第一篇:期末考試重點(diǎn) 高數(shù)大一
函數(shù)比區(qū)間連續(xù)函數(shù)性質(zhì)
證明:介值
種植定理
極限極限定義(c-N語言)
無窮小代換
導(dǎo)數(shù)求導(dǎo)法:基本函數(shù)
1對(duì)數(shù)隱函數(shù)復(fù)合函數(shù)
應(yīng)用:證明題(1 羅爾定理拉格朗日中值定理)單調(diào)性:
凹凸性:
極限:(洛比達(dá)法則)
不定積分一類換元法
二類換元法
分部積分法
定積分變上限積分求導(dǎo)
二類換元法
分部積分法
第二篇:高數(shù)論文 大一第二學(xué)期
學(xué)習(xí)高數(shù)心得和體會(huì)
摘要:
1、數(shù)學(xué)學(xué)習(xí)方法:
一、摒棄中學(xué)的學(xué)習(xí)方法;
二、把握三個(gè)環(huán)節(jié),提高學(xué)習(xí)效率;
三、階段復(fù)習(xí)與全面鞏固相結(jié)合;
四、學(xué)習(xí)方法五原則。
2、如何看書:第一,“學(xué)思習(xí)”是學(xué)習(xí)高等數(shù)學(xué)大的模式;第二,狠抓基礎(chǔ),循序漸進(jìn);第三,歸類小結(jié),從厚到薄;第五,注意學(xué)習(xí)效率。
3、處理數(shù)學(xué)問題的基本方法
4、學(xué)習(xí)心理的調(diào)整:確定目標(biāo),樹立信心,制定計(jì)劃,重在落實(shí)”以上十六個(gè)字不僅是學(xué)好高等數(shù)學(xué)也是學(xué)好任何一門課程,做好任何一件事情的關(guān)鍵所在。
目前,每當(dāng)一年高考結(jié)束,數(shù)百萬高中學(xué)生通過自己的奮力拼搏,在同齡人中脫穎而出,升入自己夢(mèng)寐以求的各類高等院校開始在新的環(huán)境進(jìn)行學(xué)習(xí)的時(shí)候,社會(huì)上各大媒體都會(huì)不斷地重復(fù)一個(gè)話題:一個(gè)高中生怎樣盡快地從心理上、生理上等方面溶入新的環(huán)境,成為一名合格的大學(xué)生?而且不時(shí)的在電視新聞或報(bào)刊出現(xiàn)大一的學(xué)生在新的環(huán)境中沉眠于網(wǎng)絡(luò)或電子游戲,而跟不上大學(xué)的學(xué)習(xí)進(jìn)度而退學(xué)的例子。我認(rèn)為:一個(gè)高中生升入大學(xué)學(xué)習(xí)后,不僅要從環(huán)境上、心理上適應(yīng)新的學(xué)習(xí)生活,同時(shí)學(xué)習(xí)方法的改變也是一個(gè)不容忽視的方面。高等數(shù)學(xué)在工科院校的教學(xué)計(jì)劃中是一門基礎(chǔ)理論課程,是大一新生必修的課程,它對(duì)于各專業(yè)后繼課程的學(xué)習(xí),以及大學(xué)畢業(yè)后這類工程技術(shù)人員的工作狀況,高等數(shù)學(xué)課程都起著奠基的作用。如在校的繼續(xù)學(xué)習(xí)中只有掌握高等數(shù)學(xué)的知識(shí)以后,才能比較順利地學(xué)習(xí)其他專業(yè)基礎(chǔ)課程,如物理、工程力學(xué)、電工電子學(xué)……等等,也才能學(xué)好自己的專業(yè)課程。又如當(dāng)畢業(yè)走向工作崗位后,要很好地解決工程技術(shù)上的問題,勢(shì)必要經(jīng)常應(yīng)用到數(shù)學(xué)知識(shí)。因?yàn)樵诳茖W(xué)技術(shù)不斷發(fā)展的今天,數(shù)學(xué)方法已廣泛滲透到科學(xué)技術(shù)的各個(gè)領(lǐng)域之中。因此,工科類的大一新生在學(xué)習(xí)上一個(gè)很明確的任務(wù)就是要學(xué)好高等數(shù)學(xué)這門課程,為以后的學(xué)習(xí)和工作打下良好的基礎(chǔ)。
數(shù)學(xué)學(xué)習(xí)方法:
那么,怎樣才能學(xué)好高等數(shù)學(xué)呢?我想就自己這將近一學(xué)年的學(xué)習(xí)經(jīng)驗(yàn)與體會(huì),談幾點(diǎn)膚淺的看法。
一、摒棄中學(xué)的學(xué)習(xí)方法
從中學(xué)升入大學(xué)學(xué)習(xí)以后,在學(xué)習(xí)方法上將會(huì)遇到一個(gè)比較大的轉(zhuǎn)折。首先是對(duì)大學(xué)的教學(xué)方式和方法感到很不適應(yīng),這在高等數(shù)學(xué)課程的教學(xué)中反應(yīng)特別明顯,因?yàn)樗且婚T對(duì)大一新生首當(dāng)其沖的理論性比較強(qiáng)的基礎(chǔ)理論課程,而學(xué)生正是習(xí)慣于模仿性和單一性的學(xué)習(xí)方法,這是在從小學(xué)到中學(xué)的教育中長期養(yǎng)成的,一時(shí)還難以改變。
中學(xué)的教學(xué)方式和方法與大學(xué)有質(zhì)的差別。突出表現(xiàn)在:中學(xué)的學(xué)習(xí),學(xué)生是在教師的直接指導(dǎo)下進(jìn)行模仿和單一性的學(xué)習(xí),大學(xué)則要求學(xué)生在教師的指導(dǎo)下進(jìn)行創(chuàng)造性的學(xué)習(xí)。例如:中學(xué)的數(shù)學(xué)課的教學(xué)是完全按照教材進(jìn)行的,在課堂上只要求教師講、學(xué)生聽,不要求作筆記,教師教授慢、講得細(xì)、計(jì)算方法舉例也多,課后只要求學(xué)生能模仿課堂上教師講的內(nèi)容作些習(xí)題就可以了,根本沒有必要去鉆研教材和其他參考書(為了高考增強(qiáng)考生的解題能力而選擇一些其他參考書僅是訓(xùn)練解題能力的需要),而大學(xué)的高等數(shù)學(xué)課程則恰好不一樣,教材僅是作為一種主要的參考書。要求學(xué)生以課堂上老師所講的重點(diǎn)和難點(diǎn)為線索,通過大量地閱讀教材和同類的參考書,以充分消化和掌握課堂上所講授內(nèi)容,然后做課后習(xí)題鞏固所掌握知識(shí),這就是進(jìn)行反復(fù)地創(chuàng)造性的學(xué)習(xí)。這是一種艱苦的腦力勞動(dòng),它不僅要求學(xué)生主動(dòng)地、自覺地進(jìn)行學(xué)習(xí),同時(shí)還要在松散地環(huán)境下能約束自己,并且要掌握較好的學(xué)習(xí)方法,才能把所要學(xué)習(xí)的知識(shí)學(xué)得扎實(shí),為專業(yè)課程的學(xué)習(xí)打下良好基礎(chǔ)。
二、把握三個(gè)環(huán)節(jié),提高學(xué)習(xí)效率
什么是學(xué)習(xí)高等數(shù)學(xué)的最好方法呢?這根據(jù)每個(gè)人的學(xué)習(xí)時(shí)的習(xí)慣和理解問題的能力不同而異,但就一般說來,均應(yīng)抓好以下三個(gè)環(huán)節(jié)。其一是課前預(yù)習(xí)。這一過程很重要,因?yàn)橹挥姓n前預(yù)習(xí)過,才會(huì)在聽課時(shí)做到心中有數(shù),即老師所講的內(nèi)容哪些是屬于難以理解的,什么是重點(diǎn)等,這樣帶著一些問題去聽老師講課,效果就很明顯了,同時(shí)預(yù)習(xí)的過程中也就培養(yǎng)了你的自學(xué)能力,這對(duì)自己來說將是終身受益的。預(yù)習(xí)的過程也不需要花太多時(shí)間,一般地一次課內(nèi)容花三、四十分鐘左右時(shí)間就可以了。在預(yù)習(xí)時(shí)不必要把所有問題弄懂,只要帶著這些不懂的問題去聽課就行。其二是上課用心聽講,并且要記好課堂筆記。
三、階段復(fù)習(xí)與全面鞏固相結(jié)合。
具體步驟如下:
(一)課前預(yù)習(xí):了解老師即將講什么內(nèi)容,相應(yīng)地復(fù)習(xí)與之相關(guān)內(nèi)容。
(二)認(rèn)真上課:注意老師的講解方法和思路,其分析問題和解決問題的過程,記好課堂筆記,聽課是一個(gè)全身心投入----聽、記、思相結(jié)合的過程。
(三)課后復(fù)習(xí):當(dāng)天必須回憶一下老師講的內(nèi)容,看看自己記得多少,然后打開筆記、教材,完善筆記,溝通聯(lián)系;最后完成作業(yè)。
(四)在記憶的基礎(chǔ)上理解,在完成作業(yè)中深化,在比較中構(gòu)筑知識(shí)結(jié)構(gòu)的框架。
(五)按“新=陳+差異”思路理解深化學(xué)習(xí)知識(shí)。
(六)“三人行,則必有我?guī)煛?,參加老師的輔導(dǎo),向同學(xué)請(qǐng)教并相互討論。
四、學(xué)習(xí)方法五原則
學(xué)習(xí)方法與學(xué)習(xí)的過程、階段、心理?xiàng)l件等有著密切的聯(lián)系,它不但蘊(yùn)含著對(duì)學(xué)習(xí)規(guī)律的認(rèn)識(shí),而且也反映了對(duì)學(xué)習(xí)內(nèi)容理解的程度。在一定意義上,它還是一種帶有個(gè)性特征的學(xué)習(xí)風(fēng)格。學(xué)習(xí)方法因人而異,但正確的學(xué)習(xí)方法應(yīng)該遵循以下幾個(gè)原則:循序漸進(jìn)、熟讀精思、自求自得、博約結(jié)合、知行統(tǒng)一。
1.“循序漸進(jìn)”──就是人們按照學(xué)科的知識(shí)體系和自身的智能條件,系統(tǒng)而有步驟地進(jìn)行學(xué)習(xí)。它要求人們應(yīng)注重基礎(chǔ),切忌好高騖遠(yuǎn),急于求成。循序漸進(jìn)的原則體現(xiàn)為:一要打好基礎(chǔ)。二要由易到難。三要量力而行。
2.“熟讀精思”──就是要根據(jù)記憶和理解的辯證關(guān)系,把記憶與理解緊密結(jié)合起來,兩者不可偏廢。我們知道記憶與理解是密切聯(lián)系、相輔相成的。一方面,只有在記憶的基礎(chǔ)上進(jìn)行理解,理解才能透徹;另一方面,只有在理解的參與下進(jìn)行記憶,記憶才會(huì)牢固,“熟讀”,要做到“三到”:心到、眼到、口到?!熬肌保朴谔岢鰡栴}和解決問題,用“自我詰難法”和“眾說詰難法”去質(zhì)疑問難。
3.“自求自得”──就是要充分發(fā)揮學(xué)習(xí)的主動(dòng)性和積極性,盡可能挖掘自我內(nèi)在的學(xué)習(xí)潛力,培養(yǎng)和提高自學(xué)能力。自求自得的原則要求不要為讀書而讀書,應(yīng)當(dāng)把所學(xué)的知識(shí)加以消化吸收,變成自己的東西。
4.“博約結(jié)合”──就是要根據(jù)廣搏和精研的辯證關(guān)系,把廣博和精研結(jié)合起來,眾所周知,博與約的關(guān)系是在博的基礎(chǔ)上去約,在約的指導(dǎo)下去博,博約結(jié)合,相互促進(jìn)。堅(jiān)持博約結(jié)合,一是要廣泛閱讀。二是精讀。
5.“知行統(tǒng)一”──就是要根據(jù)認(rèn)識(shí)與實(shí)踐的辯證關(guān)系,把學(xué)習(xí)和實(shí)踐結(jié)合起來,切忌學(xué)而不用?!爸咝兄?,行者知之成”,以知為指導(dǎo)的行才能行之有效,脫離知的行則是盲動(dòng)。同樣,以行驗(yàn)證的知才是真知灼見,脫離行的知?jiǎng)t是空知。因此,知行統(tǒng)一要注重實(shí)踐:一是要善于在實(shí)踐中學(xué)習(xí),邊實(shí)踐、邊學(xué)習(xí)、邊積累。二是躬行實(shí)踐,即把學(xué)習(xí)得來的知識(shí),用在實(shí)際工作中,解決實(shí)際問題。
如何看書:
學(xué)習(xí)高等數(shù)學(xué)要有一種精神,用大數(shù)學(xué)家華羅庚的話來說,就是要有“學(xué)思契而不舍”的精神。由于高等數(shù)學(xué)自身的特點(diǎn),不可能老師一教,學(xué)生就全部領(lǐng)會(huì)掌握。一些內(nèi)容如函數(shù)的連續(xù)與間斷,積分的換元法,分步積分法等一時(shí)很難掌握,這需要每個(gè)同學(xué)反復(fù)琢磨,反復(fù)思考,反復(fù)訓(xùn)練,契而不舍。通過正反例子比較,從中悟出一些道理,才能從不懂到一知半解到基本掌握。這里僅結(jié)合一般學(xué)習(xí)方法,介紹一點(diǎn)學(xué)習(xí)高等數(shù)學(xué)的做法,供同學(xué)們參考。
第一,“學(xué)思習(xí)”是學(xué)習(xí)高等數(shù)學(xué)大的模式。所謂學(xué),包括學(xué)和問兩方面,即向教師,向同學(xué),向自己學(xué)和問。惟有在學(xué)中問和問中學(xué),才能消化數(shù)學(xué)的概念,理論。方法。所謂思,就是將所學(xué)內(nèi)容,經(jīng)過思考加工去粗取精,抓本質(zhì)和精華。華羅庚“抓住要點(diǎn)”使“書本變薄”的這種勤于思考,善于思考,從厚到薄的學(xué)習(xí)數(shù)學(xué)的方法,值得我們借鑒。所謂習(xí),就高等數(shù)學(xué)而言,就是做練習(xí)。這一點(diǎn)數(shù)學(xué)有自身的特點(diǎn),練習(xí)一般分為兩類,一是基礎(chǔ)訓(xùn)練練習(xí),經(jīng)常附在每章每節(jié)之后。這類問題相對(duì)來說比較簡單,無大難度,但很重要,是打基礎(chǔ)部分。知識(shí)面廣些不局限于本章本節(jié),在解決的方法上要用到多種數(shù)學(xué)工具。數(shù)學(xué)的練習(xí)是消化鞏固知識(shí)極重要的一個(gè)環(huán)節(jié),舍此達(dá)不到目的。
第二,狠抓基礎(chǔ),循序漸進(jìn)。任何學(xué)科,基礎(chǔ)內(nèi)容常常是最重要的部分,它關(guān)系到學(xué)習(xí)的成敗與否。高等數(shù)學(xué)本身就是數(shù)學(xué)和其他學(xué)科的基礎(chǔ),而高等數(shù)學(xué)又有一些重要的基礎(chǔ)內(nèi)容,它關(guān)系的全局。以微積分部分為例,極限貫穿著整個(gè)微積分,函數(shù)的連續(xù)性及性質(zhì)貫穿著后面一系列定理結(jié)論,初等函求導(dǎo)法及積分法關(guān)系到今后個(gè)學(xué)科。因此,一開始就要下狠功夫,牢牢掌握這些基礎(chǔ)內(nèi)容。在學(xué)習(xí)高等數(shù)學(xué)時(shí)要一步一個(gè)腳印,扎扎實(shí)實(shí)地學(xué)和練,成功的大門一定會(huì)向你開放。
第三,歸類小結(jié),從厚到薄。記憶總的原則是抓綱,在用中記。歸類小結(jié)是一個(gè)重要方法。高等數(shù)學(xué)歸類方法可按內(nèi)容和方法兩部分小結(jié),以代表性問題為例輔以說明。在歸類小節(jié)時(shí),要特別注意有基礎(chǔ)內(nèi)容派生出來的一些結(jié)論,即所謂一些中間結(jié)果,這些結(jié)果常常在一些典型例題和習(xí)題上出現(xiàn),如果你能多掌握一些中間結(jié)果,則解決一般問題和綜合訓(xùn)練題就會(huì)感到輕松。
第四,精讀一本參考書。實(shí)踐證明,在教師指導(dǎo)下,抓準(zhǔn)一本參考書,精讀到底,如果你能熟讀了一本有代表性的參考書,再看其他參考書就會(huì)迎刃而解了。
第五,注意學(xué)習(xí)效率。數(shù)學(xué)的方法和理論的掌握,就實(shí)踐經(jīng)驗(yàn)表明常常需要頻率大于4否則做不到熟能生巧,觸類旁通。人不可能通過一次學(xué)習(xí)就掌握所學(xué)的知識(shí),需要有幾個(gè)反復(fù)。所謂“學(xué)而時(shí)習(xí)之”溫故而知新”都有是指學(xué)習(xí)要經(jīng)過反復(fù)多次。高等數(shù)學(xué)的記憶,必建立在理解和熟練做題的基礎(chǔ)上,死記硬背無濟(jì)于事。在學(xué)習(xí)的道路上是沒有平坦大道的,可是“學(xué)習(xí)有險(xiǎn)阻,苦戰(zhàn)能過關(guān)“。”人生能有幾回搏?“人生總能搏幾回!”每個(gè)學(xué)子應(yīng)當(dāng)而且能與高等數(shù)學(xué)“搏一搏”。
處理數(shù)學(xué)問題的基本方法:
㈠分割求和法; ㈡以直求曲法; ㈢恒等變形法:
①等量加減法;②乘除因子法; ③積分求導(dǎo)法; ④三角代換法; ⑤數(shù)形結(jié)合法;⑥關(guān)系迭代法; ⑦遞推公式法;⑧相互溝通法; ⑨前后夾擊法; ⑩反思求證法;⑾構(gòu)造函數(shù)法;⑿逐步分解法。學(xué)習(xí)心理的調(diào)整:
確定目標(biāo),樹立信心,制定計(jì)劃,重在落實(shí)”以上十六個(gè)字不僅是學(xué)好高等數(shù)學(xué)也是學(xué)好任何一門課程,做好任何一件事情的關(guān)鍵所在。
(一)確定目標(biāo): 除了有一個(gè)長遠(yuǎn)的奮斗目標(biāo)外,可根據(jù)自己的實(shí)際情況確定一個(gè)近期目標(biāo)。
(二)樹立信心: 信心來源于是否敢于挑戰(zhàn)自己,表現(xiàn)在是否能吃苦耐勞,排除各種干擾與誘惑,為實(shí)現(xiàn)長遠(yuǎn)目標(biāo)與近期目標(biāo)而奮進(jìn)。
(三)制定計(jì)劃: 有一個(gè)一周至二周的學(xué)習(xí)計(jì)劃,精細(xì)到每個(gè)小時(shí),明確應(yīng)該完成的任務(wù),每天留下半個(gè)小時(shí)的機(jī)動(dòng)余地作為未完成任務(wù)的補(bǔ)遺。每周根據(jù)執(zhí)行情況適當(dāng)調(diào)整。
(四)重在堅(jiān)持: 計(jì)劃能否實(shí)施,重在堅(jiān)持,切忌虎頭蛇尾,半途而廢。關(guān)于學(xué)習(xí)高等數(shù)學(xué)課程的幾點(diǎn)建議
(五)自學(xué):本課程特別強(qiáng)調(diào)自學(xué),包括課前、課后的預(yù)習(xí)、復(fù)習(xí)、練習(xí)、小結(jié)。這些都是在教師的視線之外,在自習(xí)時(shí)間之內(nèi)學(xué)生必須去做的事。沒有良好的自覺的自學(xué)習(xí)慣,談不上能學(xué)好高等數(shù)學(xué)。
(六)聽課:提高聽課的效率,課前做好準(zhǔn)備,根據(jù)教學(xué)進(jìn)度表預(yù)習(xí)(粗讀)內(nèi)容,聽課中特別注意老師指出的難點(diǎn)與重點(diǎn),注意為加深概念與應(yīng)用所舉的例題,適當(dāng)記筆記。
(七)習(xí)題課:高等數(shù)學(xué)特別強(qiáng)調(diào)做習(xí)題。概念的理解與深化,方法的靈活應(yīng)用都反映在做習(xí)題上。上黑板板演固然是鍛煉的好機(jī)會(huì),而在下面做題,應(yīng)看作是一種實(shí)戰(zhàn)演習(xí),是對(duì)自己學(xué)習(xí)的檢驗(yàn),而老師對(duì)每題的講評(píng)往往是概念與方法的深化,是某種經(jīng)驗(yàn)的總結(jié)。因此習(xí)題課絕不可光聽而不動(dòng)手,也不可光動(dòng)手而不聽,要有完整的習(xí)題課的記錄。
(八)作業(yè):作業(yè)不是任務(wù),而是對(duì)學(xué)習(xí)內(nèi)容的進(jìn)一步鞏固。通過練習(xí)使概念與方法真正為自己所掌握。每次作業(yè)后,要認(rèn)真總結(jié),本次作業(yè)用到哪些新概念、新知識(shí)、新方法,用在哪些地方,這些概念方法與原先掌握的概念方法有哪些相同點(diǎn)。作業(yè)必須認(rèn)真,字跡力求工整,減少涂改。較長的分號(hào)(直線)不可信手畫出,應(yīng)該使用直尺去劃。作業(yè)不僅是給自己看,而且是給老師批閱的,在整體上要注意美感,特別對(duì)工科學(xué)生,這是工程技術(shù)人員的必備素質(zhì),應(yīng)從作業(yè)開始培養(yǎng)。
(九)階段小結(jié):每周進(jìn)行一次學(xué)習(xí)小結(jié),善于總結(jié)才有提高。
(十)關(guān)于參考讀物:高等數(shù)學(xué)的參考讀物很多,但良莠不齊,特別是一些題解往往貽誤學(xué)子,因此參考讀物的選擇要慎重。
以上所談并不全面,只有身在其中正在學(xué)習(xí),通過實(shí)踐才能悟出適合自己的好方法
第三篇:大一第一學(xué)期高數(shù)總結(jié)
大一第一學(xué)期高數(shù)總結(jié)
高數(shù)學(xué)習(xí)起來確實(shí)是不太輕松。下面是小編整理的大一第一學(xué)期高數(shù)總結(jié),歡迎閱讀。
轉(zhuǎn)眼間,大一已經(jīng)過去一半了,高數(shù)學(xué)習(xí)也有了一個(gè)學(xué)期了,仔細(xì)一想高數(shù)也不是傳說的那么可怕,當(dāng)然也沒有那么容易。
有人說,高數(shù)是一棵高數(shù),很多人掛在了上面。但是,只要努力,就能爬上這棵高樹,憑借它的高度,便能看到更遠(yuǎn)的風(fēng)景。
首先,不能有畏難情緒。一進(jìn)大學(xué),就聽到很多師兄師姐甚至老師說高數(shù)很難學(xué),有很多人掛科了。這基本上是事實(shí),但是或多或少夸張了點(diǎn)吧。事實(shí)上,當(dāng)我們拋掉那些畏難情緒,心無旁騖的學(xué)習(xí)高數(shù)時(shí),他并不是那么難,至少不是那種難到學(xué)不下去的。所以我們要有信心去學(xué)好它,有好大學(xué)的第一步。
其次,課前預(yù)習(xí)很重要。每個(gè)人學(xué)習(xí)習(xí)慣不同,有些人習(xí)慣預(yù)習(xí),有些人覺得預(yù)習(xí)不適合自己。每次上課前,把課本上的內(nèi)容仔細(xì)地預(yù)習(xí)一下,或者說先自學(xué)一下,把知識(shí)點(diǎn)先過一遍,能理解的自己先理解好,到課堂上時(shí)就會(huì)覺得有方向感,不會(huì)覺得茫然,并且自己預(yù)習(xí)時(shí)沒有理解的地方在課堂上聽老師講后就能解決了,比較有針對(duì)性。
然后,要把握課堂。課堂上老師講的每一句話都是有可
能是很有用的,如果錯(cuò)過了就可能會(huì)使自己以后做某些習(xí)題時(shí)要走很多彎路,甚至是死路。我們主要應(yīng)該在課堂上認(rèn)真聽講,理解解題方法,我們現(xiàn)在需要的是方法,是思維,而不是僅僅是例題本身的答案。我們學(xué)習(xí)高數(shù)不是為了將來能計(jì)算算數(shù),而是為了獲得一種思想,為了提高我們的思維能力,為了能夠用于解決現(xiàn)實(shí)問題。此外,要以教材為中心。雖說“盡信書,不如無書”,但是,就算教材不是完美的,但是教材上包含了我們所要掌握的知識(shí)點(diǎn),而那些知識(shí)點(diǎn),便是我們解題的基礎(chǔ)。書上的一些基本公式、定理,是我們必須掌握的。
最后,堅(jiān)持做好習(xí)題。做題是必要的,但像高中那樣搞題海戰(zhàn)術(shù)就不必要了。做好教材上的課后習(xí)題和習(xí)題冊(cè)就足夠了,當(dāng)然,前提是認(rèn)真地做好了。對(duì)于每一道題,有疑問的地方就要解決,不能不求甚解,盡量把每一個(gè)細(xì)節(jié)都理解好,這樣的話,做好一題,就能解決很多類型的題了。
下面是我對(duì)這學(xué)期的學(xué)習(xí)重點(diǎn)的一些總結(jié):
1.判斷兩個(gè)函數(shù)是否相同
一個(gè)函數(shù)相同的確定取決于其定義域和對(duì)應(yīng)關(guān)系的確定,因此判斷兩個(gè)函數(shù)是否相同必須判斷其定義域是否相同,且要判斷表達(dá)式是否同意即可。2.判斷函數(shù)奇偶性
判斷函數(shù)的奇偶性,主要的方法就是利用定義,其次是利用奇偶的性質(zhì),即奇函數(shù)之和還是奇函數(shù);兩個(gè)奇函數(shù)積
是偶函數(shù);兩個(gè)偶函數(shù)之積仍是偶函數(shù);一積一偶之積是奇函數(shù)。
3.求極限的方法
利用極限的四則運(yùn)算法則、性質(zhì)以及已知的極限求極限。
4.判斷函數(shù)的連續(xù)性
1.求顯函數(shù)導(dǎo)數(shù);
2.求隱函數(shù)導(dǎo)數(shù);
3.“取對(duì)數(shù)求導(dǎo)法”;
4.求由參數(shù)方程所表達(dá)的函數(shù)的導(dǎo)數(shù);
5.求函數(shù)微分;
第四篇:大一下學(xué)期高數(shù)小論文
高等數(shù)學(xué)第二學(xué)期總結(jié)
大學(xué)一年級(jí)已接近尾聲,大一高數(shù)的學(xué)習(xí)也已經(jīng)完成,下學(xué)期的高數(shù)學(xué)習(xí)隨著知識(shí)的深入而帶領(lǐng)我們更進(jìn)一步去了解高數(shù)學(xué)習(xí)的真諦和高數(shù)的重要性。從高數(shù)的學(xué)習(xí)中我獲得了更為廣闊的知識(shí)和視野,下學(xué)期的學(xué)習(xí)既是上學(xué)期的學(xué)習(xí)內(nèi)容的拓展又是延伸,使我們對(duì)高數(shù)有更一步的了解和認(rèn)識(shí),讓我們對(duì)這門課的研究更為深入。
大一下學(xué)期的高數(shù)學(xué)習(xí)分為六章,分別是向量代數(shù)與空間解析幾何,多元函數(shù)微分學(xué),重積分,無窮級(jí)數(shù),微分方程和差分方程。在向量代數(shù)與空間解析幾何中,我們首先學(xué)習(xí)了向量代數(shù)的基本知識(shí),從而在后來的學(xué)習(xí)中使用向量的基本知識(shí)來解決空間幾何問題。本章中我們學(xué)習(xí)的解析幾何是17世紀(jì)前半葉產(chǎn)生的一門全新的幾何學(xué)。法國數(shù)學(xué)家笛卡爾是解析幾何的主要?jiǎng)?chuàng)立人。空間解析幾何就是用代數(shù)的方法研究空間圖形的性質(zhì)。向量是一種重要的數(shù)學(xué)工具,是近代數(shù)學(xué)的基本概念之一,在中學(xué)階段,我們已經(jīng)學(xué)習(xí)過如何利用向量來解決一些簡單的幾何問題,這一章在中學(xué)學(xué)習(xí)的基礎(chǔ)上,以向量為工具研究空間曲面和空間曲線,介紹空間幾何的基本內(nèi)容,是學(xué)習(xí)多元函數(shù)微分學(xué)和積分學(xué)的基礎(chǔ)。
這一章中,首先介紹了向量代數(shù)的基礎(chǔ)知識(shí),然后通過建立空間直角坐標(biāo)系,研究空間中平面與直線方程、常見曲線與曲面等內(nèi)容。主要的學(xué)習(xí)方向就是解決空間幾何體的相關(guān)問題,例如求解空間幾何體的面積、體積、距離等相關(guān)量。特別當(dāng)我們?cè)谇蠼馇鏁r(shí),應(yīng)該注意使用不同的坐標(biāo)系,來求解不同的曲面,比如有柱面坐標(biāo)、直角坐標(biāo)等。
在多元函數(shù)微分學(xué)的學(xué)習(xí)中,上一章就已經(jīng)學(xué)習(xí)了一些有關(guān)一元函數(shù)的微積分,但在許多實(shí)際問題中,往往涉及多個(gè)因素之間的關(guān)系,反映到數(shù)學(xué)上就表現(xiàn)為一個(gè)變量依賴于多個(gè)變量的情形,從而產(chǎn)生了多元函數(shù)的概念。因此,我們就有必要研究多元函數(shù)的微積分問題。
本章主要采用類比的方法來幫助我們理解多元函數(shù)的定義,通過將多元函數(shù)與一元函數(shù)微分基本理論的類比,歸納總結(jié)出多元函數(shù)微分學(xué)的基本理論,主要討論二元函數(shù)的極限與連續(xù)的概念、偏導(dǎo)數(shù)與全微分及其應(yīng)用。要學(xué)習(xí)多元函數(shù)微分學(xué),就必須要先了解多元函數(shù)的基本概念和極限,本章在第一節(jié)中就介紹了有關(guān)這方面的內(nèi)容。學(xué)習(xí)多元函數(shù)的重點(diǎn)是學(xué)習(xí)二元函數(shù)和三元函數(shù),只要掌握了二元和三元函數(shù)的微分,則多元函數(shù)就基本掌握了。在第二節(jié)中,我們學(xué)習(xí)了偏導(dǎo)數(shù)。在研究一元函數(shù)時(shí),我們就已經(jīng)看到了函數(shù)關(guān)于自變量的變化率的重要性,對(duì)于二元函數(shù)也同樣有函數(shù)變化率的問題。所以,我們就有必要學(xué)習(xí)一下這種變化率,即偏導(dǎo)數(shù)。在學(xué)習(xí)了偏導(dǎo)數(shù)這個(gè)工具之后,我們就要開始接觸全微分,全微分是我們學(xué)習(xí)微分中的一個(gè)重要組成部分。我們學(xué)習(xí)的微分其實(shí)是建立在極限的基礎(chǔ)上,所以,接著,我們又開始學(xué)習(xí)多元復(fù)合函數(shù)的求導(dǎo)法則以及隱函數(shù)的微分法等等與微分和極限有關(guān)的內(nèi)容。
在接下來的一章中,我們開始學(xué)習(xí)重積分,一元函數(shù)的定積分是某種形式的極限,它在實(shí)際問題中有著廣泛的應(yīng)用。但由于其積分范圍是數(shù)軸上的區(qū)間,因而只能用來計(jì)算與一元函數(shù)及其相應(yīng)區(qū)間有關(guān)的量。在高等數(shù)學(xué)中,重積分是多元函數(shù)積分學(xué)的內(nèi)容,在一元函數(shù)積分學(xué)中我們知道定積分是某種確定形式的和的極限。這種和的概念推廣到定義在區(qū)域、曲線及曲面上多元函數(shù)的情形,便得到重積分、曲線積分及曲面積分的概念。高等數(shù)學(xué)討論的重積分主要包括二重積分和三重積分兩部分,引起二重積分概念的過程是測(cè)量曲頂柱體體積的過程的反映,三重積分概念是作為二重積分概念的推廣而引出的,但事實(shí)上三重積分也是某些具體現(xiàn)實(shí)過程的反映。在本章中將介紹重積分的概念、計(jì)算法以及它們的一些應(yīng)用。重積分在各種知識(shí)領(lǐng)域中的應(yīng)用非常廣闊,我們將在理論力學(xué),材料力學(xué),水力學(xué)及其她一些工程學(xué)科中碰到它們。
多元函數(shù)的積分要比一元函數(shù)的定積分復(fù)雜得多,當(dāng)積分范圍是平面或空間區(qū)域時(shí),這樣的積分就是重積分;當(dāng)積分范圍是曲線時(shí),這樣的積分就是曲線積分;當(dāng)積分范圍是曲面時(shí),這樣的積分就是曲面積分。定義這些積分的思想方法與定積分類似,都可以概括為分割、近似、求和、取極限四個(gè)步驟,本章討論二重積分與三重積分的概念、性質(zhì)、計(jì)算方法和它們的一些應(yīng)用。
在無窮級(jí)數(shù)這一章中,課程介紹了無窮級(jí)數(shù)這個(gè)新的概念,無窮級(jí)數(shù)理論在高等數(shù)學(xué)中具有非常重要的地位,是研究微積分理論及其應(yīng)用的強(qiáng)有力工具。研究無窮級(jí)數(shù),是研究數(shù)列的另一種形式,尤其在研究極限的存在性及計(jì)算極限方面顯示出很大的優(yōu)越性。它在表示函數(shù)、研究函數(shù)的性質(zhì)、計(jì)算函數(shù)值以及求解微分方程等方面都有重要的應(yīng)用,在經(jīng)濟(jì)、管理、電學(xué)以及振動(dòng)理論等諸多領(lǐng)域離也有廣泛的應(yīng)用。
無窮級(jí)數(shù)是微積分學(xué)的重要組成部分之一,是表示函數(shù)、研究函數(shù)性質(zhì)和進(jìn)行數(shù)值計(jì)算的有力工具。無窮級(jí)數(shù)本質(zhì)上是一種特殊數(shù)列的極限。利用極限,常數(shù)項(xiàng)級(jí)數(shù)是把有限個(gè)數(shù)相加推廣到無窮多個(gè)數(shù)相加。冪級(jí)數(shù)是把多項(xiàng)式的次數(shù)推廣到無窮多次的結(jié)果。主要掌握常數(shù)項(xiàng)級(jí)數(shù)收斂性判別法和會(huì)討論冪級(jí)數(shù)收斂性。
本章首先介紹無窮級(jí)數(shù)的概念和基本性質(zhì),然后重點(diǎn)討論常數(shù)項(xiàng)級(jí)數(shù)的概念、性質(zhì)及其斂散性的判別法,在此基礎(chǔ)上介紹函數(shù)項(xiàng)級(jí)數(shù)的相關(guān)類容,以及將函數(shù)展開成冪級(jí)數(shù)的條件和方法。
正項(xiàng)級(jí)數(shù)的收斂判別 :各項(xiàng)都是由正數(shù)組成的級(jí)數(shù)稱為正項(xiàng)級(jí)數(shù),正項(xiàng)級(jí)數(shù)收斂的充要條件是:部分和數(shù)列{sn}有界,即存在某正整數(shù)M,對(duì)一切正整數(shù) n有sn<M。從基本定理出發(fā),我們可以由此建立一系列基本的判別法 比較判別法
設(shè)∑un和∑vn是兩個(gè)正項(xiàng)級(jí)數(shù),如果存在某正數(shù)N,對(duì)一切n>N都有un≦vn,則
(1)級(jí)數(shù)∑vn收斂,則級(jí)數(shù)∑un也收斂;(2)若級(jí)數(shù)∑un發(fā)散,則級(jí)數(shù)∑vn也發(fā)散 2 柯西判別法(根式判別法)
設(shè)∑un為正項(xiàng)級(jí)數(shù),且存在某正整數(shù)N0及正常數(shù)l,(1)若對(duì)一切n>N0,成立不等式式則級(jí)數(shù)
l<1,則級(jí)數(shù)∑un收斂。(2)若對(duì)一切n>N0,成立不等∑un發(fā)散。第十一章學(xué)習(xí)了微分方程,微分方程是數(shù)學(xué)建模最重要、最有效的工具之一。本章重點(diǎn)闡述了微分方程的基本概念,討論一些常見的一階、二階微分方程,并舉例介紹微分方程在經(jīng)濟(jì)、管理等方面的簡單應(yīng)用。通過本章的學(xué)習(xí),理解了微分方程的基本概念,掌握常見的一階、二階微分方程的基本解法,通過建立微分方程模型,解決一些簡單的經(jīng)濟(jì)問題,培養(yǎng)對(duì)數(shù)學(xué)建模思想的理解。凡表示自變量,未知函數(shù)以及未知函數(shù)的導(dǎo)數(shù)或微分之間關(guān)系的方程稱為微分方程。若方程中的未知函數(shù)為一元函數(shù),就稱為常微分方程;若方程中的未知函數(shù)為多元函數(shù),這時(shí)導(dǎo)數(shù)為未知的偏導(dǎo)數(shù),就稱為偏微分方程。只含有未知函數(shù)的一階導(dǎo)數(shù),我們稱這樣的方程為一階微分方程,而微分方程中含有未知函數(shù)的二階導(dǎo)數(shù),我們稱這樣的方程為二階微分方程。一般的,若方程中未知函數(shù)的最高階導(dǎo)數(shù)為n階,則稱其為n階微分方程,并稱方程中未知函數(shù)導(dǎo)數(shù)的最高階數(shù)n為方程的階。每一個(gè)微分方程轉(zhuǎn)化為恰當(dāng)方程之后,可以運(yùn)用恰當(dāng)方程的公式進(jìn)行求解,因此轉(zhuǎn)化成恰當(dāng)方程是求解微分方程的重要步驟,轉(zhuǎn)化成恰當(dāng)方程需要求解出積分因子,因此積分因子的求解變得非常重要。課本中介紹了僅關(guān)于x或僅關(guān)于y的積分因子。
第十二章我們學(xué)習(xí)了差分方程,對(duì)于連續(xù)變量y(t),可以用刻畫其變化率。但是在許多應(yīng)用問題中,函數(shù)是否可導(dǎo),甚至是否連續(xù)都不清楚,或函數(shù)根本就不可導(dǎo),而只知道函數(shù)在某些時(shí)刻的函數(shù)值,這時(shí)自變量與因變量都是離散變化的。因此我們利用函數(shù)的差商△y/△t代替導(dǎo)數(shù)來刻畫函數(shù)y(t)的變化率。我們對(duì)函數(shù)在單位時(shí)間內(nèi)的增量引入了一個(gè)新的概念就是差分。本章中比較重要的是二階常系數(shù)線性方程,這里學(xué)到了二階常系數(shù)齊次線性差分方程的通解以及二階常系數(shù)非齊次線性方程特解的解法。
在學(xué)習(xí)高數(shù)的時(shí)候,我們應(yīng)該注重學(xué)習(xí)方法的選擇,只有掌握好了學(xué)習(xí)方法,才能將這門課學(xué)好。我們?cè)趯W(xué)習(xí)的時(shí)候,要先預(yù)習(xí),然后應(yīng)該好好的完成課后作業(yè),最好要時(shí)刻的復(fù)習(xí)總結(jié)。學(xué)習(xí)高數(shù)這門課的時(shí)候,我們首先應(yīng)該了解高數(shù)這門課的性質(zhì),對(duì)數(shù)學(xué)來說,結(jié)構(gòu)無處不在,結(jié)構(gòu)是由許多節(jié)點(diǎn)和聯(lián)線繪成的穩(wěn)定系統(tǒng)。數(shù)學(xué)中最基本的就是概念結(jié)構(gòu),它們之間的聯(lián)系組成了知識(shí)網(wǎng)絡(luò)的結(jié)構(gòu),剖析高等數(shù)學(xué)的知識(shí)結(jié)構(gòu),有助于加深對(duì)高等數(shù)學(xué)的理解
高數(shù)以極限思想為靈魂,以微積分為核心,包括級(jí)數(shù)在內(nèi),它們都是從量的方面研究事物運(yùn)動(dòng)變化的數(shù)學(xué)方法,本質(zhì)上是幾種不同性質(zhì)的極限問題。因此,我們?cè)趯W(xué)習(xí)這些內(nèi)容的時(shí)候應(yīng)該掌握它們之間的聯(lián)系,這樣我們?cè)趯W(xué)習(xí)的時(shí)候就可以做到事半功倍的效果。
我們學(xué)習(xí)高數(shù)要堅(jiān)持下去,這樣我們?cè)谌〉昧己贸煽兊耐瑫r(shí)就能體會(huì)到數(shù)學(xué)的獨(dú)特魅力。學(xué)習(xí)好高數(shù),對(duì)我們的生活學(xué)習(xí)都很有幫助,在數(shù)學(xué)的海洋里遨游,我們便能體會(huì)到宇宙的智慧。
第五篇:高數(shù)第一學(xué)期期末考試復(fù)習(xí)提綱
第一學(xué)期《工科數(shù)學(xué)》期末考試復(fù)習(xí)提綱
一、基本概念要求
(1)理解并熟練掌握函數(shù)的四種特性,即單調(diào)性、奇偶性、有界性和周期性;
(2)熟悉分段定義函數(shù);
(3)理解極限的ε?N,ε?δ,ε?X定義,理解極限的唯一性、有界性、保號(hào)性;
(4)理解無窮小的概念、等價(jià)無窮小的性質(zhì);
(5)理解極限存在的兩個(gè)準(zhǔn)則并會(huì)應(yīng)用這兩個(gè)準(zhǔn)則證明極限的存在性;
(6)理解并熟練掌握函數(shù)的連續(xù)性定義、間斷點(diǎn)的分類;
(7)熟悉閉區(qū)間上連續(xù)函數(shù)的性質(zhì)
(8)理解導(dǎo)數(shù)、左右導(dǎo)數(shù)的定義;
(9)理解函數(shù)微分的定義及其近似公式;
(10)理解微分中值定理并熟悉三個(gè)定理的條件、結(jié)論;
(11)熟練掌握函數(shù)的單調(diào)性與極值、凹凸性與拐點(diǎn)的判定定理和方法;
(12)理解并掌握原函數(shù)與不定積分的概念和性質(zhì);
(13)理解定積分的定義、定積分存在的必要條件和充分條件;
(14)理解并掌握定積分的性質(zhì)特別是估值定理和積分中值定理;
(15)理解并掌握變限積分的定義和性質(zhì),理解并掌握牛頓—萊布尼茲公式;
(16)理解并掌握定積分應(yīng)用的元素法;
(17)理解兩類廣義積分的定義及其斂散性。
二、基本運(yùn)算和論證能力要求
價(jià)無窮小代換、洛比達(dá)法則等;(1)熟練掌握求極限的基本方法,如四則運(yùn)算法則、極限存在法則、兩個(gè)重要極限、等
(2)熟練掌握求導(dǎo)的基本方法,如復(fù)合函數(shù)求導(dǎo)、隱函數(shù)求導(dǎo)、參數(shù)方程確定的函數(shù)的求導(dǎo)、對(duì)數(shù)求導(dǎo)法、高階導(dǎo)數(shù)等;
(3)熟練掌握分段定義函數(shù)在分段點(diǎn)可導(dǎo)性的討論方法;
(4)能夠運(yùn)用微分中值定理和函數(shù)的單調(diào)性證明某些不等式,運(yùn)用微分中值定理證明某
些方程的根的存在性和唯一性;
(5)能夠運(yùn)用導(dǎo)數(shù)的知識(shí)對(duì)函數(shù)的性態(tài)進(jìn)行分析,熟練掌握函數(shù)圖形的描繪;
(6)熟練掌握函數(shù)的極值、最大值、最小值問題的求解方法;
(7)熟練掌握不定積分的基本求解方法,特別是第一、二類換元積分法、分部積分法等;
(8)熟練掌握定積分的基本求解方法,熟練掌握變限積分有關(guān)問題的求解方法;
(9)熟練掌握定積分的幾何應(yīng)用,特別是在直角坐標(biāo)系下的面積、體積的計(jì)算。
(10)理解并掌握廣義積分的定義、審斂和計(jì)算方法。