集電極與發(fā)射極之間的電壓迅速上升。這個按開關頻率工作的脈沖束電流經集電極與地之問的分布電容返回任一電源線,而產牛共模噪聲。
1.2差模噪聲
差模噪聲是由差模電流IDM昕產生,其特征是往返于相線和零線之間且相位相反的噪聲電流所產生。
1.2.1差模輸入傳導噪聲
圖3為典型的開關電源差模輸入傳導噪聲的電原理圖。
其一是當開關電源的開關管由關斷切換到導通時,回路電容C 通過開關管放電形成浪涌電流,它在回路阻抗上產生的電壓就是差模噪聲。
圖3差模輸入傳導噪聲電原理圖
其二是工頻差模脈動噪聲,它是由整流濾波電容c 在整流電壓上升與下降期問的充放電過程中而產生的脈動電流與放電電流,也含有大量諧波成分構成差模噪聲。
以上兩種差模噪聲都返回到輸入端的交流電網,所以稱為輸入傳導噪聲,它不僅污染電網,還給其它接人電網的電子、電氣設備造成危害,還直接導致輸入功率因數(shù)的下降。
1.2.2 差模輸出傳導噪聲
第三種差模噪聲是輸出傳導噪聲,它是整流輸出部分二極管由正偏轉為反偏時,反向電流與二極管結電容、分布電感產生尖峰電壓而造成的差模噪聲,圖4為典型的半波整流濾波電路:
圖4 差模輸出傳導噪聲電原理圖 EMI濾波器的正確選擇
EMI濾波器是以工頻為導通對象的反射式低通濾波器,插入損耗和阻抗特性是重要技術指標。EMI濾波器在正常工作時處于失配狀態(tài),因為在實際應用中,它無法實現(xiàn)匹配。如濾波器輸入端阻抗(電網阻抗)是隨著用電量的大小而改變的。濾波器輸出端的阻抗。(電源阻抗)是隨著負載的大小而改變的。要想獲得最佳的EMI抑制效果,必須根據(jù)濾波器的兩端所要連接的源端阻抗特性和負載阻抗特性來選擇EMI濾波器的電路結構和參數(shù),即遵循輸入、輸出端阻抗失配原則。一般選用方法是:
(1)低的源阻抗和低的負載阻抗:選?。═)n 濾波器結構;(2)高的源阻抗和高的負載阻抗:選?。é校﹏“濾波器結構;(3)低的源阻抗和高的負載阻抗:選?。↙C)n“濾波器結構;(4)高的源阻抗和低的負載阻抗:選?。–L)濾波器結構。
若不能滿足阻抗失配的原則,就會影響濾波器的插損性能,嚴重時甚至引起諧振,在某些頻點處出現(xiàn)干擾放大現(xiàn)象,所以,阻抗失配連接原則是應用EMI濾波器必須遵循的原則。
針對圖l所測得的傳導騷擾值,可以看出在0.15~15MHz范圍內嚴重超差,最大值超過限值近40dB,而且尖峰較為密集。說明電源所產生的浪涌電壓和浪涌電流較大,即電源的du/dt、di/dt很大,也就是產生的_F擾能量很大。開關電源共模噪聲等效電路呈高阻抗容性,而差模等效電路高、低阻抗同時存在。針對這種情況,EMI濾波器的電路結構選為二級共模電感和一個單獨的差模電感型式,這樣既可以濾除共模噪聲,又可以濾除差模噪聲。插入損耗為40dB,所測得的傳導騷擾值如圖5所示。
圖5加EMI濾波器后所測的傳導騷擾
由圖5可以看出,傳導騷擾值在某些頻段處還有超差,效果不十分理想,這是因為,傳導接受機所測得的傳導騷擾值是個綜合參數(shù),它無法判斷出在0.15—15MHz頻率范圍內,共模干擾和差模干擾孰重孰輕,一般講:在0.15~0.5MHz低端差模干擾分量很大,在0.5~5MHz共模干擾和差模干擾同時存在,在5~30MHz之間共模分量較大。原因之二是由于濾波器的電感和電容元件都受其分布參數(shù)的影響,頻率愈高所受的影響愈大。濾波器內部電感、電容的裝配工藝、接地質量也會對插入損耗產生很大的影響。原因之三是,由于濾波器電感會受到電流浪涌的影響,它工作的峰值電流比額定電流要大一倍左右,在重載和滿載時,差模電感容易產生磁飽和現(xiàn)象,致使電感量迅速下降,導致插入損耗性能變壞。較為理想的解決辦法
針對以上情況,在EMI濾波器前端再串接一個一定值的電感,在交流電路中電感的數(shù)值 X= wL=2πrfL,電感就是一個電抗器,所以此電感也稱為進線電抗器。由X =2πrfL可知,它的感抗與頻率成正比,對于低頻電流可以暢通無阻地通過進線電抗器,對于高頻電流進線電抗器呈高阻抗、高壓降。因此,進線電抗器可作為電流的低通(高阻)濾波器。
并且,開關電源所產生的諧波電壓大部分都降在了進線電抗器上。所以,串接進線電抗器不但使傳導騷擾值整體下降了,還使電壓諧波得到了改善。當電感值選為6mH時,其抑制效果如圖6所示。所以對已定型的大功率開關電源,選擇進線電抗器+EMI濾波器,不失為解決其電磁騷擾的比較理想的方法。
圖6進線電抗器+EMI濾波器后所測的傳導騷擾 結語
大功率開關電源產生電磁干擾是一個復雜的問題,電源產生電磁干擾以傳導干擾的危害尤為嚴重。根據(jù)電磁干擾產生的機理,正確選擇EMI濾波器是有效抑制傳導干擾的關鍵所在,其目的就是有效地抑制開關電源對電網的傳導干擾,又可以降低從電網引入的傳導干擾,使開關電源的電磁兼容性達到國家標準規(guī)定的限值要求。