欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      《因式分解》教學(xué)的幾點思考

      時間:2019-05-15 03:26:31下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《《因式分解》教學(xué)的幾點思考》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《《因式分解》教學(xué)的幾點思考》。

      第一篇:《因式分解》教學(xué)的幾點思考

      《因式分解》教學(xué)的幾點思考

      很難想起要做個怎樣的題目。有一段日子了,壓抑的不得了。原本早有準備,因式分解這部分內(nèi)容對于歷屆學(xué)生都是“痛苦的記憶”,孰料,如今的狀況更是雪上加霜。階段摸底顯示,73個學(xué)生中優(yōu)秀者僅僅4個達標的竟然不足三分之一!慘敗,根源究竟在哪里呢?

      努力冷靜下來,耐心回顧,終于發(fā)現(xiàn)了線索。

      1.學(xué)習(xí)的過程性體現(xiàn)不足。何為過程?我的理解是不斷的觸摸感知新知識,直到真正內(nèi)化為學(xué)生已經(jīng)具有的經(jīng)驗。然而,這個過程卻遭到了無情地冷落。例如:分解2x3-8x。首先要提供出足夠的時間,要求學(xué)生仔仔細細的去觀察,注意到多項式的特征(兩項有著公因式2x);其次要鼓勵學(xué)生大膽?yīng)毩⒌膰L試,不必害怕出這樣或那樣的問題(公因式不恰當(dāng)、提取方法不正確等等);再次要發(fā)動全體學(xué)生相互檢查糾正問題(問題有哪些類型、都是怎樣產(chǎn)生的、如何避免等等);再次還要注意總結(jié),讓學(xué)生說出自己的經(jīng)驗和教訓(xùn),老師的提升歸納自然不可忽略;最重要的是再次嘗試,使用相似類型的問題(提公因式和公式法相結(jié)合)供學(xué)生鞏固,其間穿插了對個別學(xué)生的個別措施(優(yōu)秀學(xué)生的提高和困難學(xué)生的輔導(dǎo))。做足了這篇文章,學(xué)生才能在豐富多姿的學(xué)習(xí)過程中積極的思考討論糾錯進而取得一個又一個進步。

      2.學(xué)生的學(xué)習(xí)動機不足。喪失了騰挪跌宕的學(xué)習(xí)過程,意味著學(xué)生盲目乏味的淪落于數(shù)學(xué)試題的海洋里苦苦扎掙。做了一組,訂正答案,改正問題,更換一組試題,再次訂正答案,再次改正,如此一天又一天一周又一周單調(diào)的循環(huán)反復(fù)不能自拔。乏味、枯燥、單調(diào)暗示著機械、被動、應(yīng)付,學(xué)習(xí)動機日漸削弱。重拾學(xué)習(xí)動機,一要創(chuàng)造迷人的學(xué)習(xí)活動吸引學(xué)生(如進行剪紙實驗,邊長為m的大正方形中挖去邊長為n的小正方形,重新拼合成長方形,這里蘊含著怎樣的因式分解規(guī)律呢?),越是豐富越是靈活學(xué)生的參與熱情會越高漲;二是及時鼓勵,肯定哪怕是一絲一毫的進步,刻意教學(xué)生發(fā)現(xiàn)自己的實力(例如分解復(fù)雜的多項式,學(xué)生只發(fā)現(xiàn)了公因式而后續(xù)工作未能開展,我們完全可以說,“發(fā)現(xiàn)公因式這是問題解決的第一步**同學(xué)為我們開取了一扇窗”);三是要注意個別學(xué)生的補救工作,順利的緊緊的跟上學(xué)習(xí)脈搏,不同層次的學(xué)生才能真正融入學(xué)習(xí)集體中;四要將分層的理念貫穿課堂,差異是不容辯駁的事實,一把尺子衡量將造成“優(yōu)秀學(xué)生吃不飽困難學(xué)生吃不了”,歸根結(jié)底,全體學(xué)生都不會又淋淋盡致的感覺,雖然學(xué)習(xí)內(nèi)容、課后作業(yè)都可以分層,但我們更提倡把自學(xué)納入學(xué)習(xí)范疇,以“先學(xué)”來保證不同學(xué)生“后教”的實效,以此激發(fā)學(xué)生的活力不失為絕好的途徑。3.方法指導(dǎo)的不足。學(xué)習(xí)過程的展現(xiàn)、學(xué)習(xí)動機的釋放,最終要落在學(xué)習(xí)方法上?!笆谌艘贼~不弱授人以漁”就是這個道理。因式分解這部分內(nèi)容,和整式乘法、分解因數(shù)等經(jīng)驗和整體、類比等思想聯(lián)系緊密而且難度瞬間攀升,老師會顧慮這里講不到那里講不全手忙腳亂,學(xué)生當(dāng)然亦步亦趨自顧不暇。然而,力求面面俱到的背后只不過單純注意到“學(xué)習(xí)內(nèi)容、研究問題”,至于其中的方法卻被擱置在了一旁,這點完全可以稱作學(xué)習(xí)成績的頭號殺手。讓學(xué)生自學(xué)、討論、糾錯、展示都無可厚非,老師絕對不要成為“甩手掌柜”,要總結(jié)要提煉要升華。比如分解2x3-8x,學(xué)生經(jīng)歷了觀察嘗試交流糾錯之后,講出了分解因式的感概之后,老師就要“濃墨重彩一針見血”了,“結(jié)合大家的建議,分解因式要想完美,必須做到先提公因式再套公式最后還要保證分解到底,這是關(guān)鍵!”,脫離了老師的畫龍點睛,學(xué)習(xí)內(nèi)容只能稱為“沒有精氣神的行尸走肉”。

      葉瀾教授強調(diào)過反思的重要,遠遠勝于盲目的寫教案做課教研,原因在于“采用全新的角度審視學(xué)習(xí)的過程從而獲得全新的收獲”。因式分解學(xué)習(xí),過去是難點,現(xiàn)在也是難點,沒有取得絲毫的改觀。恰恰由于“未能及時深刻反思”的緣故,我想,這應(yīng)該是教學(xué)改革的方向同時也應(yīng)該作為我們努力的方向。

      第二篇:因式分解教學(xué)反思

      《因式分解》教學(xué)反思

      廣元市利州區(qū)三堆初級中學(xué)

      何建波

      本課我以適當(dāng)?shù)膯栴}引導(dǎo)學(xué)生數(shù)學(xué)活動,體現(xiàn)數(shù)學(xué)知識的實用性。以適當(dāng)?shù)膯栴}引導(dǎo)數(shù)學(xué)活動是新課程的重要特點之一,好的問題有利于激發(fā)學(xué)生的探索熱情,有利于揭示數(shù)學(xué)的本質(zhì),有利于發(fā)展學(xué)生的獨立思考能力,也有利于學(xué)生形成良好的學(xué)習(xí)習(xí)慣。

      這節(jié)課中的預(yù)習(xí)內(nèi)容,表面上看是求代數(shù)式的值,其實隱含著因式分解和“數(shù)學(xué)意義”因式分解的意義,這為形成因式分解的概念奠定了扎實的基礎(chǔ)。

      數(shù)學(xué)教學(xué)能夠體現(xiàn)數(shù)學(xué)的文化價值和育人價值。數(shù)學(xué)教學(xué)不但要完成知識點的教學(xué),還要體現(xiàn)出數(shù)學(xué)的文化價值和課程的育人價值。這節(jié)課從學(xué)生已有的知識與經(jīng)驗出發(fā)創(chuàng)設(shè)問題情境,并引導(dǎo)學(xué)生認真地觀察、分析具體實例中隱含的數(shù)學(xué)關(guān)系和數(shù)學(xué)意義,通過獨立思考與合作交流來概括數(shù)學(xué)概念,獲得數(shù)學(xué)結(jié)論,理解數(shù)學(xué)的本質(zhì)。這種教學(xué)方式,能使學(xué)生在獲得本體性知識的同時,還能獲得條策略和經(jīng)驗,有利于發(fā)展學(xué)生的學(xué)力和良好課堂文化的熏陶。

      引導(dǎo)學(xué)生積極思考,自主探究,體現(xiàn)數(shù)學(xué)學(xué)習(xí)的自主性。

      幫助學(xué)生理解數(shù)學(xué)的意義與數(shù)學(xué)的本質(zhì),僅靠教師的直面陳述是不夠的,宜采用獨立思考與相互討論相結(jié)合的教學(xué)方法。(1)預(yù)習(xí):不是傳統(tǒng)意義的單純的提前學(xué)習(xí)新知識,而是預(yù)習(xí)影響學(xué)習(xí)的最重要的因素——新知識的“生長點”。這個“生長點”的設(shè)計,不僅能體現(xiàn)學(xué)生已有的知識、技能,還包括新知識的邏輯思維方式。并且在整個預(yù)習(xí)中還能培養(yǎng)學(xué)生識別、聯(lián)系、比較、建構(gòu)等學(xué)習(xí)方法和能力。這種“暗示”較好地解決了因過程緩慢對按時完成教學(xué)任務(wù)帶來挑戰(zhàn)的問題,也為激活課堂教學(xué)的活力注入了一劑良藥,可以這樣說,好的預(yù)習(xí)能使數(shù)學(xué)教學(xué)成為學(xué)生的一種期待。(2)設(shè)計問題系列:既為學(xué)生交流、探討搭建了平臺,也為學(xué)生如何學(xué)習(xí)提供了示范,同時為學(xué)生認識的步步深入搭建了臺階;(3)點撥與評價:在學(xué)生困惑時點撥,在學(xué)生認識模糊時點撥,在學(xué)生觀念碰撞時評價,在方法多樣化時進行價值分析。

      第三篇:因式分解教學(xué)設(shè)計

      《因式分解——提公因式法》教學(xué)設(shè)計

      山東省東營市大營初中 秦景花

      一、教學(xué)目標

      1.理解因式分解的概念,因式分解與整式乘法的關(guān)系.

      2.了解公因式的概念,能熟練運用提公因式法進行因式分解.

      3.在探索提公因式法分解因式的過程中學(xué)會逆向思維,滲透化歸的思想方法.

      二、教學(xué)重難點

      教學(xué)重點:會用提公因式法分解因式.

      教學(xué)難點:如何確定公因式及提出公因式后的另外因式.

      三、教學(xué)過程

      (一)創(chuàng)設(shè)情境,引出問題

      學(xué)校為了豐富我們的課外活動,打算在原操場兩側(cè)分別建一個網(wǎng)球場和籃球場,各場地長、寬如下圖所示:

      問題1:你能用幾種方法表示擴大后的操場面積? 預(yù)設(shè)1:ma+mb+mc. 預(yù)設(shè)2:m(a+b+c).

      問題2:不同的表示方法之間有什么關(guān)系? 預(yù)設(shè):ma+mb+mc= m(a+b+c).

      我們把一個多項式化成了幾個整式的積的形式,像這樣的式子變形叫做這個多項式的因式分解,也叫做把這個多項式分解因式.

      問題3:如何從數(shù)學(xué)的角度認識不同的表示方法之間的關(guān)系? 預(yù)設(shè):因式分解與整式乘法是方向相反的變形.

      【設(shè)計意圖】通過具體問題的解決,讓學(xué)生在思考、觀察和探索的過程中,了解因式分解的概念,認識因式分解的基本屬性——將和差化積的式子變形,同時發(fā)現(xiàn)因式分解與整式乘法的互逆變形關(guān)系,為后續(xù)探索因式分解的具體方法做鋪墊.

      練習(xí)1:根據(jù)你對概念的理解,判斷下列變形是不是因式分解.

      2(1)2m(m-n)=2m-2mn;(2)x2-2x+1=x(x-2)+1;

      22(3)a-b=(a+b)(a-b);

      22(4)4x-4x+1=(2x-1);

      2(5)3a+6a=3a(a+2);

      (6)m2-1+ n2=(m+1)(n-1).

      【設(shè)計意圖】通過實例辨析,讓學(xué)生進一步理解因式分解的概念,認識到因式分解是恒等變形.

      (二)探索發(fā)現(xiàn),推陳出新

      觀察多項式ma+mb+mc.

      思考:這個多項式的各項有什么特點?

      預(yù)設(shè):它的各項都有一個公共的因式m.

      我們把因式m 叫做這個多項式各項的公因式. 例1:找出下面多項式的公因式.(1)4xy2+2x2y3;(2)ax2+2ax-4ay.

      練習(xí)2:寫出下列多項式各項的公因式.(1)4ax-8ay;

      (2)5y3+20y2;

      22(3)ab-2ab+ab;

      (4)-4a3b2-6a2b+2ab;

      (5)(2a+b)(2a-3b)-3a(2a+b).

      歸納方法:如何確定多項式各項的公因式? 1.定系數(shù):找多項式各項系數(shù)的最大公約數(shù). 2.定字母:找多項式各項相同的字母.

      3.定指數(shù):相同字母的最低的次數(shù).

      【設(shè)計意圖】通過學(xué)生觀察、思考和總結(jié)歸納,讓學(xué)生了解公因式的概念,進一步了解因式分解與整式乘法的關(guān)系,了解因式分解的理論依據(jù),為提公因式法分解因式做基礎(chǔ),初步理解提公因式法分解因式.

      (三)例題展示,規(guī)范解題

      因式分解:27x3-9x2y2.

      如果多項式的各項有公因式,可以把這個公因式提取出來,將多項式寫成公因式與另一個因式的乘積的形式,這種分解因式的方法叫做提公因式法.

      例2:把2x2-8xy+x因式分解. 解:原式=x·2x-x·8y+x·1 =x(2x-8y+1).

      【設(shè)計意圖】通過例題的教學(xué),引導(dǎo)學(xué)生:(1)了解提公因式法分解因式的基本步驟;(2)積累找公因式的經(jīng)驗;(3)知道提公因式法就是把多項式分解成兩個因式乘積的形式,其中一個因式是各項的公因式,另一個因式是由多項式除以公因式得到的;(4)用公因式法分解因式后,應(yīng)保證含有多項式的因式中再無公因式.

      練習(xí)3:(1)24am-18am;

      2(2)5y-15y+5;

      32(3)28x-14x+7x.

      322例3:因式分解.

      【設(shè)計意圖】例3是對于首項是帶有負號的多項式分解因式,多項式第一項的系數(shù)是負數(shù),通常先提出“-”號,且括號內(nèi)各項都要變號.

      練習(xí)4:(1)-7ab+49ab2c;

      (2)-6ax+9axy-3a;

      323(3)-2ab-abc+3abc. 2例4:把多項式 2a(b+c)-3(b+c)分解因式.

      【設(shè)計意圖】例4的公因式是多項式,通過這一例題的教學(xué),提高學(xué)生對“公因式”的認識——可以是單項式,也可以是多項式,增強對提公因式法分解因式的本質(zhì)認識.

      練習(xí)5:(1)4m(n-3)+2(n-3);

      (2)2a(y-x)-3b(x-y);

      2222(3)a(a+b)-c(a+b).

      (四)課時小結(jié),知識分享

      通過這節(jié)課的學(xué)習(xí),你有哪些收獲?和大家一起分享吧!1.什么叫因式分解? 2.確定公因式的方法?

      3.提公因式法分解因式步驟?

      4.提公因式法因式分解中的四個注意?

      【設(shè)計意圖】通過小結(jié),使學(xué)生梳理本節(jié)課所學(xué)的內(nèi)容,使學(xué)生進一步理解因式分解、公因式的概念,總結(jié)應(yīng)用提公因式法分解因式的步驟,建立知識間的練習(xí),促進學(xué)生數(shù)學(xué)思維品質(zhì)的優(yōu)化.

      (五)作業(yè) 基礎(chǔ)檢測: 1.因式分解

      (1)22

      ;

      (2)-12ab+24ab;

      2233

      (3)xy-xy-xy;(4)

      22.已知a-b=3,ab=-1,求ab-ab.

      2323.若x+3x-2=0,求2x+6x-4x的值. 4.先分解因式,再求值:

      24a(x+7)-3(x+7),其中a=-5,x=3. 能力提升

      1.因式分解

      (1)(2)(3)(4)2.先化簡,再求值

      . ; ;

      ;,其中,x=.3.已知方程組,求代數(shù)式的值.

      第四篇:因式分解教學(xué)設(shè)計

      因式分解-提公因式法

      商丘市第十三中學(xué) 沈欽紅

      教學(xué)目標: 一 知識目標

      1、使學(xué)生了解因式分解的意義,了解因式分解和整式的乘法是整式的兩種相反方向的變形。

      2、讓學(xué)生會確定多項式中各項的公因式,會用提公因式法進行因式分解。二

      過程與方法 通過與因數(shù)分解的類比,讓學(xué)生感悟數(shù)學(xué)中數(shù)與式的共同點,體驗數(shù)學(xué)的類比思想。由整式乘法的逆運算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。三 情感態(tài)度與價值觀

      讓學(xué)生初步體會對立統(tǒng)一的辨證觀點以及實事求是的科學(xué)態(tài)度。教學(xué)重點、難點:

      1、教學(xué)重點:因式分解的概念及提公因式法的應(yīng)用。

      2、教學(xué)難點:正確找出多項式中各項的公因式以及分解因式與整式乘法的區(qū)別與聯(lián)系 教學(xué)過程:

      一、自主學(xué)習(xí)

      1、計算下各式:

      (1)、m(a+b+c)=———;(2)、(a+b)(a-b)= ———;(3)、(a+b)2 = ———。

      2、填空:

      (1)、ma+mb+mc=()();(2)、a2-b2=()();(3)、a2+2ab+b2=()()

      二、引領(lǐng)探究

      (一)、觀察歸納,引出新知 定義:

      把一個多項式化成幾個整式的積的形式,這種變形叫做這個多項式的因式分解,也,也叫做把這個多項式分解因式。說明:因式分解與整式乘法式方向相反的變形。

      1、想一想

      多項式ma+mb+mc中的各項都含有一個相同的因式———。

      多項式5a3b-10a2bc中的各項都含有一個相同的因式———。

      小結(jié):在多項式中每一項都含有的相同的因式叫做公因式。

      2、做一做

      把下列多項式分解因式:

      (1)3a+3b=

      ;(2)5x-5y+5z=

      ;

      小結(jié):把公因式提出來,這樣的因式分解的方法叫提公因式法。

      提公因式法分解因式的依據(jù)是:乘法的分配律。公因式的構(gòu)成:

      1、系數(shù),公因式中的系數(shù)是多項式中各項系數(shù)的最大公約數(shù);

      2、字母,公因式中的字母(或因式)是多項式中各項的相同字母(或因式)。

      3、指數(shù),公因式中的字母(或因式)的指數(shù)取相同字母(或因式)的最小指數(shù)。

      (二)、例題學(xué)習(xí),深化新知

      例:把下列多項式分解因式:(1)-a2b2+2abc2-3abc

      通過例題的學(xué)習(xí),讓學(xué)生討論歸納用提公因式法進行因式分解的一般步驟: 第一步:確定多項式的公因式,公因式為各項系數(shù)的最大公約數(shù)與相同字母的最低次冪的積。

      第二步:將多項式除以它的公因式從而得到多項式的另一個因式。

      設(shè)計說明:例題中的多項式,先出現(xiàn)二項式再出現(xiàn)三項式,層層遞進,有利于學(xué)生更準確的運用提公因式法。討論:如何檢驗因式分解的正確性?

      設(shè)計說明:強調(diào)如何檢驗因式分解的正確性,再一次讓學(xué)生體會因式分解和整式乘法的關(guān)系,同時也為以后學(xué)習(xí)整式的恒等變形做準備。

      三、訓(xùn)練檢測、把下列多項式分解因式:

      (1)、x2y-xy2 ;

      (2)、4x+10x2 ;(3)、4x3-2x2+2x

      (4)、ax2-axy-ax

      2、把下列多項式分解因式:

      (1)、-9x3-3x2-3x ;

      (2)、-3x3y+6x2y2-12xy3

      四、總結(jié)升華

      1、本節(jié)課同學(xué)們學(xué)到了什么?

      2、什么是多項式的公因式?確定公因式該從哪幾個方面進行考慮?

      3、說說提公因式法的一般步驟。

      五 布置作業(yè)

      課本119頁 復(fù)習(xí)鞏固1

      梁園區(qū)優(yōu)質(zhì)課評選教案

      《因式分解-提公因式法》

      商丘市第十三中學(xué)

      沈欽紅

      聯(lián)系電話:***

      第五篇:《因式分解》教學(xué)設(shè)計

      《因式分解》教學(xué)設(shè)計

      《因式分解》教學(xué)設(shè)計1

      因式分解是初中代數(shù)的重要內(nèi)容,因其分解方法較多,題型變化較大,教學(xué)有一定難度。轉(zhuǎn)化思想是數(shù)學(xué)的重要解題思想,對于靈活較大的.題型進行因式分解,應(yīng)用轉(zhuǎn)化思想,有章可循,易于理解掌握,能收到較好的效果。

      因式分解的基本方法是:提取公因式法、應(yīng)用公式法、十字相乘法。對于結(jié)構(gòu)比較簡單的題型可直接應(yīng)用它們來進行因式分解,學(xué)生能夠容易掌握與應(yīng)用。但對于分組分解法、折項、添項法就有些把握不住,應(yīng)用轉(zhuǎn)化就思想就能起到關(guān)鍵的作用。

      分組分解法實質(zhì)是一種手段,通過分組,每組采用三種基本方法進行因式分解,從而達到分組的目的,這就利用了轉(zhuǎn)換思想??聪旅鎺桌?/p>

      例1、4a2+2ab+2ac+bc

      解:原式 =(4a2+2ab)+(2ac+bc)

      =2a(2a+b)+c(2a+b)

      =(2a+b)(2a+c)

      分組后,每組提出公因式后,產(chǎn)生新的公因式能夠繼續(xù)分解因式,從而達到分解目的。

      例2、4a2-4a-b2-2b

      解:原式=(4a2-b2)-(4a+2b)

      =(2a+b)(2a-b)-2(2a+b)

      =(2a+b)(2a-b-2)

      按“二、二”分組,每組應(yīng)用提公因式法,或用平方差公式,從而繼續(xù)分解因式。

      例3、x2-y2+z2-2xz

      解:原式=(x2-2xz+z2)-y2

      =(x-z2)-y2

      =(x+y-z)(x-y-z)

      四項式按“三一”分組,使三項一組應(yīng)用完全平方式,再應(yīng)用平方差進行因式分解。

      對于五項式一般可采用“三二”分組。三項這一組可采用提公因式法、完全平方式或十字相乘法,二項這一組可采用提公因式法或平方差公式分解,因此變化性較大。

      例4、x2-4xy+4y2-x+2y

      解:原式=(x2-4xy+4y2)-(x-2y)

      =(x-2y)2-(x-2y)

      =(x-2y)(x-2y-1)

      例5、a2-b2+4a+2b+3

      解:原式=(a2+4a+4)-(b2-2b+1)

      =(a+2)2-(b-1)2

      =(a+2+b-1)(a+2-b+1)

      =(a+b+1)(a-b+3)

      對于六項式可進行“二、二、二”分組,“三、三”分組,或“三、二、一”分組。

      例6、ax2-axy+bx2-bxy-cx2+cxy

      ①解:原式=(ax2-axy)+(bx2-bxy)-(cx2-cxy)

      =ax(x-y)+bx(x-y)-cx(x-y)

      =(x-y)(ax+bx-cx)

      =x(x-y)(a+b-c)

      ②解:原式=(ax2+bx2-cx2)-(axy+bxy-cxy)

      =x2(a+b-c)-xy(a+b-c)

      =x(x-y)(a+b-c)

      例7、x2-2xy+y2+2x-2y+1

      解:原式=(x2-2xy+y2)+(2x-2y)+1

      =(x-y)2+2(x-y)+1

      =(x-y+1)2

      對于折項、添項法也可轉(zhuǎn)化成這三種基本的方法來進行因式分解。

      例8、x4+4y4

      解:原式=(x4+4x2y2+4y4)-4x2y2

      =(x2+2y2)2-4x2y2

      =(x2+2xy+2y2)(x2-2xy+2y2)

      例9、x4-23x2+1

      解:原式=x4+2x2+1-25x2

      =(x2+1)2-25x2

      =(x2-5x+1)(x2+5x+1)

      又如x3-7x-6可用折項、添項多種方法分解因式:

      ⑴x3-7x-6=(x3-x)-(6x+6)

      ⑵x3-7x-6=(x3-4x)-(3x+6)

      ⑶x3-7x-6=(x3+2x2+x)-(2x2+8x+6)

      ⑷x3-7x-6=(x3-6x2-7x)+(6x2-6)

      只有掌握好三種基本的因式分解方法,才能應(yīng)用轉(zhuǎn)化思想處理靈活性較大、技巧性較強的題型。

      《因式分解》教學(xué)設(shè)計2

      【設(shè)計主題】

      本微課選自人教版八年級,教學(xué)內(nèi)容是讓學(xué)生復(fù)習(xí)因式分解基本方法。本微課通過典型例題,從提取公因式,到完全平方公式,平方差公式,層層遞進,讓學(xué)生能夠通過本微課,學(xué)會如何進行多項式的因式分解,總結(jié)出相應(yīng)的規(guī)律。最后練習(xí)進行檢測,達到掌握因式分解法的基本方法。

      【教學(xué)背景】

      1.學(xué)情分析:授課對象為八年級上的學(xué)生,以前學(xué)習(xí)多項式運算,現(xiàn)在進行它的相逆過程。對部分學(xué)生有一定難度。

      2.教學(xué)情況分析:為了讓學(xué)生能夠通過本微課掌握因式分解基本方法,通過相應(yīng)的變形整理達到可以提取公因式和運用公式法進行因式分解。超過四項的多項式是學(xué)生學(xué)習(xí)難點,如何進行分組是關(guān)鍵。

      【教學(xué)目標】

      1.能運用提取公因式進行因式分解;

      2.能夠正確使用平方差和完全平方公式進行因式分解;

      3.能夠?qū)λ捻椉耙陨系亩囗検竭M行分組。

      【學(xué)習(xí)任務(wù)】

      通過例題一鞏固提取公因式進行因式分解;

      通過例題二鞏固應(yīng)用公式法進行因式分解,并要求每個因式不能再進行因式分解為止;

      歸納總結(jié)因式分解方法:一提,二套,三分組,四要分解到各個因式不能再進行因式分解為止

      注意事項:兩點

      舉一反三,鞏固練習(xí)

      對各題進行講解,達到學(xué)習(xí)目的。

      【教學(xué)小結(jié)】

      通過本微課,學(xué)生能夠?qū)σ蚴椒纸庵R進行歸納總結(jié)并運用此方法來解決問題。對學(xué)生因式分解由易到難,并重點對分組進行大量的練習(xí),以達到知識技能的'提升。學(xué)生在課后還需要通過練習(xí)加以鞏固復(fù)習(xí),才能做到應(yīng)用分組,提取公因式,應(yīng)用公式法進行因式分解。

      微練習(xí)

      一、填空題

      1、計算3×103-104=_________

      2、分解因式x3y-x2y2+2xy3=xy(_________)

      3、分解因式–9a2+=________

      4、分解因式4x2-4xy+y2=_________

      5、分解因式x2-5y+xy-5x=__________

      6、當(dāng)k=_______時,二次三項式x2-kx+12分解因式的結(jié)果是(x-4)(x-3)

      7、分解因式x2+3x-4=________

      8、已知矩形一邊長是x+5,面積為x2+12x+35,則另一邊長是_________

      9、若a+b=-4,ab=,則a2+b2=_________

      10、化簡1+x+x(1+x)+x(1+x)2+…+x(1+x)1995=________

      二、選擇題

      1、下列各式從左到右的變形,是因式分解的是

      A、m(a+b)=ma+mbB、ma+mb+1=m(a+b)+1

      C、(a+3)(a-2)=a2+a-6D、x2-1=(x+1)(x-1)

      2、若y2-2my+1是一個完全平方式,則m的值是()

      A、m=1B、m=-1C、m=0D、m=±1

      3、把-a(x-y)-b(y-x)+c(x-y)分解因式正確的結(jié)果是()

      A、(x-y)(-a-b+c)B、(y-x)(a-b-c)

      C、-(x-y)(a+b-c)D、-(y-x)(a+b-c)

      4、-(2x-y)(2x+y)是下列哪一個多項式分解因式后所得的答案()

      A、4x2-y2B、4x2+y2C、-4x2-y2D、-4x2+y2

      5、m-n+是下列哪個多項式的一個因式()

      A、(m-n)2+(m-n)+B、(m-n)2+(m-n)+

      C、(m-n)2-(m-n)+D、(m-n)2-(m-n)+

      6、分解因式a4-2a2b2+b4的結(jié)果是()

      A、a2(a2-2b2)+b4B、(a-b)2

      C、(a-b)4D、(a+b)2(a-b)2

      《因式分解》教學(xué)設(shè)計3

      一、內(nèi)容和內(nèi)容解析

      1.內(nèi)容

      用因式分解法解一元二次方程.

      2.內(nèi)容解析

      教材通過實際問題得到方程

      ,讓學(xué)生思考解決方程的方法除了之前所學(xué)習(xí)過的配方法和公式法以外,是否還有更簡單的方法解方程,接著思考為什么用這種方法可以求出方程的解,從而引出本節(jié)課的教學(xué)內(nèi)容.

      解一元二次方程的基本策略是降次,因式分解法將一個一元二次方程轉(zhuǎn)化為兩個一次式的乘積為零,是解某些一元二次方程較為簡便靈活的一種特殊方法.體現(xiàn)了降次的思想,這種思想在以后處理高次方程時也很重要.

      基于以上分析,確定出本節(jié)課的教學(xué)重點:會用因式分解法解特殊的一元二次方程.

      二、目標和目標解析

      1.教學(xué)目標

      (1)了解用因式分解法解一元二次方程的概念;會用因式分解法解一元二次方程;

      (2)學(xué)會觀察方程特征,選用適當(dāng)方法解決一元二次方程.

      2.目標解析

      (1)學(xué)生能理解因式分解法的概念,掌握因式分解法解一元二次方程的一般步驟,會利用因式分解求解特殊的一元二次方程;

      (2)學(xué)生通過對比一元二次方程的結(jié)構(gòu)類型,選用適當(dāng)?shù)姆椒ê侠淼慕夥匠?,增強解決問題的靈活性.

      三、教學(xué)問題診斷分析

      學(xué)生在此之前已經(jīng)學(xué)過了用配方法和公式法求一元二次方程的解,然后通過實際問題,獲得一個顯然可以用“提取公因式法”而達到“降次”目的的方程,從而引出因式分解法解一元二次方程,體現(xiàn)了從簡單的、特殊的問題出發(fā),通過逐步推廣而獲得復(fù)雜的、一般的問題,符合學(xué)生的認知規(guī)律.

      在實際的教學(xué)中,學(xué)生在利用因式分解法解方程式往往會在因式分解上存在著一定的困難,從而不能將方程化成兩個一次式乘積的形式.另外在面對一元二次方程時,缺乏對方程結(jié)構(gòu)的觀察,從而在方法的選擇上欠佳,缺乏解決問題的靈活性,增加了計算的難度,降低了計算的準確性.為了突破這一難點,應(yīng)帶領(lǐng)學(xué)生認真觀察方程的結(jié)構(gòu),對比方法的難易簡便,從而選擇合理的方法解決一元二次方程.

      本節(jié)課的難點:學(xué)會觀察方程特征,選用適當(dāng)方法解決一元二次方程.

      四、教學(xué)過程設(shè)計

      1.創(chuàng)設(shè)情景,引出問題

      問題一 根據(jù)物理學(xué)規(guī)律,如果把一個物體從地面以10m/s的速度豎直上拋,那么物體經(jīng)過x s離地面的高度(單位:m)為

      .根據(jù)上述規(guī)律,物體經(jīng)過多少秒落回地面(結(jié)果保留小數(shù)點后兩位)?

      師生活動:學(xué)生積極思考并嘗試列方程,可有學(xué)生解釋如何理解“落回地面”.

      【設(shè)計意圖】學(xué)生首先要理解實際問題背景下代數(shù)式的意義,理解落回地面的意義就是高度為零,就是表示高度的代數(shù)式的值為零,從而列出方程.在閱讀并嘗試回答的過程中讓他們感受在生活、生產(chǎn)中需要用到方程,從而激發(fā)學(xué)生的求知欲.

      2.觀察感知,理解方法

      問題二 如何求出方程的解呢?

      師生活動:學(xué)生從已有的知識出發(fā),考慮用配方法和公式法解決問題,教師再一步引導(dǎo)學(xué)生觀察方程的結(jié)構(gòu),學(xué)生進行深入的思考,努力發(fā)現(xiàn)因式分解法方法解方程.

      【設(shè)計意圖】通過配方法和公式法的選擇,更好地讓學(xué)生對比感受因式分解法的簡便,為本節(jié)課的教學(xué)內(nèi)容做好知識上的鋪墊和準備.

      問題三 如果,則有什么結(jié)論?對于你解方程有什么啟發(fā)嗎?

      師生活動:學(xué)生很容易回答有或的結(jié)論.由此進一步思考如何將一元二次方程化為兩個一次式的乘積.

      【設(shè)計意圖】通過觀察,引導(dǎo)學(xué)生進一步思考,發(fā)現(xiàn)用因式分解中提取公因式法解方程更加簡便,從而學(xué)生會對方法的選擇有一定的理解.

      問題四 上述方法是是如何將一元二次方程降為一次的?

      師生活動:學(xué)生通過對解決問題過程的反思,體會到通過提取公因式將一元二次方程化為了兩個一次式的乘積的形式,得到兩個一元一次方程,教師注重引導(dǎo)學(xué)生觀察方程在因式分解過程中的'變化,在學(xué)生總結(jié)發(fā)言的過程中適當(dāng)引導(dǎo).

      【設(shè)計意圖】讓學(xué)生對比不同解法,不是用開平方降次,而是先因式分解,使方程化為兩個一次式的乘積等于0的形式,再使這兩個一次式分別等于0,從而實現(xiàn)降次,這種節(jié)一元二次方程的方法叫做因式分解法.在反思小結(jié)的過程中,理解因式分解法的意義,從而引出本節(jié)課的教學(xué)內(nèi)容.

      3.例題示范,靈活運用

      例 解下列方程

      (1)

      (2)

      師生活動:提問:

      (1)如何求出方程(1)的解呢?說說你的方法.

      (2)對比解法,說說各種解法的特點.

      學(xué)生積極思考,積極回答問題,對比解法的不同.

      【設(shè)計意圖】問題(1)的提出是開放式的,學(xué)生可能會回答將括號打開,然后利用配方法或公式法,也有些學(xué)生會觀察到如果將

      當(dāng)作一個整體,利用提取公因式的方法直接就化為兩個一次式乘積為零的形式.通過問題(2)的思考討論,讓學(xué)生體會解法的利弊,注重觀察方程自身的結(jié)構(gòu).

      師生活動:提問:(1)方程(2)與方程(1)對比,在結(jié)構(gòu)上有什么不同?

      (2)談?wù)劮匠?2)的解法.

      學(xué)生觀察方程(2)與方程(1)的區(qū)別,用類比劃歸的思想解決問題.

      【設(shè)計意圖】問題(2)的方程需要先進行移項,將方程化為右側(cè)等于零的結(jié)構(gòu),然后得到一個平方差的結(jié)構(gòu),利用平方差公式將一元二次方程化為兩個一次式的乘積為零的結(jié)構(gòu).

      4.鞏固練習(xí),學(xué)以致用

      完成教材P14練習(xí)1,2.

      【設(shè)計意圖】鞏固性練習(xí),同時檢驗一元二次方程解法掌握情況.

      5.小結(jié)提升,深化理解

      問題五 (1)因式分解法的一般步驟是什么?

      (2)請大家總結(jié)三種解法的聯(lián)系與區(qū)別.

      師生活動:學(xué)生積極思考,歸納因式分解法的一般步驟.總結(jié)各種解題方法的特點,體會各種方法的利弊,在交流的過程中加深對解一元二次方程方法的理解,教師對學(xué)生的發(fā)言給予鼓勵和肯定,對于小結(jié)交流中的出現(xiàn)的問題及時進行引導(dǎo)糾正,幫助學(xué)生深入理解問題.

      【設(shè)計意圖】學(xué)生通過小結(jié)反思,深化對問題的理解,體會到配方法需要將方程進行配方降次,公式法需要將方程化為一般形式后利用求根公式求解;而因式分解法需要將一元二次方程化為兩個一次項乘積為零的形式;另在還讓學(xué)生體會到配方法和公式法適用于所有方程,但有時計算量比較大,因式分解法適用于一部分一元二次方程,但是三種方法都體現(xiàn)了降次的基本思想.

      五、目標檢測設(shè)計

      解下列方程

      1.

      【設(shè)計意圖】利用提取公因式法解方程.

      2.

      【設(shè)計意圖】利用平方差公式解方程.

      3.

      【設(shè)計意圖】利用因式分解法不適合的方程可選擇用公式法或配方法解決.

      4.

      【設(shè)計意圖】選用適當(dāng)?shù)姆椒ń夥匠?

      《因式分解》教學(xué)設(shè)計4

      教學(xué)目標

      認知目標:

      (1)理解因式分解的概念和意義

      (2)認識因式分解與整式乘法的相互關(guān)系——相反變形,并會運用它們之間的相互關(guān)系尋求因式分解的方法。

      能力目標:由學(xué)生自行探求解題途徑,培養(yǎng)學(xué)生觀察、分析、判斷能力和創(chuàng)新能力,發(fā)展學(xué)生智能,深化學(xué)生逆向思維能力和綜合運用能力。

      情感目標:培養(yǎng)學(xué)生接受矛盾的對立統(tǒng)一觀點,獨立思考,勇于探索的精神和實事求是的科學(xué)態(tài)度。

      目標制定的思想

      1.目標具體化、明確化,從學(xué)生實際出發(fā),具有針對性和可行性,同時便于上課操作,便于檢測和及時反饋。

      2.課堂教學(xué)體現(xiàn)能力立意。

      3.寓德育教學(xué)方法

      1.采用以設(shè)疑探究的引課方式,激發(fā)學(xué)生的求知欲望,提高學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性。

      2.把因式分解概念及其與整式乘法的關(guān)系作為主線,訓(xùn)練學(xué)生思維,以設(shè)疑——感知——概括——運用為教學(xué)程序,充分遵循學(xué)生的認知規(guī)律,使學(xué)生能順利地掌握重點,突破難點,提高能力。

      3.在課堂教學(xué)中,引導(dǎo)學(xué)生體會知識的發(fā)生發(fā)展過程,堅持啟發(fā)式,鼓勵學(xué)生充分地動腦、動口、動手,積極參與到教學(xué)中來,充分體現(xiàn)了學(xué)生的主動性原則。

      4.在充分尊重教材的前提下,融教材練習(xí)、想一想于教學(xué)過程中,增設(shè)了由淺入深、各不相同卻又緊密相關(guān)的訓(xùn)練題目,為學(xué)生順利掌握因式分解概念及其與整式乘法關(guān)系創(chuàng)造了有利條件。

      教學(xué)過程安排

      一、提出問題,創(chuàng)設(shè)情境

      問題:看誰算得快?

      (1)若a=101,b=99,則a2-b2=(a+b)(a-b)=(101+99)(101-99)=400

      (2)若a=99,b=-1,則a2-2ab+b2=(a-b) 2=(99+1)2 =10000

      (3)若x=-3,則20x2+60x=20x(x+3)=20x(-3)(-3+3)=0

      二、觀察分析,探究新知

      (1)請每題想得最快的同學(xué)談思路,得出最佳解題方法

      (2)觀察:a2-b2=(a+b)(a-b) ①的左邊是一個什么式子?右邊又是什么形式?

      a2-2ab+b2 =(a-b) 2 ②

      20x2+60x=20x(x+3) ③

      (3)類比小學(xué)學(xué)過的因數(shù)分解概念,(例42=2×3×7 ④)得出因式分解概念。

      板書課題: 因式分解

      1.因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。

      三、獨立練習(xí),鞏固新知

      練習(xí)

      1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?

      ①(x+2)(x-2)=x2-4

      ②x2-4=(x+2)(x-2)

      ③a2-2ab+b2=(a-b)2

      ④3a(a+2)=3a2+6a

      ⑤3a2+6a=3a(a+2)

      2.因式分解與整式乘法的關(guān)系:

      因式分解

      結(jié)合:a2-b2=========(a+b)(a-b)

      整式乘法

      說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。

      (2)∵xy( )=2x2y-6xy2

      ∴2x2y-6xy2=xy( )

      (3)∵2x( )=2x2y-6xy2

      ∴2x2y-6xy2=2x( )

      四、強化訓(xùn)練,掌握新知:

      練習(xí)3:把下列各式分解因式:

      (1)2ax+2ay (2)3mx-6nx (3) x2y+xy2

      (4) x2+-x (5) x2-0.01

      (讓學(xué)生上來板演)

      五、整理知識,形成結(jié)構(gòu)(即課堂小結(jié))

      1.因式分解的概念 因式分解是整式中的`一種恒等變形

      2.因式分解與整式乘法是兩種相反的恒等變形,也是思維方向相反的兩種思維方式,因此,因式分解的思維過程實際也是整式乘法的逆向思維的過程。

      3.利用2中關(guān)系,可以從整式乘法探求因式分解的結(jié)果。

      4.教學(xué)中滲透對立統(tǒng)一,以不變應(yīng)萬變的辯證唯物主義的思想方法。

      六、布置作業(yè)

      1.作業(yè)本(一)中§7.1節(jié)

      評價與反饋

      1.通過由學(xué)生自己得出因式分解概念及其與整式乘法的關(guān)系的結(jié)論,了解學(xué)生觀察、分析問題的能力和逆向思維能力及創(chuàng)新能力。發(fā)現(xiàn)問題,及時反饋。

      2.通過例題及練習(xí),了解學(xué)生對概念的理解程度和實際運用能力,最大限度地讓學(xué)生暴露問題和認知誤差,及時發(fā)現(xiàn)和彌補教與學(xué)中的遺漏和不足,從而及時調(diào)控教與學(xué)。

      七.課堂小結(jié),了解學(xué)生對概念的熟悉程度和歸納概括能力、語言表達能力、知識運用能力,教師恰當(dāng)?shù)亟o予引導(dǎo)和啟迪。

      《因式分解》教學(xué)設(shè)計5

      教材分析

      因式分解是代數(shù)式的一種重要恒等變形?!稊?shù)學(xué)課程標準》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個公式,但絲毫沒有否定因式分解的.教育價值及其在代數(shù)運算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運算的基礎(chǔ)上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現(xiàn)在使學(xué)生接受對立統(tǒng)一的觀點,培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。

      學(xué)情分析

      通過探究平方差公式和運用平方差公式分解因式的活動中,讓學(xué)生發(fā)表自己的觀點,從交流中獲益,讓學(xué)生獲得成功的體驗,鍛煉克服困難的意志建立自信心。

      教學(xué)目標

      1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。

      2、通過公式a -b =(a+b)(a-b)的逆向變形,進一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達能力。

      3、能運用提公因式法、公式法進行綜合運用。

      4、通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。

      教學(xué)重點和難點

      重點:靈活運用平方差公式進行分解因式。

      難點:平方差公式的推導(dǎo)及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。

      《因式分解》教學(xué)設(shè)計6

      教學(xué)準備

      教學(xué)目標

      知識與能力

      1.了解多項式公因式的意義,初步會用提公因式法分解因式;

      2.通過找公因式,培養(yǎng)觀察能力.

      過程與方法

      1.了解因式分解的概念,以及因式分解與整式乘法的關(guān)系;

      2.了解公因式概念和提取公因式的方法;會用提取公因式法分解因式.

      情感態(tài)度與價值觀

      1.在探索提公因式法分解因式的過程中學(xué)會逆向思維,滲透化歸的思想方法;

      2.培養(yǎng)觀察、聯(lián)想能力,進一步了解換元的思想方法;

      教學(xué)重難點

      重點:能觀察出多項式的公因式,并根據(jù)分配律把公因式提出來.

      難點: 識別多項式的公因式.

      教學(xué)過程

      一、新課導(dǎo)入

      請同學(xué)們想一想?993-99能被100整除嗎?

      解法一:993-99=970299-99

      =970200

      解法二:993-99=99(992-1)

      =99(99+1)(99-1)

      =100×99×98

      =970200

      (1)已知:x=5,a-b=3,求ax2-bx2的值.

      (2)已知:a=101,b=99,求a2-b2的值.

      你能說說算得快的`原因嗎?

      解:(1) ax2-bx2=x2(a-b)

      =25×3=75.

      (2) a2-b2=(a+b)(a-b)

      =(101+99)(101-99)

      =400

      二、新知探究

      1、做一做:

      計算下列各式:

      ①3x(x-2)= __3x2-6x

      ②m(a+b+c)= ma+mb+mc

      ③(m+4)(m-4)= m2-16

      ④(x-2)2= x2-4x+4

      ⑤a(a+1)(a-1)= a3-a

      根據(jù)左面的算式填空:

      ①3x2-6x=(_3x__)(_x-2__)

      ②ma+mb+mc=(_m_)(a+b+c_)

      ③m2-16=(_m+4)(m-4_)

      ④x2-4x+4=(x-2)2

      ⑤a3-a=(a)(a+1)(a-1)

      左邊一組的變形是什么運算?右邊的變形與這種運算有什么不同?右邊變形的結(jié)果有什么共同的特點?

      總結(jié): 把一個多項式化成了幾個整式的積的形式,像這樣的式子變形叫做把這個多項式因式分解,也叫做把這個多項式分解因式.

      整式乘法 因式分解與整式乘法是互逆過程 因式分解

      在am+bm=m(a+b)中,m叫做多項式各項的公因式.

      公因式:

      即每個單項式都含有的相同的因式.

      提公因式法:

      如果多項式的各項有公因式,可以把這個公因式提到括號外面,將多項式寫成乘積的形式.這種分解因式的方法叫做提公因式法.

      確定公因式的方法:

      (1)公因式的系數(shù)是多項式各項系數(shù)的最大公約數(shù);

      (2)字母取多項式各項中都含有的相同的字母;

      (3)相同字母的指數(shù)取各項中最小的一個,即最低次冪.

      三、例題分析

      例1 把12a4b3+16a2b3c2分解因式.

      解:12a4b3+16a2b3c2

      =4a2b3·3a2+ 4a2b3 ·4c2

      = 4a2b3 (3a2 + 4c2)

      提公因式后,另一個因式:

      ①項數(shù)應(yīng)與原多項式的項數(shù)一樣;

      ②不再含有公因式.

      例2 把2ac(b+2c)- (b+2c)分解因式.

      解:2ac(b+2c) -(b+2c)

      = (b+2c)(2ac-1)

      公因式可以是數(shù)字、字母,也可以是單項式,還可以是多項式.

      例3 把-x3+x2-x分解因式.

      解:原式=-(x3-x2+x)

      =-x(x2-x+1)

      多項式的第一項是系數(shù)為負數(shù)的項,一般地,應(yīng)提出負系數(shù)的公因式.但應(yīng)注意,這時留在括號內(nèi)的每一項的符號都要改變,且最后一項“-x”提出時,應(yīng)留有一項“+1”,而不能錯解為-x(x2-x).

      四、當(dāng)堂訓(xùn)練

      1.(1)9x3y3-12x2y+18xy3中各項的公因式是 3xy_.

      (2)5x2-25x的公因式為 5x .

      (3)-2ab2+4a2b3的公因式為-2ab2.

      (4)多項式x2-1與(x-1)2的公因式是x-1.

      2.如果(x+y)(x2-xy+y2)-(x+y)xy有公因式(x+y),那么另外的因式是 (x-y)2

      課后小結(jié)

      1.分解因式

      把一個多項式分解成幾個整式的積的形式,叫做分解因式,分解因式和整式乘法互為逆運算.

      2.確定公因式的方法

      一看系數(shù) 二看字母 三看指數(shù)

      3.提公因式法分解因式步驟(分兩步)

      第一步 找出公因式;

      第二步 提公因式.

      4.用提公因式法分解因式應(yīng)注意的問題

      (1)公因式要提盡;

      (2)某一項全部提出時,這一項除以公因

      式時的商是1,這個1不能漏掉;

      (3)多項式的首項取正號.

      板書

      一、因式分解

      把一個多項式化成了幾個整式的積的形式,像這樣的式子變形叫做把這個多項式因式分解,也叫做把這個多項式分解因式.

      二、提公因式法

      如果多項式的各項有公因式,可以把這個公因式提到括號外面,將多項式寫成乘積的形式.這種分解因式的方法叫做提公因式法.

      am+bm=m(a+b)

      二、例題分析

      例1、

      例2、

      例3、

      三、當(dāng)堂訓(xùn)練

      下載《因式分解》教學(xué)的幾點思考word格式文檔
      下載《因式分解》教學(xué)的幾點思考.doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        因式分解教學(xué)設(shè)計

        《因式分解——提公因式法》教學(xué)設(shè)計 教學(xué)目標: 1、使學(xué)生了解因式分解的意義,了解因式分解和整式的乘法是整式的兩種相反方向的變形。 2、讓學(xué)生會確定多項式中各項的公因式,......

        因式分解教學(xué)設(shè)計

        因式分解——提示公因式的教學(xué)設(shè)計 新華中學(xué)數(shù)學(xué)教研組 【設(shè)計理念】 數(shù)學(xué)是培養(yǎng)學(xué)生思維能力,推理能力,計算能力等。本設(shè)計重在培養(yǎng)學(xué)生的思維能力、推理能力,通過問題引入、......

        因式分解教學(xué)設(shè)計

        13.5因式分解 喻屯二中張永超 因式分解(1) 提公因式法 學(xué)習(xí)目標1、了解因式分解的概念,以及因式分解與整式乘法之間的關(guān)系。明白 因式分解的結(jié)果可用式乘法來檢驗。 2、了解公......

        《因式分解》教學(xué)反思

        初中數(shù)學(xué)課堂教學(xué)“以學(xué)生為主”的思考《因式分解》一節(jié)課的反思龍杭菊素質(zhì)教育背景下的數(shù)學(xué)課堂教學(xué)要以學(xué)生為主體,從學(xué)生的實際情況出發(fā),關(guān)注、關(guān)心學(xué)生的成長,創(chuàng)設(shè)良好的課......

        因式分解教學(xué)案例

        《因式分解》教學(xué)案例評析 一、案例背景 現(xiàn)代教育理論認為,教師為主導(dǎo),學(xué)生為主體,教師應(yīng)當(dāng)充分調(diào)動學(xué)生的學(xué)習(xí)積極性,使之主動地探索、研究,讓學(xué)生都參與到課堂活動中,通過學(xué)生自......

        《因式分解》教學(xué)反思

        《因式分解》教學(xué)反思 《因式分解》教學(xué)反思1 因式分解這部分的內(nèi)容是八年級數(shù)學(xué)第一學(xué)期重難點,也是初中階段必考易錯的知識點,也是難點,學(xué)習(xí)時節(jié)奏應(yīng)該放慢一些,講課的時候是......

        《因式分解》教學(xué)反思

        《因式分解》教學(xué)反思 《因式分解》教學(xué)反思1 素養(yǎng)教育背景下的數(shù)學(xué)課堂教學(xué)要以學(xué)生為主體,從學(xué)生的實際狀況動身,關(guān)注、關(guān)懷學(xué)生的成長,創(chuàng)設(shè)良好的課堂學(xué)習(xí)氣氛,激發(fā)學(xué)生的學(xué)......

        因式分解 教學(xué)反思

        因式分解這部分的內(nèi)容是八年級數(shù)學(xué)第一學(xué)期重難點,也是初中階段必考易錯的知識點,也是難點,學(xué)習(xí)時節(jié)奏應(yīng)該放慢一些,講課的時候是一節(jié)課講一種方法,先分析符合條件的形式再練習(xí),主......