第一篇:特殊的平行四邊形單元設(shè)計(jì)(大全)
萬(wàn)祥學(xué)校初二數(shù)學(xué)備課組單元教學(xué)設(shè)計(jì)
廖長(zhǎng)義高甜
主題單元標(biāo)題特殊的平行四邊形
主題學(xué)習(xí)概述
本節(jié)內(nèi)容是平行四邊形的一個(gè)重要部分,本節(jié)的學(xué)習(xí)內(nèi)容包括“矩形和菱形的性質(zhì)與判定”、“正方形的性質(zhì)與判定”,這是原有平行四邊形知識(shí)的延續(xù),也是我們后續(xù)學(xué)習(xí)的鋪墊,是初中幾何知識(shí)的重要組成部分。
在本主題單元中,設(shè)計(jì)了個(gè)專題來(lái)組織學(xué)習(xí)活動(dòng)。
專題一:理解并掌握矩形與菱形的性質(zhì);
專題二:理解并掌握矩形與菱形的判定;
專題三:理解并掌握正方形的性質(zhì)與判定。
主題學(xué)習(xí)目標(biāo)
1、知識(shí)與技能:
掌握特殊平行四邊形的性質(zhì)與判定,并會(huì)運(yùn)用特殊平行四邊形的性質(zhì)與判定解題、證題。
2、能力目標(biāo):通過(guò)作圖、操作說(shuō)理,培養(yǎng)用數(shù)學(xué)語(yǔ)言規(guī)范表達(dá)的能力,培養(yǎng)觀察、分析、猜想、歸納知識(shí)的自學(xué)能力,培養(yǎng)類比、轉(zhuǎn)化、推導(dǎo)、論證的數(shù)學(xué)思維品質(zhì)。
3、情感目標(biāo):滲透從具體到抽象,特殊到一般的數(shù)學(xué)思想以及事物之間互相轉(zhuǎn)化的辨證觀點(diǎn)。激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,在交流與合作中體驗(yàn)成功的喜悅,樹(shù)立自信心。
教學(xué)重點(diǎn):矩形、菱形、正方形與平行四邊形的性質(zhì)的區(qū)別與聯(lián)系;三種特殊平行四邊形的判定的運(yùn)用;能熟練運(yùn)用特殊平行四邊形的性質(zhì)與判定解題、證題。
教學(xué)難點(diǎn):運(yùn)用特殊平行四邊形的性質(zhì)與判定解決有關(guān)問(wèn)題。
教法:
以學(xué)生的合作探究為主體,教師的適時(shí)引導(dǎo)為輔的教學(xué)方式。采用類比、歸納的方法讓學(xué)生比較特殊平行四邊形的性質(zhì)和判定。
過(guò)程與方法:經(jīng)歷“問(wèn)題——圖像——自主思考——得出結(jié)論——拓展”的數(shù)學(xué)思維活動(dòng)過(guò)程.主題單元問(wèn)題設(shè)計(jì)
1、理解矩形和菱形的定義;掌握矩形和菱形性質(zhì)和判定方法,并能運(yùn)用它們進(jìn)行相關(guān)的計(jì)算和證明
2、理解掌握矩形和菱形判定方法
3、理解正方形的定義;掌握正方形的性質(zhì);
理解掌握正方形的判定方法并能運(yùn)用它們進(jìn)行相關(guān)的計(jì)算與證明。
第二篇:特殊平行四邊形專題
特殊平行四邊形專題(最后一題)
一、解答題(本大題共12小題,共120.0分)
1.如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)P為對(duì)角線BD上一動(dòng)點(diǎn),點(diǎn)E在射線BC上.(1)填空:∠PBC=______度.
(2)若BE=t,連結(jié)PE、PC,則|PE+PC的最小值為_(kāi)_____,|PE-PC|的最大值是______(用t表示);
(3)若點(diǎn)E 是直線AP與射線BC的交點(diǎn),當(dāng)△PCE為等腰三角形時(shí),求∠PEC的度數(shù).
BD是一條對(duì)角線,D不重合)2.在正方形ABCD中,點(diǎn)E在直線CD上(與點(diǎn)C,連接AE,平移△ADE,使點(diǎn)D移動(dòng)到點(diǎn)C,得到△BCF,過(guò)點(diǎn)F作FG⊥BD于點(diǎn)G,連接AG,EG.
(1)問(wèn)題猜想:如圖1,若點(diǎn)E在線段CD上,試猜想AG與EG的數(shù)量關(guān)系是______,位置關(guān)系是______;(2)類比探究:如圖2,若點(diǎn)E在線段CD的延長(zhǎng)線上,其余條件不變,小明猜想(1)中的結(jié)論仍然成立,請(qǐng)你給出證明;
(3)解決問(wèn)題:若點(diǎn)E在線段DC的延長(zhǎng)線上,且∠AGF=120°,正方形ABCD的邊長(zhǎng)為2,請(qǐng)?jiān)趥溆脠D中畫(huà)出圖形,并直接寫(xiě)出DE的長(zhǎng)度.
N分別是正方形ABCD的邊CB、CD的延長(zhǎng)線上的點(diǎn),AN、MN,3.已知,點(diǎn)M、連接AM、∠MAN=135°.(友情提醒:正方形的四條邊都相等,即AB=BC=CD=DA;四個(gè)內(nèi)角都是90°,即∠ABC=∠BCD=∠CDA=∠DAB=90°)
(1)如圖①,若BM=DN,求證:MN=BM+DN.
(2)如圖②,若BM≠DN,試判斷(1)中的結(jié)論是否仍成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由.
第1頁(yè),共4頁(yè) BD是邊長(zhǎng)為1的正方形ABCD的對(duì)角線,BE平分∠DBC交DC于點(diǎn)E,4.已知,如圖1,延長(zhǎng)BC到點(diǎn)F,使CF=CE,連接DF,交BE的延長(zhǎng)線于點(diǎn)G.(1)求證:△BCE≌△DCF;(2)求CF的長(zhǎng);
(3)如圖2,在AB上取一點(diǎn)H,且BH=CF,若以BC為x軸,AB為y軸建立直角坐標(biāo)系,問(wèn)在直線BD上是否存在點(diǎn)P,使得以B、H、P為頂點(diǎn)的三角形為等腰三角形?若存在,直接寫(xiě)出所有符合條件的P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
5.如圖,△ABC中,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC,交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.
(1)判斷OE與OF的大小關(guān)系?并說(shuō)明理由;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并說(shuō)出你的理由;
(3)在(2)的條件下,當(dāng)△ABC滿足什么條件時(shí),四邊形AECF會(huì)是正方形.
AB=AC,AD⊥BC,AN是△ABC外角∠CAM6.已知:如圖,在△ABC中,垂足為點(diǎn)D,的平分線,CE⊥AN,垂足為點(diǎn)E,連接DE交AC于點(diǎn)F.(1)求證:四邊形ADCE為矩形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADCE是一個(gè)正方形?并給出證明.(3)在(2)的條件下,若AB=AC=2,求正方形ADCE周長(zhǎng).
第2頁(yè),共4頁(yè) 7.已知正方形ABCD中,對(duì)角線AC、BD相交于O.
①如圖1,若E是AC上的點(diǎn),過(guò)A 作AG⊥BE于G,AG、BD交于F,求證:OE=OF
②如圖2,若點(diǎn)E在AC的延長(zhǎng)線上,AG⊥EB交EB的延長(zhǎng)線于G,AG延長(zhǎng)DB延長(zhǎng)線于點(diǎn)F,其它條件不變,OE=OF還成立嗎?
8.如圖,正方形ABCD中,AC是對(duì)角線,今有較大的直角三角板,一邊始終經(jīng)過(guò)點(diǎn)B,直角頂點(diǎn)P在射線AC上移動(dòng),另一邊交DC于Q.
(1)如圖①,當(dāng)點(diǎn)Q在DC邊上時(shí),猜想并寫(xiě)出PB與PQ所滿足的數(shù)量關(guān)系,并加以證明;
(2)如圖②,當(dāng)點(diǎn)Q落在DC的延長(zhǎng)線上時(shí),猜想并寫(xiě)出PB與PQ滿足的數(shù)量關(guān)系,并證明你的猜想.
F分別在邊BC,CD上,9.(1)如圖1,正方形ABCD中,點(diǎn)E,∠EAF=45°,延長(zhǎng)CD到點(diǎn)G,使DG=BE,連結(jié)EF,AG.求證:EF=FG.
(2)如圖,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點(diǎn)M,N在邊BC上,且∠MAN=45°,若BM=1,CN=3,求MN的長(zhǎng).
第3頁(yè),共4頁(yè) 10.已知,如圖,O為正方形對(duì)角線的交點(diǎn),BE平分∠DBC,交DC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使CF=CE,連結(jié)DF,交BE的延長(zhǎng)線于點(diǎn)G,連結(jié)OG.(1)求證:△BCE≌△DCF.
(2)判斷OG與BF有什么關(guān)系,證明你的結(jié)論.
2(3)若DF=8-4,求正方形ABCD的面積?
11.如圖,平行四邊形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn),EG的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)F,連結(jié)CE,DF.(1)求證:四邊形CEDF是平行四邊形;
(2)①當(dāng)AE= ______ cm時(shí),四邊形CEDF是矩形; ②當(dāng)AE= ______ cm時(shí),四邊形CEDF是菱形.(直接寫(xiě)出答案,不需要說(shuō)明理由)
12.(本題滿分9分)長(zhǎng)方形是特殊的平行四邊形,具備平行四邊形的所有性質(zhì)。在長(zhǎng)方形 , ,垂直平分分別交、于點(diǎn)、,垂足為.中 ,(1)如圖1,連接(2)求AE的長(zhǎng)、.求證:AE=CF;
(3)如圖2,動(dòng)點(diǎn)、分別從、兩點(diǎn)同時(shí)出發(fā) ,沿和各邊勻速運(yùn)動(dòng)一周.即點(diǎn)自 → →
→停止 ,點(diǎn)自 → → →停止.在運(yùn)動(dòng)過(guò)程中,已知點(diǎn)的速度為每秒 5 ,點(diǎn)的速度為每秒 4 ,運(yùn)動(dòng)時(shí)間為秒 ,當(dāng)、、、四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí) ,求的值
第4頁(yè),共4頁(yè)
第三篇:特殊平行四邊形:證明題
特殊四邊形之證明題
1、如圖8,在ABCD中,E,F(xiàn)分別為邊AB,CD的中點(diǎn),連接DE,BF,BD. ?
(1)求證:△ADE≌△CBF.
(2)若AD?BD,則四邊形BFDE是什么特殊四邊形?請(qǐng)證明你的結(jié)論.
F C
A E B2、如圖,四邊形ABCD中,AB∥CD,AC平分?BAD,CE∥AD交AB于E.
(1)求證:四邊形AECD是菱形;
(2)若點(diǎn)E是AB的中點(diǎn),試判斷△ABC的形狀,并說(shuō)明理由.
3.如圖,△ABC中,AC的垂直平分線MN交AB于點(diǎn)D,交AC于點(diǎn)O,CE∥AB交MN于E,連結(jié)AE、CD.
(1)求證:AD=CE;
(2)填空:四邊形ADCE的形狀是.
A
DMN
B
4.如圖,在△ABC中,AB=AC,D是BC的中點(diǎn),連結(jié)AD,在AD的延長(zhǎng)線上取一點(diǎn)E,連結(jié)BE,CE.
(1)求證:△ABE≌△ACE
(2)當(dāng)AE與AD滿足什么數(shù)量關(guān)系時(shí),四邊形ABEC是菱形?并說(shuō)明理由.
5.如圖,在△ABC和△DCB中,AB = DC,AC = DB,AC與DB交于點(diǎn)M.
(1)求證:△ABC≌△DCB ;
(2)過(guò)點(diǎn)C作CN∥BD,過(guò)點(diǎn)B作BN∥AC,CN與BN交于點(diǎn)N,試判斷線段BN與CN的數(shù)量關(guān)系,并證明你的結(jié)論.
6、如圖,矩形ABCD中,O是AC與BD的交點(diǎn),過(guò)O點(diǎn)的直線EF與AB,CD的延長(zhǎng)線分別交于E,F(xiàn).
(1)求證:△BOE≌△DOF;
(2)當(dāng)EF與AC滿足什么關(guān)系時(shí),以A,E,C,F(xiàn)為頂點(diǎn)的四邊形是菱形?證明你的結(jié)論.
F
A
B
E
D B N
7.600,它的兩底分別是16cm、30cm。求它的腰長(zhǎng)。
(兩種添線方法)
C
8.如圖
(七),在梯形ABCD中,AD∥BC,AB?AD?DC,AC?AB,將CB延長(zhǎng)至點(diǎn)F,使BF?CD.
(1)求?ABC的度數(shù);
(2)求證:△CAF為等腰三角形.
C
B 圖七 F
第四篇:特殊平行四邊形證明題
特殊平行四邊形之證明題
題型一:菱形的證明
1、如圖,四邊形ABCD是菱形,DE⊥AB交BA的延長(zhǎng)線于E,DF⊥BC,交BC的延長(zhǎng)線于F。請(qǐng)你猜想DE與DF的大小有什么關(guān)系?并證明你的猜想
2.如圖,△ABC中,AC的垂直平分線MN交AB于點(diǎn)D,交AC于點(diǎn)O,CE∥AB交MN于E,連結(jié)AE、CD.(1)求證:AD=CE;
(2)填空:四邊形ADCE的形狀并證明.
A
M
N3、如圖,矩形ABCD中,O是AC與BD的交點(diǎn),過(guò)O點(diǎn)的直線EF與AB,CD的延長(zhǎng)線分別交于E,F(xiàn).
(1)求證:△BOE≌△DOF;(2)當(dāng)EF與AC滿足什么關(guān)系時(shí),以A,E,C,F(xiàn)為頂點(diǎn)的四邊形是菱形?證明你的結(jié)論.
F
A
B
E
D4、將平行四邊形紙片ABCD按如圖方式折疊,使點(diǎn)C與A重合,點(diǎn)D落到D′ 處,折痕為EF.
(1)求證:△ABE≌△AD′F;
(2)連接CF,判斷四邊形AECF是什么特殊四邊形?證明你的結(jié)論.
D′A F D
B
E
C
題型二:正方形的證明題
5、把正方形ABCD繞著點(diǎn)A,按順時(shí)針?lè)较蛐D(zhuǎn)得到正方形AEFG,邊FG與BC交于點(diǎn)H(如圖).試問(wèn)線段HG與線段HB相等嗎?請(qǐng)先觀察猜想,然后再證明你的猜想.
D
C6、四邊形ABCD、DEFG都是正方形,連接AE、CG.(1)求證:AE=CG;
(2)觀察圖形,猜想AE與CG之間的位置關(guān)系,并證明你的猜想.
F
A
E
(第5題)
7.如圖,ABCD是正方形.G是 BC 上的一點(diǎn),DE⊥AG于 E,BF⊥AG于 F.(1)求證:△ABF≌△DAE;(2)求證:DE?EF?FB.
A
B
D
G
C
題型三:矩形的證明題
8.如圖,△ABC中,AB=AC,AD、AE分別是∠BAC和∠BAC和外角的平分線,BE⊥AE.(1)求證:DA⊥AE;
(2)試判斷AB與DE是否相等?并證明你的結(jié)論.
C
E
A F
9.如圖,四邊形ABCD是矩形,△PBC和△QCD都是等邊三角形,且點(diǎn)P在矩形上方,點(diǎn)Q在矩形內(nèi).
求證:(1)∠PBA=∠PCQ=30°;(2)PA=PQ.
P
A
Q
B
D
C10、如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于F,且AF?DC,連接CF.(1)求證:D是BC的中點(diǎn);
(2)如果AB?AC,試猜測(cè)四邊形ADCF的形狀,并證明你的結(jié)論.
B
D
C11、已知:如圖,在矩形ABCD中,E、F分別是邊BC、AB上的點(diǎn),且EF=ED,EF⊥ED.求證:AE平分∠BAD.(第23題)
12、如圖,矩形ABCD中,點(diǎn)E是BC上一點(diǎn),AE=AD,DF⊥AE于F,連結(jié)DE,求證:DF=DC.
E
題型五:綜合證明題
13、如圖,已知平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,E是BD延長(zhǎng)線上的點(diǎn),且△ACE是等邊三角形.
(1)求證:四邊形ABCD是菱形;
(2)若?AED?2?EAD,求證:四邊形ABCD是正方形.
E
A
B
C
第五篇:特殊平行四邊形試卷(最終版)
2017-2018學(xué)第一章測(cè)試題
一、選擇題
1.以不在同一直線上的三個(gè)點(diǎn)為頂點(diǎn)作平行四邊形,最多能作()A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè) 2.若平行四邊形的一邊長(zhǎng)為10cm,則它的兩條對(duì)角線的長(zhǎng)度可以是(); A.5cm和7cm B.18cm和28cm C.6cm和8cm D.8cm和12cm 3.如圖,平行四邊形ABCD中,經(jīng)過(guò)兩對(duì)角線交點(diǎn)O的直線分別交BC于點(diǎn)E,交AD于點(diǎn)F.若BC=7,CD=5,OE=2,則四邊形ABEF的周長(zhǎng)等于().A.14 B.15 C.16 D.無(wú)法確定
4.如圖,矩形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,CE∥BD,DE∥AC,若AC=4,則四邊形CODE的周長(zhǎng)()
A.4 B.6 C.8 D.10
5.如圖,把一個(gè)長(zhǎng)方形的紙片對(duì)折兩次,然后剪下一個(gè)角,為了得到一個(gè)鈍角為120° 的菱形,剪口與第二次折痕所成角的度數(shù)應(yīng)為()
A.15°或30° B.30°或45° C.45°或60° D.30°或60°
6.如圖,菱形ABCD 中,對(duì)角線AC、BD交于點(diǎn)O,菱形ABCD周長(zhǎng)為32,點(diǎn)P是邊CD的中點(diǎn),則線段OP的長(zhǎng)為()
A.3 B.5 C.8 D.4 7.如圖,在平行四邊形ABCD中,過(guò)對(duì)角線BD上一點(diǎn)P,作EF∥BC,HG∥AB,若四邊形AEPH和四邊形CFPG的面積分另為S1和S2,則S1與S2的大小關(guān)系為()A.S1=S2 B.S1>S2 C.S1<S2 D.不能確定
8.矩形的兩條對(duì)角線所成的鈍角為120°,若一條對(duì)角線的長(zhǎng)是2,那么它的周長(zhǎng)是()
A.6 B.
C.2(1+)
D.1+
9.如圖,菱形ABCD中,∠A=120°,E是AD上的點(diǎn),沿BE折疊△ABE,點(diǎn)A恰好落在BD上的點(diǎn)F,那么∠BFC的度數(shù)是()
A.60° B.70° C.75° D.80°
10.如圖,在四邊形ABCD中,對(duì)角線AC⊥BD,垂足為O,點(diǎn)E、F、G、H分別為邊AD、AB、BC、CD的中點(diǎn).若AC=8,BD=6,則四邊形EFGH的面積為()
A.14 B.12 C.24 D.48
第II卷(非選擇題)
二、填空題(題型注釋)
11.如圖,在菱形ABCD中,AC,BD是對(duì)角線,如果∠BAC=70°,那么∠ADC等于 .
12.如圖,矩形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,DE∥AC,CE∥BD,若AC=4,則四邊形CODE的周長(zhǎng)為
13.如圖,在梯形ABCD中,AD∥BC,AD=4,BC=12,E是BC的中點(diǎn).點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)A出發(fā),沿AD向點(diǎn)D運(yùn)動(dòng);點(diǎn)Q同時(shí)以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B運(yùn)動(dòng).點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也隨之停止運(yùn)動(dòng).當(dāng)運(yùn)動(dòng)時(shí)間為 2或的四邊形是平行四邊形.
秒時(shí),以點(diǎn)P,Q,E,D為頂點(diǎn)
14.如圖,折疊矩形紙片ABCD,使點(diǎn)B落在邊AD上,折痕EF的兩端分別在AB、BC上(含端點(diǎn)),且AB=6cm,BC=10cm.則折痕EF的最大值是
cm.
15.如圖,將兩條寬度都是為2的紙條重疊在一起,使∠ABC=45°,則四邊形ABCD的面積為 _________ .
16.如圖,在矩形ABCD中,AB=8,BC=10,E是AB上一點(diǎn),將矩形ABCD沿CE折疊后,點(diǎn)B落在AD邊的F點(diǎn)上,則DF的長(zhǎng)為 .
17.如圖,菱形ABCD的邊長(zhǎng)為4,∠BAD=120°,點(diǎn)E是AB的中點(diǎn),點(diǎn)F是AC上的一動(dòng)點(diǎn),則EF+BF的最小值是 .
18.如圖,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中點(diǎn),P是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),則PE+PB的最小值是 .
四、解答題(題型注釋)
19.如圖,點(diǎn)E、F、G、H分別為矩形ABCD四條邊的中點(diǎn),證明:四邊形EFGH是菱形.
20.如圖,在平行四邊形ABCD中,E為BC邊上的一點(diǎn),連結(jié)AE、BD且AE=AB.(1)求證:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.
21.如圖,在菱形ABCD中,∠ABC=60°,過(guò)點(diǎn)A作AE⊥CD于點(diǎn)E,交對(duì)角線BD于點(diǎn)F,過(guò)點(diǎn)F作FG⊥AD于點(diǎn)G.
(1)求證:BF=AE+FG;
(2)若AB=2,求四邊形ABFG的面積.
22.如圖,△ABC中,AD是邊BC上的中線,過(guò)點(diǎn)A作AE//BC,過(guò)點(diǎn)D作DE//AB,DE與AC、AE分別交于點(diǎn)O、點(diǎn)E,連接EC.(1)求證:AD=EC;
(2)當(dāng)∠BAC=Rt∠時(shí),求證:四邊形ADCE是菱形.
23.將平行四邊形紙片ABCD按如圖方式折疊,使點(diǎn)C與A重合,點(diǎn)D落到D′ 處,折痕為EF.
(1)求證:△ABE≌△AD′F;
(2)連接CF,判斷四邊形AECF是什么特殊四邊形?證明你的結(jié)論.
24.已知:矩形ABCD中,對(duì)角線AC與BD交與點(diǎn)O,∠BOC=120°,AC=4cm.求:矩形ABCD的周長(zhǎng)和面積。