第一篇:高一數(shù)學教案:對數(shù)函數(shù)1
3eud教育網(wǎng) http://www.3edu.net 百萬教學資源,完全免費,無須注冊,天天更新!
課題 對數(shù)函數(shù)
教學目標
在指數(shù)函數(shù)及反函數(shù)概念的基礎上,使學生掌握對數(shù)函數(shù)的概念,能正確描繪對數(shù)函數(shù)的圖像,掌握對數(shù)函數(shù)的性質(zhì),并初步應用性質(zhì)解決簡單問題.
通過對數(shù)函數(shù)的學習,樹立相互聯(lián)系,相互轉(zhuǎn)化的觀點,滲透數(shù)形結(jié)合,分類討論的思想.
通過對數(shù)函數(shù)有關性質(zhì)的研究,培養(yǎng)學生觀察,分析,歸納的思維能力,調(diào)動學生學習的積極性.
教學重點,難點
重點是理解對數(shù)函數(shù)的定義,掌握圖像和性質(zhì).
難點是由對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)的關系,利用指數(shù)函數(shù)圖像和性質(zhì)得到對數(shù)函數(shù)的圖像和性質(zhì).
教學方法
啟發(fā)研討式
教學用具
投影儀
教學過程
引入新課
今天我們一起再來研究一種常見函數(shù).前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).
反函數(shù)的實質(zhì)是研究兩個函數(shù)的關系,所以自然我們應從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個熟悉的函數(shù)就是指數(shù)函數(shù).
提問:什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?
由學生說出學生口答求反函數(shù)的過程:
由 得
是指數(shù)函數(shù),它是存在反函數(shù)的.并由一個
.又 的值域為,3eud教育網(wǎng) http://www.3edu.net 教學資源集散地??赡苁亲畲蟮拿赓M教育資源網(wǎng)!3eud教育網(wǎng) http://www.3edu.net 百萬教學資源,完全免費,無須注冊,天天更新!
所求反函數(shù)為 .
那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對數(shù)函數(shù).
2.8對數(shù)函數(shù)(板書)
對數(shù)函數(shù)的概念
定義:函數(shù)對數(shù)函數(shù).
的反函數(shù)
叫做
由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個角度出發(fā).如從定義中你能了解對數(shù)函數(shù)的什么性質(zhì)嗎?最初步的認識是什么?
教師可提示學生從反函數(shù)的三定與三反去認識,從而找出對數(shù)函數(shù)的定義域為,對數(shù)函數(shù)的值域為
.
,且底數(shù) 就是指數(shù)函數(shù)中的,故有著相同的限制條件
在此基礎上,我們將一起來研究對數(shù)函數(shù)的圖像與性質(zhì).
二.對數(shù)函數(shù)的圖像與性質(zhì)(板書)
作圖方法
提問學生打算用什么方法來畫函數(shù)圖像?學生應能想到利用互為反函數(shù)的兩個函數(shù)圖像之間的關系,利用圖像變換法畫圖.同時教師也應指出用列表描點法也是可以的,讓學生從中選出一種,最終確定用圖像變換法畫圖.
由于指數(shù)函數(shù)的圖像按
和
分成兩種不同的類型,故對數(shù)函數(shù) 和
,并分別以
的圖像也應以1為分界線分成兩種情況和 為例畫圖.
具體操作時,要求學生做到:
指數(shù)函數(shù)趨勢等).
畫出直線 和 的圖像要盡量準確(關鍵點的位置,圖像的變化 .
3eud教育網(wǎng) http://www.3edu.net 教學資源集散地??赡苁亲畲蟮拿赓M教育資源網(wǎng)!3eud教育網(wǎng) http://www.3edu.net 百萬教學資源,完全免費,無須注冊,天天更新!的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近軸對稱為逐漸靠近軸,而折,在 左側(cè)的先翻,然后再翻在 的圖像在翻折時可提示學生分兩段翻
右側(cè)的部分.
學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出
和一坐標系內(nèi))如圖:
的圖像.(此時同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同
草圖.
教師畫完圖后再利用投影儀將標系內(nèi),如圖:
和 的圖像畫在同一坐
然后提出讓學生根據(jù)圖像說出對數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個角度說明)
性質(zhì)
3eud教育網(wǎng) http://www.3edu.net 教學資源集散地。可能是最大的免費教育資源網(wǎng)!3eud教育網(wǎng) http://www.3edu.net 百萬教學資源,完全免費,無須注冊,天天更新!
定義域:
值域:
由以上兩條可說明圖像位于 軸的右側(cè).
截距:令為漸近線. 得
,即在 軸上的截距為1,與 軸無交點即以 軸
奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關于原點對稱,也不關于 軸對稱.
單調(diào)性:與 有關.當
當 時,在 時,在 上是增函數(shù).即圖像是上升的
上是減函數(shù),即圖像是下降的.
之后可以追問學生有沒有最大值和最小值,當?shù)玫椒穸ù鸢笗r,可以再問能否看待何時函數(shù)值為正?學生看著圖可以答出應有兩種情況:
當 時,有
;當
時,有
.
學生回答后教師可指導學生巧記這個結(jié)論的方法:當?shù)讛?shù)與真數(shù)在1的同側(cè)時函數(shù)值為正,當?shù)讛?shù)與真數(shù)在1的兩側(cè)時,函數(shù)值為負,并把它當作第(6)條性質(zhì)板書記下來.
最后教師在總結(jié)時,強調(diào)記住性質(zhì)的關鍵在于要腦中有圖.且應將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對比記憶.(特別強調(diào)它們單調(diào)性的一致性)
對圖像和性質(zhì)有了一定的了解后,一起來看看它們的應用.
三.簡單應用(板書)
研究相關函數(shù)的性質(zhì)
求下列函數(shù)的定義域:
(1)
(2)
(3)
先由學生依次列出相應的不等式,其中特別要注意對數(shù)中真數(shù)和底數(shù)的條件限制.
利用單調(diào)性比較大小(板書)
比較下列各組數(shù)的大小
3eud教育網(wǎng) http://www.3edu.net 教學資源集散地??赡苁亲畲蟮拿赓M教育資源網(wǎng)!3eud教育網(wǎng) http://www.3edu.net 百萬教學資源,完全免費,無須注冊,天天更新!
(1)與 ;(2)與 ;
(3)與 ;(4)與 .
讓學生先說出各組數(shù)的特征即它們的底數(shù)相同,故可以構造對數(shù)函數(shù)利用單調(diào)性來比大?。詈笞寣W生以其中一組為例寫出詳細的比較過程.
三.鞏固練習
練習:若
四.小結(jié)
五.作業(yè) 略
板書設計
,求 的取值范圍.
教案點評:
根據(jù)教材內(nèi)容和課程標準的要求,本節(jié)課的重點是理解對數(shù)函數(shù)的定義,掌握圖像和性質(zhì)。教案的編寫從四個環(huán)節(jié)設計教學過程。各個教學環(huán)節(jié),依據(jù)教學內(nèi)容和教學目標的不同要求,呈現(xiàn)的教學方式、方法各有不同,第一個環(huán)節(jié)從復習指數(shù)函數(shù)開始,有學生熟悉的指數(shù)函數(shù)入手,引起學生興趣;第二個環(huán)節(jié)是對數(shù)函數(shù)的定義;第三個環(huán)節(jié):因為學生已經(jīng)具有一定的作圖能力,讓學生畫出常見的幾個函數(shù)圖象,并總結(jié)出對數(shù)函數(shù)的性質(zhì)。第四個環(huán)節(jié):簡單應用。因此通過學生之間、師生之間的交流、討論,使知識系統(tǒng)化、條理化,利于學生記憶對數(shù)函數(shù)的性質(zhì)。
3eud教育網(wǎng) http://www.3edu.net 教學資源集散地??赡苁亲畲蟮拿赓M教育資源網(wǎng)!
第二篇:高一數(shù)學教案:對數(shù)函數(shù)
教學目標:
1.進一步理解對數(shù)函數(shù)的性質(zhì),能運用對數(shù)函數(shù)的相關性質(zhì)解決對數(shù)型函數(shù)的常見問題.2.培養(yǎng)學生數(shù)形結(jié)合的思想,以及分析推理的能力.教學重點:
對數(shù)函數(shù)性質(zhì)的應用.教學難點:
對數(shù)函數(shù)的性質(zhì)向?qū)?shù)型函數(shù)的演變延伸.教學過程:
一、問題情境
1.復習對數(shù)函數(shù)的性質(zhì).2.回答下列問題.(1)函數(shù)y=log2x的值域是;
(2)函數(shù)y=log2x(x≥1)的值域是;
(3)函數(shù)y=log2x(0
3.情境問題.函數(shù)y=log2(x2+2x+2)的定義域和值域分別如何求呢?
二、學生活動
探究完成情境問題.三、數(shù)學運用
例1 求函數(shù)y=log2(x2+2x+2)的定義域和值域.練習:
(1)已知函數(shù)y=log2x的值域是[-2,3],則x的范圍是________________.(2)函數(shù),x(0,8]的值域是.(3)函數(shù)y=log(x2-6x+17)的值域.(4)函數(shù) 的值域是_______________.例2 判斷下列函數(shù)的奇偶性:
(1)f(x)=lg(2)f(x)=ln(-x)
例3 已知loga 0.75>1,試求實數(shù)a 取值范圍.例4 已知函數(shù)y=loga(1-ax)(a>0,a≠1).(1)求函數(shù)的定義域與值域;
(2)求函數(shù)的單調(diào)區(qū)間.練習:
1.下列函數(shù)(1)y=x-1;(2)y=log2(x-1);(3)y=;(4)y=lnx,其中值域為R的有(請寫出所有正確結(jié)論的序號).2.函數(shù)y=lg(-1)的圖象關于 對稱.3.已知函數(shù)(a>0,a≠1)的圖象關于原點對稱,那么實數(shù)m=.4.求函數(shù),其中x [,9]的值域.四、要點歸納與方法小結(jié)
(1)借助于對數(shù)函數(shù)的性質(zhì)研究對數(shù)型函數(shù)的定義域與值域;
(2)換元法;
(3)能畫出較復雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結(jié)合).五、作業(yè)
課本P70~71-4,5,10,11.
第三篇:高一數(shù)學教案---對數(shù)函數(shù)性質(zhì)的應用
讓教師左手翻試卷,右手敲鍵盤登分成為可能......Excel登分王 http://hi.baidu.com/myexcel
第二十五教時
教材: 對數(shù)函數(shù)性質(zhì)的應用
目的:加深對對數(shù)函數(shù)性質(zhì)的理解與把握,并能夠運用解決具體問題。過程:
一、復習:對數(shù)函數(shù)的定義、圖象、性質(zhì)
二、例一 求下列反函數(shù)的定義域、值域: 1.y?2?x2解:要使函數(shù)有意義,必須: ?x2?x?0 ①
loga(?x2?x)?0 ②
由①:?1?x?0
由②:當a?1時 必須 ?x2?x?1 x??
當0?a?1時 必須 ?x2?x?1 x?R
綜合①②得 ?1?x?0且0?a?1 ?1?1 4?x2?1解:要使函數(shù)有意義,必須:2?1?0 即:?x2?1??2??1?x?1 422 當?1?x?0時(?x2?x)max?11 ∴0??x2?x? 44 值域:∵?1?x?1 ∴?1??x?0 從而 ?2??x?1??1 ∴?2?x42 ∴l(xiāng)oga(?x2?x)?loga例二 比較下列各數(shù)大?。? 1.log0.30.7與log0.40.3 y?loga(0?a?1)44?11? ∴0?2?x22?1111?? ∴0?y? 4422.y?log2(x2?2x?5)
解:∵x2?2x?5對一切實數(shù)都恒有x2?2x?5?4 ∴函數(shù)定義域為R 從而log2(x2?2x?5)?log24?2 即函數(shù)值域為y?2 3.y?log1(?x2?4x?5)
3解: ∵log0.30.7?log0.30.3?1 log0.40.3?log0.40.4?
1∴l(xiāng)og0.30.7?log0.40.3
?1? 2.log0.60.8,log3.40.7和???3??12
?12解:函數(shù)有意義,必須:?x2?4x?5?0?x2?4x?5?0??1?x?
5由?1?x?5
∴在此區(qū)間內(nèi)(?x2?4x?5)max?9
∴ 0??x2?4x?5?9
從而 log1(?x2?4x?5)?log19??2 即:值域為y??2
33?1? 解: ∵0?log0.60.8?1 log3.40.7?0 ???3??1? ∴l(xiāng)og3.40.7?log0.60.8???
?3??12?1
3.log0.30.1和log0.20.1
解: log0.30.1?4.y?loga(?x2?x)
1log0.10.3?0 log0.20.1?1log0.10.2?0
免按學號順序登分,免登分前整理試卷成為可能......Excel登分王
讓教師左手翻試卷,右手敲鍵盤登分成為可能......Excel登分王 http://hi.baidu.com/myexcel ∵log0.10.3?log0.10.2 ∴l(xiāng)og0.30.1?log0.20.1
例三 已知f(x)?1?logx3,g(x)?2logx2 試比較f(x)和g(x)的大小。
3x解:f(x)?g(x)?logx ∴y2?y1?0 y2?y1
∴y在(6,??)上是減函數(shù)。
三、作業(yè):《課課練》 P86 9 P87 “例題推薦” 1 2 3
P88 “課時練習” 8 9 ?10?x?1??4?3x?3x 1? 當?x?x? 或 ??0?x?1時 f(x)?g(x)?10??13??4?4? 2? 當3x4?1即x?時 f(x)?g(x)43?00?x?1??4?x3?x 3? 當??1?x?或 ?3x?x?? 時 f(x)?g(x)0??1?13??4??444 綜上所述:x?(0,1)?(,??)時f(x)?g(x);x?時f(x)?g(x)
334 x?(1,)時f(x)?g(x)例四 求函數(shù)y?log1(x2?3x?18)的單調(diào)區(qū)間,并用單調(diào)定義給予證明。
2解:定義域 x2?3x?18?0?x?6或x??3
單調(diào)區(qū)間是(6,??)設x1,x2?(6,??)且x1?x2 則
y1?log1(x1?3x1?18)y2?log1(x2?3x2?18)
2222(x1?3x1?18)?(x2?3x2?18)=(x2?x1)(x2?x1?3)
∵x2?x1?6 ∴x2?x1?0 x2?x1?3?0
∴x2?3x2?18?x1?3x1?18 又底數(shù)0?22221?1 2免按學號順序登分,免登分前整理試卷成為可能......Excel登分王
第四篇:高一數(shù)學必修1說課稿《對數(shù)函數(shù)》
一、教材的本質(zhì)、地位與作用
對數(shù)函數(shù)(第二課時)是人教版高一數(shù)學(上冊)第二章第八節(jié)第二課時的內(nèi)容,本小節(jié)涉及對數(shù)函數(shù)相關知識,分三個課時,這里是第二課時復習鞏固對數(shù)函數(shù)圖像及性質(zhì),并用此解決三類對數(shù)比大小問題,是對已學內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時也體現(xiàn)了數(shù)學的實用性,為后續(xù)學習起到奠定知識基礎、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用.
二、教學目標
根據(jù)教學大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學生的認知特點確定教學目標如下:
學習目標:
1、復習鞏固對數(shù)函數(shù)的圖像及性質(zhì)
2、運用對數(shù)函數(shù)的性質(zhì)比較兩個數(shù)的大小
能力目標:
1、培養(yǎng)學生運用圖形解決問題的意識即數(shù)形結(jié)合能力
2、學生運用已學知識,已有經(jīng)驗解決新問題的能力
3、探索出方法,有條理闡述自己觀點的能力
德育目標:
培養(yǎng)學生勤于思考、獨立思考、合作交流等良好的個性品質(zhì)
三、教材的重點及難點
對數(shù)比大小發(fā)揮的是承上啟下的作用,對前一是復習鞏固對數(shù)函數(shù)的圖像和性質(zhì),二是對指數(shù)中比大小問題的數(shù)學思想及方法的再次體現(xiàn)和應用,對后為解對數(shù)方程及對數(shù)不等式奠定基礎。所以確定本節(jié)課重點:運用對數(shù)函數(shù)圖像性質(zhì)比較兩數(shù)的大小
教學中將在以下2個環(huán)節(jié)中突出教學重點:
1、利用學生預習后的心得交流,資源共享,互補不足
2、通過適當?shù)木毩暎訌妼忸}方法的掌握及原理的理解
另一方面,學生在預習后上課的情況下,對于課本上知識有了一定的認識,但本節(jié)課教師要補充第三類比大小問題———同真異底型,對于學生以小組為單位自主探究有一定的挑戰(zhàn)性。所以確定本節(jié)課難點:同真異底的對數(shù)比大小
教學中會在以下3個方面突破教學難點:
1、教師調(diào)整角色,讓學生成為學習的主人,教師在其中起引導作用即可。
2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學生,增強學生參與討論的自信。
3、本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
四、學生學情分析
長處:高一學生經(jīng)過幾年的數(shù)學學習,已具備一定的數(shù)學素養(yǎng),對于已學知識或用過的數(shù)學思想、方法有一定的應用能力及應用意識,對于本節(jié)課而言,從知識上說,對數(shù)函數(shù)的圖像和性質(zhì)剛剛學過,本節(jié)課是知識的應用,從數(shù)學能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結(jié)合能力、小結(jié)概括能力、特殊到一般歸納能力已具備一點。
學生可能遇到的困難:本節(jié)課從教學內(nèi)容上來看,第三類對數(shù)比大小是課本以外補充的內(nèi)容,沒有預習心得,讓學生在課堂中快速通過合作探究來完成解題思路的構建,有一定的挑戰(zhàn)性,從學生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯(lián)系認識上還顯不足。
五、教法特點
新課程強調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學生為中心,讓學生成為學習的主人,教師在其中起引導作用即可?;诖?,本節(jié)課遵循此原則重點采用問題探究和啟發(fā)引導式的教學方法。從預習交流心得出發(fā),到探索新問題,再到題后的回顧總結(jié),一切以學生為中心,處處體現(xiàn)學生的主體地位,讓學生多說、多分析、多思考、多總結(jié),引導學生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學生分析問題、解決問題能力打下基礎。本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
六、教學過程分析
1、課件展示本節(jié)課學習目標
設計意圖:明確任務,激發(fā)興趣
2、溫故知新(已填表形式復習對數(shù)函數(shù)的圖像和性質(zhì))
設計意圖:復習已學知識和方法,為學生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應用打下基礎。
3、預習后心得交流
1)同底對數(shù)比大小
2)既不同底數(shù),也不同真數(shù)的對數(shù)比大小
以課本例題為例,交流解題思路,題后總結(jié)此類型比大小問題的一般方法,而后通過練習加強理解鞏固
設計意圖:通過學生的預習,自己總結(jié)方法及此方法適用的題型,有條理的闡述自己的學習心得,老師只需起引導作用,引導學生從題目表面上升到題目的實質(zhì),從而找到解決問題的有效方法。
4、合作探究——同真異底型的對數(shù)比大小
以例3為例,學生分組合作探究解題方法,預計兩種:一是利用換底公式將此類型轉(zhuǎn)化為同底異真型,利用之前總結(jié)的方法解決此問題。二是利用具體對數(shù)的大小關系探究出不同底對數(shù)函數(shù)在同一直角坐標系中的圖像,以此來解決此類型比大小問題。
設計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學生的主動性,培養(yǎng)主動學習的意識,同時也鍛煉學生各方面能力的很好機會,為以后的探究學習積累經(jīng)驗和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學理念。另外數(shù)學問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學生反思明白,要想利用性質(zhì)解決問題,關鍵要做到“腦中有圖”,以“形”促“數(shù)”。
5、小結(jié)
以學生自主小結(jié)的方式總結(jié)本節(jié)課得收獲,教師可引導小結(jié)三個方面:所學內(nèi)容、數(shù)學思想、數(shù)學方法
6、思考題
以高考題為例,讓學生學以致用,增強數(shù)學學習興趣。
7、作業(yè)
包括兩個方面:1、書寫作業(yè) 2、下節(jié)課前的預習作業(yè)
七、教學效果分析
通過本節(jié)課的教學實例來看,這種通過課本內(nèi)容預習,而后課堂交流學習成果的方法效果不錯,既能很好的完成教學任務,又能充分發(fā)揮學生學習的主動性。在自主探究時,學生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當?shù)奶崾?,使學生都能動起來,課堂都有所收獲,增強學生自信。另外,對于學生的總結(jié)回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學生微笑和語言的鼓勵,效果很好。在小結(jié)環(huán)節(jié)中,對于高一學生自己小結(jié)的方法,是我一直的教學嘗試,由于只訓練了半學期,學生只能達到小結(jié)知識的程度,在以后的訓練中還會加入數(shù)學思想、數(shù)學方法的小結(jié)內(nèi)容,使這些數(shù)學名詞讓學生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。
第五篇:高一數(shù)學《對數(shù)函數(shù)》說課稿
高一數(shù)學《對數(shù)函數(shù)》說課稿
高一數(shù)學《對數(shù)函數(shù)》說課稿1
一、教材的本質(zhì)、地位與作用
對數(shù)函數(shù)(第二課時)是人教版高一數(shù)學(上冊)第二章第八節(jié)第二課時的內(nèi)容,本小節(jié)涉及對數(shù)函數(shù)相關知識,分三個課時,這里是第二課時復習鞏固對數(shù)函數(shù)圖像及性質(zhì),并用此解決三類對數(shù)比大小問題,是對已學內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時也體現(xiàn)了數(shù)學的實用性,為后續(xù)學習起到奠定知識基礎、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用.
二、教學目標
根據(jù)教學大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學生的認知特點確定教學目標如下:
學習目標:
1、復習鞏固對數(shù)函數(shù)的圖像及性質(zhì)
2、運用對數(shù)函數(shù)的性質(zhì)比較兩個數(shù)的大小
能力目標:
1、培養(yǎng)學生運用圖形解決問題的意識即數(shù)形結(jié)合能力
2、學生運用已學知識,已有經(jīng)驗解決新問題的能力
3、探索出方法,有條理闡述自己觀點的能力
德育目標:
培養(yǎng)學生勤于思考、獨立思考、合作交流等良好的個性品質(zhì)
三、教材的重點及難點
對數(shù)比大小發(fā)揮的是承上啟下的作用,對前一是復習鞏固對數(shù)函數(shù)的圖像和性質(zhì),二是對指數(shù)中比大小問題的數(shù)學思想及方法的再次體現(xiàn)和應用,對后為解對數(shù)方程及對數(shù)不等式奠定基礎。所以確定本節(jié)課重點:運用對數(shù)函數(shù)圖像性質(zhì)比較兩數(shù)的大小
教學中將在以下2個環(huán)節(jié)中突出教學重點:
1、利用學生預習后的心得交流,資源共享,互補不足
2、通過適當?shù)木毩?,加強對解題方法的掌握及原理的理解
另一方面,學生在預習后上課的情況下,對于課本上知識有了一定的認識,但本節(jié)課教師要補充第三類比大小問題———同真異底型,對于學生以小組為單位自主探究有一定的挑戰(zhàn)性。所以確定本節(jié)課難點:同真異底的對數(shù)比大小
教學中會在以下3個方面突破教學難點:
1、教師調(diào)整角色,讓學生成為學習的主人,教師在其中起引導作用即可。
2、小組合作探索新問題時,注重生生合作、師生互動,適時用語言鼓勵學生,增強學生參與討論的自信。
3、本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
四、學生學情分析
長處:高一學生經(jīng)過幾年的數(shù)學學習,已具備一定的數(shù)學素養(yǎng),對于已學知識或用過的數(shù)學思想、方法有一定的應用能力及應用意識,對于本節(jié)課而言,從知識上說,對數(shù)函數(shù)的圖像和性質(zhì)剛剛學過,本節(jié)課是知識的應用,從數(shù)學能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結(jié)合能力、小結(jié)概括能力、特殊到一般歸納能力已具備一點。
學生可能遇到的困難:本節(jié)課從教學內(nèi)容上來看,第三類對數(shù)比大小是課本以外補充的內(nèi)容,沒有預習心得,讓學生在課堂中快速通過合作探究來完成解題思路的構建,有一定的挑戰(zhàn)性,從學生能力上來看,探索出方法,有條理闡述自己觀點的能力還需加強鍛煉,知識之間的聯(lián)系認識上還顯不足。
五、教法特點
新課程強調(diào)教師要調(diào)整自己的`角色,改變傳統(tǒng)的教育方式,在教育方式上,以學生為中心,讓學生成為學習的主人,教師在其中起引導作用即可?;诖耍竟?jié)課遵循此原則重點采用問題探究和啟發(fā)引導式的教學方法。從預習交流心得出發(fā),到探索新問題,再到題后的回顧總結(jié),一切以學生為中心,處處體現(xiàn)學生的主體地位,讓學生多說、多分析、多思考、多總結(jié),引導學生運用自己的語言闡述觀點,加強理解,在生生合作,師生互動中解決問題,為提高學生分析問題、解決問題能力打下基礎。本節(jié)課采用多媒體輔助教學,節(jié)省時間,加快課程進度,增強了直觀形象性。
六、教學過程分析
1、課件展示本節(jié)課學習目標
設計意圖:明確任務,激發(fā)興趣
2、溫故知新(已填表形式復習對數(shù)函數(shù)的圖像和性質(zhì))
設計意圖:復習已學知識和方法,為學生形成知識間的聯(lián)系和框架建立平臺,并為下一步的應用打下基礎。
3、預習后心得交流
1)同底對數(shù)比大小
2)既不同底數(shù),也不同真數(shù)的對數(shù)比大小
以課本例題為例,交流解題思路,題后總結(jié)此類型比大小問題的一般方法,而后通過練習加強理解鞏固
設計意圖:通過學生的預習,自己總結(jié)方法及此方法適用的題型,有條理的闡述自己的學習心得,老師只需起引導作用,引導學生從題目表面上升到題目的實質(zhì),從而找到解決問題的有效方法。
4、合作探究——同真異底型的對數(shù)比大小
以例3為例,學生分組合作探究解題方法,預計兩種:一是利用換底公式將此類型轉(zhuǎn)化為同底異真型,利用之前總結(jié)的方法解決此問題。二是利用具體對數(shù)的大小關系探究出不同底對數(shù)函數(shù)在同一直角坐標系中的圖像,以此來解決此類型比大小問題。
設計意圖:這一部分是本節(jié)課的難點,探究中充分發(fā)揮學生的主動性,培養(yǎng)主動學習的意識,同時也鍛煉學生各方面能力的很好機會,為以后的探究學習積累經(jīng)驗和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學理念。另外數(shù)學問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯過了解題的一次重要而有效益的方面。因此,本題解決后,讓學生反思明白,要想利用性質(zhì)解決問題,關鍵要做到“腦中有圖”,以“形”促“數(shù)”。
5、小結(jié)
以學生自主小結(jié)的方式總結(jié)本節(jié)課得收獲,教師可引導小結(jié)三個方面:所學內(nèi)容、數(shù)學思想、數(shù)學方法
6、思考題
以高考題為例,讓學生學以致用,增強數(shù)學學習興趣。
7、作業(yè)
包括兩個方面:1、書寫作業(yè) 2、下節(jié)課前的預習作業(yè)
七、教學效果分析
通過本節(jié)課的教學實例來看,這種通過課本內(nèi)容預習,而后課堂交流學習成果的方法效果不錯,既能很好的完成教學任務,又能充分發(fā)揮學生學習的主動性。在自主探究時,學生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵完成更多的方法探究,對于能力較弱的小組,可給予適當?shù)奶崾荆箤W生都能動起來,課堂都有所收獲,增強學生自信。另外,對于學生的總結(jié)回答,可能會比較慢,我一定會耐心聽,及時鼓勵,給予學生微笑和語言的鼓勵,效果很好。在小結(jié)環(huán)節(jié)中,對于高一學生自己小結(jié)的方法,是我一直的教學嘗試,由于只訓練了半學期,學生只能達到小結(jié)知識的程度,在以后的訓練中還會加入數(shù)學思想、數(shù)學方法的小結(jié)內(nèi)容,使這些數(shù)學名詞讓學生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。
高一數(shù)學《對數(shù)函數(shù)》說課稿2
各位評委、老師:
大家好,我說課的內(nèi)容是人教A版《普通高中課程標準實驗教科書A版數(shù)學必修一》第二章2.2.2《對數(shù)函數(shù)及其性質(zhì)》。
我說課的程序主要有教材分析、學情分析、教法與學法、教學過程、板書設計等五個部分。
一、教材分析
本節(jié)內(nèi)容是在學習了指數(shù)函數(shù)和對數(shù)概念后,通過具體實例了解對數(shù)函數(shù)模型的實際背景,學習對數(shù)函數(shù)概念進而研究對數(shù)函數(shù)的圖象和性質(zhì)。學生已掌握的指數(shù)函數(shù)的圖象和性質(zhì)為類比學習對數(shù)函數(shù)提供了前提,同時對數(shù)函數(shù)作為常用數(shù)學模型在人口、考古等生活生產(chǎn)中有廣泛的應用,為學生進一步學習、參加生產(chǎn)和實際生活提供必要的基礎知識。而本節(jié)蘊含的歸納、類比、數(shù)形結(jié)合的思想為培養(yǎng)學生探究、發(fā)現(xiàn)的能力奠定基礎。
《數(shù)學課程標準》要求通過具體實例初步理解對數(shù)函數(shù)的概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型,能借助計算器或計算機畫出具體對數(shù)函數(shù)的圖象,探究并了解對數(shù)函數(shù)的單調(diào)性與特殊點。依據(jù)以上標準和學生學習發(fā)展方面的要求,我制定了如下教學目標:
知識與技能:理解對數(shù)函數(shù)的概念、掌握對數(shù)函數(shù)的圖象和性質(zhì);培養(yǎng)學生觀察、分析、歸納、類比的能力。
過程與方法:類比指數(shù)函數(shù)的學習,從特殊到一般,通過對不同底數(shù)的對數(shù)函數(shù)圖象的分析、歸納出對數(shù)函數(shù)的性質(zhì)。
情感態(tài)度價值觀:培養(yǎng)學生對待知識的科學態(tài)度、勇于探索和創(chuàng)新的精神.
結(jié)合教學內(nèi)容和教學目標,考慮到學生對抽象事物的理解可能存在困難,制定如下的教學重點、難點:
重點:對數(shù)函數(shù)的概念、圖象和性質(zhì);
難點:對數(shù)函數(shù)的圖象、性質(zhì),底數(shù)a對對數(shù)函數(shù)的圖象和性質(zhì)的影響;
二、學情分析
對于高一的學生來說,剛進入一個新的學習階段,有較強的好奇心,且在之前指數(shù)函數(shù)的學習中已初步掌握了研究函數(shù)的方法,但對抽象事物的理解有所欠缺,對對數(shù)概念的理解還不夠透徹。
三、教學與學法
教學過程是教師和學生共同參與的'過程,要啟發(fā)學生自主性學習,充分調(diào)動學生的積極性、主動性,通過指數(shù)函數(shù)的圖象、性質(zhì)類比學習對數(shù)函數(shù)的圖象、性質(zhì),在教學中引導學生圍繞圖象思考,數(shù)形結(jié)合,加強直觀教學,同時在例題的講解中,由易到難,由具體到抽象。為有效地滲透數(shù)學思想方法,結(jié)合所要完成的教學目標,并為激發(fā)學生的學習興趣,我采用以引導探究為主,啟發(fā)學生思考、分析、歸納,在提出猜想后通過投影儀演示底數(shù)變化對對數(shù)函數(shù)圖象的影響。
老師的教是為學生更好地學,學生是活動的主體,我確定學法為自主探究法,學生在老師的引導下通過觀察、分析做出歸納。
四.教學過程
教學過程分為以下環(huán)節(jié):
實例引入、直觀感知——總結(jié)類比、形成概念——類比探究、分析歸納——知識應用、提升能力——師生交流、歸納小結(jié)——作業(yè)布置
(一)實例引入、直觀感知
1、在某細胞分裂過程中,細胞個數(shù)y是分裂次數(shù)x的函數(shù) ,因此,知道x的值(輸入值是分裂次數(shù))就能求出y的值(輸出值為細胞的個數(shù)),這樣就建立了一個細胞個數(shù)和分裂次數(shù)x之間的函數(shù)關系式.
問題一:這是一個怎樣的函數(shù)模型類型呢? 設計意圖:復習指數(shù)函數(shù)
問題二:如果知道了細胞個數(shù)y,如何求分裂的次數(shù)x呢?這將會是我們研究的哪類問題? 設計意圖:為了引出對數(shù)函數(shù)
問題三:在關系式 每輸入一個細胞的個數(shù)y的值,是否一定都能得到唯一一個分裂次數(shù)x的值呢?
設計意圖:既為了更好地理解函數(shù),也是為了讓學生更好地理解對數(shù)函數(shù)的概念.
2、在2.2.1的例6中,考古學家利用 估算出土文物或古遺址的年代,對于每一個C14含量P,通過關系式,都有唯一確定的年代與之對應.同理,對于每一個對數(shù)式 中的 ,任取一個正的實數(shù)值,均有唯一的值與之對應,所以 的函數(shù)。
問題三:你能在以前的學習中找到類似以上兩個函數(shù)的例子嗎?(促進學生思考這種函數(shù)的特點)
問題四:你能類比指數(shù)函數(shù)得到此類函數(shù)的一般式嗎?
設計意圖:體現(xiàn)了類比和特殊到一般的數(shù)學思想
(二)總結(jié)類比、形成概念
問題五:你能根據(jù)指數(shù)函數(shù)的定義給出對數(shù)函數(shù)的定義嗎?
(師生共同歸納出對數(shù)函數(shù)的定義)
問題六: 與 中的x,y的相同之處是什么?不同之處是什么?
設計意圖:促進學生更好地理解對數(shù)函數(shù)與指數(shù)函數(shù)的聯(lián)系,從而得到對數(shù)函數(shù)的定義域
(三)類比探究、分析歸納
問題:有了研究指數(shù)函數(shù)的經(jīng)歷,你會如何研究對數(shù)函數(shù)的性質(zhì)?
設計意圖:提示學生進行類比學習
合作探究1;在同一直角坐標系中畫出下列函數(shù)的圖象,并觀察圖象,探求他們之間的關系。
,
合作探究2:結(jié)合指數(shù)函數(shù)的學習經(jīng)驗,你有什么猜想?在同一坐標系中畫出 與 驗證。
設計意圖:體現(xiàn)“從特殊到一般”、“從具體到抽象”的方法。
教師通過幾何畫板動態(tài)演示對數(shù)函數(shù)圖象隨底數(shù)變化的規(guī)律,進一步促進學生理解對數(shù)函數(shù)的圖象特點。
合作探究3:對照指數(shù)函數(shù)的性質(zhì),總結(jié)歸納對數(shù)函數(shù)的性質(zhì).
(學生討論并交流各自的發(fā)現(xiàn)成果,教師結(jié)合學生的交流,適時歸納總結(jié),并板書對數(shù)函數(shù)的性質(zhì))
(四)知識應用、提升能力
例1:求下列函數(shù)的定義域
(1) ( ) (2) ( )
(該題主要考查對數(shù)函數(shù) 的定義域 ,可在此總結(jié)函數(shù)定義域的限制)
例2:利用對數(shù)函數(shù)的性質(zhì),比較下列各組數(shù)中兩個數(shù)的大?。?/p>
(1) , (2) ,
(3) , (4) , ,
設計意圖:學生通過回顧利用指數(shù)函數(shù)的有關性質(zhì)比較大小的步驟和方法,完成前3小題,第四題可通過教師的適當點撥完成解答,最后進行歸納總結(jié)比較數(shù)的大小常用的方法
思考鞏固:已知 ,比較m,n的大小
設計意圖:該題不僅運用了對數(shù)函數(shù)的圖象和性質(zhì),還培養(yǎng)了學生數(shù)形結(jié)合、分類討論等數(shù)學思想,但有一定難度
(五)師生交流、歸納小結(jié)
由學生小結(jié),相互補充完善,教師再次強調(diào)對數(shù)函數(shù)在生活生產(chǎn)中的應用,既首尾呼應又為后續(xù)學習對數(shù)函數(shù)的應用鋪墊。
(六)布置作業(yè)
教材P73 練習1,2
設計意圖:練習難度不大,是對本節(jié)知識的鞏固。
高一數(shù)學《對數(shù)函數(shù)》說課稿3
一、教學背景
1、教材分析
《對數(shù)函數(shù)及其性質(zhì)》是人教版普通高中課程數(shù)學必修1第二章第二節(jié)第二部分內(nèi)容,對數(shù)函數(shù)是一類特殊的函數(shù),在實際生產(chǎn)過程中運用很廣泛。同時,通過對對數(shù)函數(shù)及其圖象和性質(zhì)的研究,既可以從具體的感性認識上來對函數(shù)的圖象和性質(zhì)更好的理解,也可為以后研究冪函數(shù)、三角函數(shù)等其它函數(shù)的圖象和性質(zhì)起示范和鋪墊作用。
2、學情分析
剛?cè)敫咭坏膶W生,仍保留著初中生許多學習特點,能力發(fā)展正處于形象思維向抽象思維轉(zhuǎn)折階段,但更注重形象思維。由于函數(shù)概念十分抽象,對數(shù)函數(shù)又以對數(shù)運算為基礎,同時,初中函數(shù)教學要求降低,導致初中生運算能力有所下降,這雙重問題增加了對數(shù)函數(shù)教學的難度。但在此之前,學生已經(jīng)學習了指數(shù)函數(shù)及其性質(zhì),學生已經(jīng)初步對新函數(shù)的研究方法有所了解,為本節(jié)的學習奠定了基礎。
基于以上分析,我制定如下教學目標及重、難點:
3、教學目標
知識與技能:
初步掌握對數(shù)函數(shù)的概念、圖象及性質(zhì),并應用性質(zhì)解決簡單數(shù)學問題。
過程與方法:
經(jīng)歷對數(shù)函數(shù)性質(zhì)的探索過程,體會函數(shù)思想、分類討論思想和轉(zhuǎn)化思想在解決具體問題中的應用。
情感態(tài)度與價值觀:
培養(yǎng)勇于探索的精神,培養(yǎng)學生的成功意識,合作交流的學習方式,激發(fā)學生學習數(shù)學、應用數(shù)學的興趣。
4、教學重、難點
重點:理解對數(shù)函數(shù)的概念,掌握對數(shù)函數(shù)的圖象及性質(zhì)。
難點:由圖象探究函數(shù)性質(zhì),應用性質(zhì)解決具體問題。
二、教學方法及手段
1、教法
根據(jù)建構主義的學習理論和新課程標準理念,本節(jié)課以自主探究法和講解法為主,以練習法為輔,引導學生自己觀察、歸納、分析,培養(yǎng)學生采用自主探究的方法進行學習,使學生體會學習的.樂趣。
2、學法
(1)類比學習:通過指數(shù)函數(shù)類比學習對數(shù)函數(shù)。
(2)小組合作學習:將學生分成7個小組,通過小組內(nèi)討論交流,歸納得出對數(shù)函數(shù)的圖象和性質(zhì)。
3、教學手段
采用多媒體輔助教學。
三、教學教程
1、情境引入
通過銀行的復利計算問題,逐步引出對數(shù)函數(shù)。
設計意圖:情景來源于生活,通過生活中的實例來反應對數(shù)函數(shù)的重要性,目的在于激發(fā)學生學習的興趣,讓每一個學生都主動融入到學習中。
2、新知探索
通過上述模型,讓學生給對數(shù)函數(shù)下定義。
學生用描點法畫和的圖象,教師再借助于計算機再畫幾個對數(shù)函數(shù)的圖象,讓學生觀察并總結(jié)出一般情況。
以“你們能根據(jù)圖象歸納出對數(shù)函數(shù)的性質(zhì)嗎?”設問,引導學生能過圖象的特征得出對應的性質(zhì)。
例比較下列各組數(shù)中兩個值的大?。?/p>
(1)log23.4和log28.5;
(2) log0.33.4和log0.38.5;
(3) loga3.4和loga8.5(a>0,且a≠1);
(4) log23.4和log3.42;
(5) log3.42和log0.38.5。
3、鞏固練習
(1)比較大小:
lg6________lg8;ln1.3________
(2)比較正數(shù)m,n的大?。?/p>
若,則m_____n;若,則m_____n.
4、總結(jié)提煉
(1)自主探究新知識的方法;
(2)本節(jié)課應用了哪些數(shù)學思想。
5、布置作業(yè)
(1)閱讀教材P70~P72,梳理對數(shù)函數(shù)的概念、圖象、性質(zhì)等知識點;
(2)教材P74—7、8
四、板書設計
2.2.2對數(shù)函數(shù)及其性質(zhì)
一、概念例題
二、圖象
三、性質(zhì)
四、教學反思
高一數(shù)學《對數(shù)函數(shù)》說課稿4
說課的內(nèi)容是《對數(shù)函數(shù)》,現(xiàn)就教材、教法、學法、教學程序、板書五個方面進行說明。懇請在座的各位專家、老師批評指正。
一、說教材
1、教材的地位、作用及編寫意圖
《對數(shù)函數(shù)》出現(xiàn)在職業(yè)高中數(shù)學第一冊第四章第八節(jié)。函數(shù)是高中數(shù)學的核心,對數(shù)函數(shù)是函數(shù)的重要分支,對數(shù)函數(shù)的知識在數(shù)學和其 他許多學科中有著廣泛的應用;學生已經(jīng)學習了對數(shù)、反函數(shù)以及指數(shù)函數(shù)等內(nèi)容,這為過渡到本節(jié)的學習起著鋪墊作用;“對數(shù)函數(shù)”這節(jié)教材,指出對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),反映了兩個變量的相互關系,蘊含了函數(shù)與方程的數(shù)學思想與數(shù)學方法,是以后數(shù)學學習中不可缺少的部分,也是高考的必考內(nèi)容。
2、教學目標的確定及依據(jù)。
依據(jù)教學大綱和學生獲得知識、培養(yǎng)能力及思想教育等方面的要求:我制定了如下教育教學目標:
(1) 知識目標:理解對數(shù)函數(shù)的概念、掌握對數(shù)函數(shù)的圖象和性質(zhì)。
(2) 能力目標:培養(yǎng)學生自主學習、綜合歸納、數(shù)形結(jié)合的能力。
(3) 德育目標:培養(yǎng)學生對待知識的科學態(tài)度、勇于探索和創(chuàng)新的精神。
(4) 情感目標:在民主、和諧的教學氣氛中,促進師生的情感交流。
3、教學重點、難點及關鍵
重點:對數(shù)函數(shù)的概念、圖象和性質(zhì);
難點:利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì);
關鍵:抓住對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領。
二、說教法
教學過程是教師和學生共同參與的過程,啟發(fā)學生自主性學習,充分調(diào)動學生的積極性、主動性;有效地滲透數(shù)學思想方法,提高學生素質(zhì)。根據(jù)這樣的原則和所要完成的教學目標,并為激發(fā)學生的學習興趣,我采用如下的教學方法:
(1)啟發(fā)引導學生思考、分析、實驗、探索、歸納。
(2)采用“從特殊到一般”、“從具體到抽象”的方法。
(3)體現(xiàn)“對比聯(lián)系”、“數(shù)形結(jié)合”及“分類討論”的思想方法。
(4)多媒體演示法。
三、說學法
教給學生方法比教給學生知識更重要,本節(jié)課注重調(diào)動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:
(1)對照比較學習法:學習對數(shù)函數(shù),處處與指數(shù)函數(shù)相對照。
(2)探究式學習法:學生通過分析、探索、得出對數(shù)函數(shù)的定義。
(3)自主性學習法:通過實驗畫出函數(shù)圖象、觀察圖象自得其性質(zhì)。
(4)反饋練習法:檢驗知識的應用情況,找出未掌握的內(nèi)容及其差距。
這樣可發(fā)揮學生的主觀能動性,有利于提高學生的各種能力。
四、說教學程序
1、復習導入
(1)復習提問:什么是對數(shù)?如何求反函數(shù)?指數(shù)函數(shù)的圖象和性質(zhì)如何?學生回答,并利用課件展示一下指數(shù)函數(shù)的圖象和性質(zhì)。
設計意圖:設計的提問既與本節(jié)內(nèi)容有密切關系,又有利于引入新課,為學生理解新知清除了障礙,有意識地培養(yǎng)學生分析問題的能力。
(2)導言:指數(shù)函數(shù)有沒有反函數(shù)?如果有,如何求指數(shù)函數(shù)的反函數(shù)?它的反函數(shù)是什么?
設計意圖:這樣的導言可激發(fā)學生求知欲,使學生渴望知道問題的答案。
2、認定目標(出示教學目標)
3、導學達標
按"教師為主導,學生為主體,訓練為主線”的原則,安排師生互動活動.
(1)對數(shù)函數(shù)的概念
引導學生從對數(shù)式與指數(shù)式的關系及反函數(shù)的概念進行分析并推導出,指數(shù)函數(shù)有反函數(shù),并且y=ax(a>0且a≠1)的反函數(shù)是 y=logax,見課件。 把函數(shù)y=logax叫做對數(shù)函數(shù),其中a>0且a≠1。從而引出對數(shù)函數(shù)的概念,展示課件。
設計意圖:對數(shù)函數(shù)的概念比較抽象,利用已經(jīng)學過的知識逐步分析,這樣引出對數(shù)函數(shù)的概念過渡自然,學生易于接受。
因為對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),讓學生比較它們的定義域、值域、對應法則及圖象間的關系,培養(yǎng)學生參與意識,通過比較充分體現(xiàn)指數(shù)函數(shù)及對數(shù)函數(shù)的內(nèi)在聯(lián)系。
(2)對數(shù)函數(shù)的圖象
提問:同指數(shù)函數(shù)一樣,在學習了函數(shù)的定義之后,我們要畫函數(shù)的圖象,應如何畫對數(shù)函數(shù)的圖象呢?讓學生思考并回答,用描點法畫圖。教師肯定,我們每學習一種新的函數(shù)都可以根據(jù)函數(shù)的解析式,列表、描點畫圖。再考慮一下,我們還可以用什么方法畫出對數(shù)函數(shù)的圖象呢?
讓學生回答,畫出指數(shù)函數(shù)關于直線y=x對稱的圖象,就是對數(shù)函數(shù)的圖象。
教師總結(jié):我們畫對數(shù)函數(shù)的圖象,既可用描點法,也可用圖象變換法,下邊我們利用兩種方法畫對數(shù)函數(shù)的圖象。
方法一(描點法)首先列出x,y(y=log2x,y=log x)值的對應表,因為對數(shù)函數(shù)的定義域為x>0,因此可取x= , , ,1,2,4,8,請計算對應的y值,然后在坐標系內(nèi)描點、畫出它們的圖象.
方法二(圖象變換法)因為對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù), 圖象關于直線y=x對稱,所以只要畫出y=ax的圖象關于直線y=x對稱的曲線,就可以得到y(tǒng)=logax.的圖象。學生動手做實驗,先描出y=2x的圖象,畫出它關于直線y=x對稱的曲線,它就是y=log2x的圖象;類似的從y=( )x 的圖象畫出y=log x的圖象,再出示課件,教師加以解釋。
設計意圖:用這種對稱變換的方法畫函數(shù)的圖象,可以加深和鞏固學生對互為反函數(shù)的兩個函數(shù)之間的認識,便于將對數(shù)函數(shù)的圖象和性質(zhì)與指數(shù)函數(shù)的圖象和性質(zhì)對照,但使用描點法畫函數(shù)圖象更為方便,兩種方法可同時進行,分析畫法之后,可讓學生自由選擇畫法。
這樣可以充分調(diào)動學生自主學習的積極性。
(3)對數(shù)函數(shù)的性質(zhì)
在理解對數(shù)函數(shù)定義的基礎上,掌握對數(shù)函數(shù)的.圖象和性質(zhì)是本節(jié)的重點,關鍵在于抓住對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù)這一要領,講對數(shù)函數(shù)的性質(zhì),可先在同一坐標系內(nèi)畫出上述兩個對數(shù)函數(shù)的圖象,根據(jù)圖象讓學生列表分析它們的圖象特征和性質(zhì),然后出示課件,教師補充。
作了以上分析之后,再分a>1與0<a<1兩種情況列出對數(shù)函數(shù)圖象和性質(zhì)表,體現(xiàn)了從“特殊到一般”、“從具體到抽象”的方法。出示課件并進行詳細講解,把對數(shù)函數(shù)圖象和性質(zhì)列成一個表以便讓學生對比著記憶。
設計意圖:這種講法既嚴謹又直觀易懂,還能讓學生主動參與教學過程,對培養(yǎng)學生的創(chuàng)新能力有幫助,學生易于接受易于掌握,而且利用表格,可以突破難點。
由于對數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),它們的定義域與值域正好互換,為了揭示這兩種函數(shù)之間的內(nèi)在聯(lián)系,列出指數(shù)函數(shù)與對數(shù)函數(shù)對照表(見課件)
設計意圖:通過比較對照的方法,學生更好地掌握兩個函數(shù)的定義、圖象和性質(zhì),認識兩個函數(shù)的內(nèi)在聯(lián)系,提高學生對函數(shù)思想方法的認識和應用意識。
4、鞏固達標(見課件)
這一訓練是為了培養(yǎng)學生利用所學知識解決實際問題的能力,通過這個環(huán)節(jié)學生可以加深對本節(jié)知識的理解和運用,并從講解過程中找出所涉及的知識點,予以總結(jié)。充分體現(xiàn)“數(shù)形結(jié)合”和“分類討論”的思想。
5、反饋練習(見課件)
習題是對學生所學知識的反饋過程,教師可以了解學生對知識掌握的情況。
6、歸納總結(jié)(見課件)
引導學生對主要知識進行回顧,使學生對本節(jié)有一個整體的把握,因此,從三方面進行總結(jié):對數(shù)函數(shù)的概念、對數(shù)函數(shù)的圖象和性質(zhì)、比較對數(shù)值大小的方法。
7、課外作業(yè) :(1)完成P178 A組1、2、3題
(2)當?shù)讛?shù)a>1與0<a<1時,底數(shù)不同,對數(shù)函數(shù)圖象有什么持點?
五、說板書
板書設計為表格式(見課件),這樣的板書簡明清楚,重點突出,加深學生對圖象和性質(zhì)的理解和掌握,便于記憶,有利于提高教學效果。