第一篇:高一數(shù)學(xué)線面垂直強化訓(xùn)練題目
1、線面垂直的定義:如果一條直線和一個平面相交,并且和這個平面內(nèi)的任意一條直線都垂直,我們就說這條直線和這個平面互相垂直。其中直線叫做平面的垂線,平面叫做直線的垂面交點叫做垂足。
2、線面垂直的判定定理(注意:兩條、相交)條直線與一個平面內(nèi)的兩條相交
直線都垂直,則該直線與平面垂直。
符號語言:b??,c??,b?c?P???l?? l?b,l?c?
3、線面垂直的方法:要證線面垂直,只需證線線垂直。
4、證明線線垂直的常見方法:
A、有題目條件給出線線垂直
B、由勾股定理計算得到垂直
C、由已知的線面垂直得到線線垂直
D、從已知條件中挖掘出垂直(例如,等腰三角線的中線垂直底邊;長方體中的棱和底面垂直;菱形的對角線垂直;底邊為直徑,頂點在圓周的三角形的兩邊垂直------
5、證明線面垂直時候要注意的問題:
A、該做輔助線的要做出準確的輔助線
B、找準“兩條相交直線”
C、題目沒有給圖的要根據(jù)題意畫出標準的圖形
一、選擇題
1.給出下述命題,其中正確命題的個數(shù)為()
(1)和同一個平面平行的兩直線互相平行;
(2)和同一個平面垂直的兩直線互相平行;
(3)和同一個平面所成角相等的兩直線互相平行;
(4)一條在平面內(nèi),另一條和這個平面平行,則這兩條直線互相平行.A.0個B.1個C.2個D.3個
2.a與面α所成角為60°,b?α,則a、b所成角的范圍是()A.[0°,90°]B.[30°,90°]C.[60°,90°]D.[60°,120° ]
3.已知∠ABC=90°,BC∥平面α,AB與平面α斜交,那么∠ABC在平面α內(nèi)的射影是
()
A.銳角B.直角C.銳角或直角D.銳角或直角或鈍角
4.正六邊形ABCDEF的邊長是a,PA垂直于正六邊形ABCDEF所在平面,且PA=a,則PE與AB所成 的角為()
A.45°B.60°C.90°D.以上都不對
5.已知Rt△ABC的斜邊BC在平面α內(nèi),而直角邊AB、AC分別與α成30°、45°角,則斜邊上的高AD與平α所成的角為()
A.30°B.45°C.60°D.75°
6.若平面α外的兩條直線在α內(nèi)的射影是同一條直線,則這條直線的位置關(guān)系是
()
A.異面B.平行C.相交D.相交或平行
7.在△ABC中,AB=AC=5,BC=6,PA⊥平面ABC,PA=8,則P到BC的距離是()A.B.2C.3D.48.已知△ABC所在的平面α外一點P到△ABC各邊的距離相等,O是P在△ABC內(nèi)的射影,則O是△ABC的()
A.外心B.垂心C.內(nèi)心D.重心
9.P
所在平面外一點,若P到四邊的距離都相等,則ABCD是()
A.正方形B.長方形C.有一個內(nèi)切圓D.有一個外切圓
10.如果∠ABC=∠BPC=∠CPA=60°,則PA與面PBC所成角的余弦值為()
A.1263B.C.D.2263
3二、填空題
11.線段AB的兩端點到平面α的距離分別是5cm和9cm,則線段的中點到α的距離是.12.∠BAC=90°且在平面α內(nèi),P在α外,PA=23,PE⊥AB于E,PF⊥AC于F,PE=PF=17,則P到平面α的距離為.13.AB∥平面α,AA1⊥α于A1,BB1⊥α于B1,點C、D在平面α內(nèi),A1D=6,B1 C=4,AD+BC=22,則AB到平面α的距離是.14.AC與BD是空間四邊形ABCD的兩條對角線,若AB=AD,CB=CD,則AC與BD所成角的大小是.15.在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M是AB邊上的一個動 點,則PM的最小值為.16.正三角形ABC邊長為a,AD⊥BC于D,沿AD把△ABC折起,使∠BDC=90°,這時B到AC的距離 為.三、證明與計算
17.已知P是△ABC所在平面外一點,PA⊥BC,PB⊥AC,求證:PC⊥AB.18.在正方體ABCD—A1B1C1D1中,期棱長為a.(1)求證BD⊥截面AB1C;
(2)求點B到截面AB1C的距離;
(3)求BB1與截面AB1C所成的角的余弦值。
19.在平面α內(nèi)有△ABC,在平面α外有點S,斜線SA⊥AC,SB⊥BC,且斜線SA、SB與平面α所成角相等。
(1)求證:AC=BC
(2)又設(shè)點S到α的距離為4cm,AC⊥BC且AB=6cm,求S與AB的距離。
20.已知:S為△ABC平面處一點,SA⊥平面ABC,平面SAB⊥平面SBC(如下左圖)。
求證:AB⊥BC。
21.在棱錐V-ABC中,VA⊥VC,VB⊥VC(如上右圖)。
(1)求證:VC⊥AB;
(2)若CD是底面△CAB邊AB上的高,求證:VD⊥AB。
第二篇:專題線面垂直
專題九: 線面垂直的證明
題型一:共面垂直(實際上是平面內(nèi)的兩條直線的垂直)例1:如圖在正方體ABCD?A1BC11D1中,O為底面ABCD的中心,E為CC1中點,求證:AO?OE
1題型二:線面垂直證明(利用線面垂直的判斷定理)
例2:在正方體ABCD?AO為底面ABCD的中心,E為CC1,1BC11D1中,?平面BDE 求證:AO1
題型三:異面垂直(利用線面垂直的性質(zhì)來證明,高考中的意圖)例3.在正四面體ABCD中,求證AC?BD
P N D C A M B 練:如圖,PA?平面ABCD,ABCD是矩形,M、N分別是AB、PC的中點,求證:MN?AB
題型四:面面垂直的證明(本質(zhì)上是證明線面垂直)
例4.已知PA垂直于正方形ABCD所在平面,連接PB、PC、PD、AC、BD,則下列垂直關(guān)系中正確的序號
是.①平面PAB?平面PBC ②平面PAB?平面PAD ③平面PAB?平面PCD
例5.如圖,AB是圓O的直徑,C是圓周上一點,PA?平面ABC.若AE⊥PC,E為垂足,F是PB上任意一點,求證:平面AEF⊥平面PBC.
第三篇:2012高一數(shù)學(xué)必修二立體幾何的線面垂直
2012必修二立體幾何的線面垂直
1.如圖,四面體ABCD中,AD?平面BCD,E、F分別為AD、AC的中點,BC?CD. 求證:(1)EF//平面BCD(2)BC?平面ACD.
2.如圖,P為?ABC所在平面外一點,PA?平面ABC,?ABC?90?,AE?PB于E,AF?PC于F PF求證:(1)BC?平面PAB;
(2)AE?平面PBC;
(3)PC?平面AEF.
BAEC3、如圖,棱長為1的正方體ABCD-A1B1C1D1中,(1)求證:AC⊥平面B1D1DB;(2)求證:BD1⊥平面ACB1(3)求三棱錐B-ACB1體積.
D
1A
D
C
B
C1
A1
B14、已知正方體ABCD?A1B1C1D1,O是底ABCD對角線的交點.求證:(1)C1O∥面AB1D
1DABBC1
?面AB1D1.(2)AC1
C
?
5.如圖,在三棱錐P?ABC中,AC?BC?2,?ACB?90,AP?BP?AB,PC?AC.求證:PC?AB;
P
A B
C
6.如圖,在三棱錐S-ABC中,?SAB??SAC??ACB?90?,證明SC⊥BC
7.如圖9-29,PA⊥平面ABCD,ABCD是矩形,M、N分別是AB、PC的中點. 求證:MN⊥AB.
8.如圖:在斜邊為AB的Rt△ABC中,過點A作PA⊥平面ABC,AE⊥PB于E,AF⊥PC于F,(1)求證:BC⊥平面PAC;(2)求證:PB⊥平面AEF.PE
F
A
B
C2
9.如圖:PA⊥平面PBC,AB=AC,M是BC的中點,求證:BC⊥PM.P
A
B
第四篇:線面垂直高考題
高考真題演練:
(2012天津文數(shù)).(本小題滿分13分)
如圖,在四棱錐P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PD=CD=2.(I)求異面直線PA與BC所成角的正切值;
(II)證明平面PDC⊥平面ABCD;
(III)求直線PB與平面ABCD所成角的正弦值。
(2012天津理數(shù))(本小題滿分13分)P如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點,滿足異面
直線BE與CD所成的角為30°,求AE的長.C
D
(2010年安徽)如圖,在多面體ABCDEF中,四邊形ABCD是正方形,EF//AB,EF⊥FB,AB=2EF,?BFC?90?,BF=FC,H為BC的中點.(I)求證:FH//平面EDB;
(II)求證:AC⊥平面EDB;
(III)求二面角B—DE—C的大小.(2012上海理數(shù))如圖,在四棱錐P-ABCD中,底面ABCD
是矩形,PA⊥底面ABCD,E是PC的中點.已知AB=2,AD=22,PA=2.求:
E
(1)三角形PCD的面積;(6分)(2)異面直線BC與AE所成的角的大小.(6分)
B
(2012山東)在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=CD=CF。(Ⅰ)求證:BD⊥平面AED;
(Ⅱ)求二面角F-BD-C的余弦值。
(2012年北京)如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,(I)求證:A1C⊥平面BCDE;
(II)若M是A1D的中點,求CM與平面A1BE所成角的大?。?/p>
(III)線段BC上是否存在點P,使平面A1DP與平面A1BE垂直?說明理由
(2012遼寧)如圖,直三棱柱ABC?ABC,?BAC?90,[來源:學(xué)科網(wǎng)]
///?
AB?AC??AA/,點M,N分別為A/B和B/C/的中點。
(Ⅰ)證明:MN∥平面AACC;
(Ⅱ)若二面角A?MN?C為直二面角,求?的值。
(2012江蘇)如圖,在直三棱柱ABC?A1B1C1中,A1B1?ACCC1E分別是棱BC,11,D,上的點(點D 不同于點C),且AD?DE,F(xiàn)為B1C1的中點. A1求證:(1)平面ADE?平面BCC1B1;
(2)直線A1F//平面ADE.
(2012湖南),在四棱錐P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點。(Ⅰ)證明:CD⊥平面PAE;
(Ⅱ)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P-ABCD的體積。
B A
D
/
/
/
C1
E
(2012湖北),∠ACB=45°,BC=3,過動點A作AD⊥BC,垂足D在線段BC上且異于點B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示),(1)當(dāng)BD的長為多少時,三棱錐A-BCD的體積最大;
(2)當(dāng)三棱錐A-BCD的體積最大時,設(shè)點E,M分別為棱BC,AC的中點,試在棱CD上確定一點N,使得EN⊥BM,并求EN與平面BMN所成角的大小
(2012廣東),在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點 E在線段PC上,PC⊥平面BDE。
(1)證明:BD⊥平面PAC;
(2)若PH=1,AD=2,求二面角B-PC-A的正切值;
(2012年福建)在長方體ABCD-A1B1C1D1中AA1=AD=1,E為CD中點。(Ⅰ)求證:B1E⊥AD1;
(Ⅱ)在棱AA1上是否存在一點P,使得DP∥平面B1AE?若存在,求AP的行;若存在,求AP的長;若不存在,說明理由。(Ⅲ)若二面角A-B1EA1的大小為30°,求AB的長。
(2012大綱全國卷)如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA⊥底面ABCD,PA=2,E是PC上的一點,PE=2EC.(Ⅰ)證明:PC⊥平面BED;
(Ⅱ)設(shè)二面角A-PB-C為90°,求PD與平面PBC所成角的大小。
(2012安徽)平面圖形ABB1AC11C如圖4所示,其中BB1C1C是矩形,BC?2,BB1?
4,AB?AC?,A1B1?A1C1?BC和B1C1折疊,使?ABC
與?A1B1C1所在平面都與平面BB1C1C垂直,再分別連接AA1,BA1,CA1,得到如圖2所示的空間圖形,對此空間圖形解答下列問題。
(Ⅰ)證明:AA1?BC;(Ⅱ)求AA1的長;(Ⅲ)求二面角A?BC?A1的余弦值。
第五篇:線面垂直教案
2012第一輪復(fù)習(xí)數(shù)學(xué)教案
線面垂直、面面垂直
教學(xué)目標:掌握線面垂直、面面垂直的證明方法,并能熟練解決相應(yīng)問題.(一)主要知識及主要方法:
【思考與分析】要證明線面垂直,我們可以把它轉(zhuǎn)化為證明線線垂直,這道題可以通過證明A1C與平面C1BD內(nèi)兩條相交直線BD,BC1垂直即可.而要證明A1C與相交直線BD、BC1垂直,可利用三垂線定理的三步曲證明.基礎(chǔ)平面分別取下底面及右側(cè)面.
1.線面垂直的證明:?1?判定定理;?2?如果兩條平行線中一條垂直于一個平面,那么另一條也垂直于
這個平面;?3?一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;?4?兩個平面垂直,在一個平面內(nèi)垂直于它們交線的直線垂直于另一個平面.?5?如果兩個相交平面都與第三個平面垂直,那么它們的交線與第三個平面垂直.P A?6?向量法:
???????????????????PQ?AB?PQ?AB?0
PQ??????? ???????????????
???PQ?AC?PQ?AC?0
CQ
2.面面垂直的證明:?2?如果一個平面經(jīng)過另一個平面的一條垂線,?1?計算二面角的平面角為90? ;
那么這兩個平面垂直;
題型講解證明線線垂直
三垂線定理與平面的位置無關(guān),即對水平位置、豎直位置、傾斜位置的平面都能用三垂線定理.下面我們通過實例來體驗“三步曲”的具體應(yīng)用過程.
例1(1)已知PA、PB、PC兩兩互相垂直,求證:P在平面ABC內(nèi)的射影O是△ABC的垂心.
【思考與分析】 要證O是△ABC的垂心,我們需要證明AO⊥BC、BO⊥AC、CO⊥AB.而AO、BO、CO分別是AP、BP、CP在平面ABC上的射影,因此我們想到應(yīng)用三垂線定理.分三步進行:①定線面:即面內(nèi)直線BC與基礎(chǔ)平面為底面ABC,②找三線:即垂線PO,斜線PA,射影AO,③證垂直:即AO⊥BC.同理可證其它兩條.
證明:因為P在平面ABC內(nèi)的射影為O,所以PO⊥平面ABC,連結(jié)AO且延長交BC于D,則AO是PA在平面ABC上的射影.
∵ AP⊥PB,AP⊥PC,PB∩PC=P,∴ PA⊥平面PBC,又BC平面PBC,∴ AP⊥BC.根據(jù)三垂線定理的逆定理知,AD⊥BC,所以AD是△ABC中BC邊上的高.連結(jié)CO并延長交AB于F,同理可證CF⊥AB;所以CF是△ABC中AB邊上的高,AD∩CF=O,所以O(shè)是△ABC的垂心.【反思】 解這道題時,首先應(yīng)用的是線面垂直的判定定理,然后運用三垂線定理的逆定理,所以要想快速解題,我們需要熟練掌握并能綜合應(yīng)用所學(xué)知識.(2)正方體ABCD-A1B1C1D1中,求證:對角線A1C⊥平面C1BD.
證明:∵ A1A⊥平面ABCD,A1C是斜線,連AC,AC⊥BD,由三垂線定理知BD⊥A1C.∵ A1B1⊥平面BCC1B1,A1C是斜線,連B1C,B1C是A1C在BCC1B1內(nèi)的射影,又∵ BC1⊥B1C,由三垂線定理知BC1⊥A1C.又BD∩BC1=B,∴ A1C⊥平面DBC1.
【反思】 應(yīng)用三垂線定理解題一定要熟記這三個步驟,而且還需要我們有一定的空間立體感.例2在直三棱柱ABC—A1B1C1中,B1C1=A1C1,A1B⊥AC1,求證:A1B⊥B1C
證明:取A1B1的中點D1,連結(jié)C1D1∵B1C1=A1C1,∴C1D1⊥ABB1A連結(jié)AD1,則AD1是AC1在平面ABB1A1內(nèi)的射影,∵A1B⊥AC1,∴A1B⊥AD11取AB的中點D,連結(jié)CD、B1D,則B1D∥AD1,且B1D是B1C在平面ABB1A1內(nèi)的射影∵B1D⊥A1B,∴A1B⊥B1C點評:證明異面直線垂直的常用方法有:證明其中一直線垂直于另外一直線所在的平面;利用三垂線定理及其逆定理 證明線面垂直
例3 已知PA⊥⊙O所在的平面,AB是⊙O的直徑,C是⊙O上任意一點,過A點作AE⊥PC于點E,求證:AE⊥平面PBC
證明:∵PA⊥平面ABC,∴PA⊥BC
又∵AB是⊙O的直徑,∴BC⊥AC 而PC∩AC=C,∴BC⊥平面又∵AE在平面PAC內(nèi),∴BC⊥AE∵PC⊥AE,且PC∩BC=C,∴AE⊥平面PBC 點評:證明直線與平面垂直的常用方法有:利用線面垂直的定義;利用線面垂直的判定定理;利用“若直線a∥直線b,直線a⊥平面α,則直線b⊥平面α”
練習(xí):
1.以AB為直徑的圓在平面?內(nèi)PA⊥?于A,C在圓上,連PB、PC過A作AE⊥PB于E,AF⊥PC于F,試判斷圖中還有幾組線面垂直。
PA???
BC????
?PAAB為直徑?AC?BC
??
????AF?面PAC
??
??AF?PC
??
?AF?面PBC?PB?面PBC??AF?PB?
?AE?PB???PB?AEF
cos?BAC?
AB2?AC2?BC
22?AB?AC ?
a2?b2?a2?c2?b2?c2
2?AB?AC
?
a
a2?b2?a2?c2
?0
?BAC為銳角,同理?ABC為銳角?。
P在底面射影為?ABC垂心。
BC?面ABC??
PA?BC?
? ?BC?面APQ??AQ?面APQ???BC?AQ?
??Q為?ABC垂心
同理?AC?BQ?
?
?CQ?AB?
??AB?面PQC?PQ?AB?AB?PC
同理A、B5.如圖,?B?AAA?//BB?確定平面?
????A?B??
??AB?????AB//AB??
?
??AB//?????AB?AA??
?
??AB?面AA?CAA??A?B?
??
??
AB?AC
??
?A?B??面CA?A?A?B??CA???CA?B?為直角
證明面面垂直
例4在正方體ABCD-A1B1C1D1中,E、F分別是BB1,CD的中點(1)求證:AD⊥D1F;(2)求AE與D1F所成的角;(3)證明平面AED⊥平面A1FD
1分析:涉及正方體中一些特殊的點、線、面的問題,建立空間直角坐標系來解,不僅容易找到解題方向,而且坐標也簡單,此時“垂直”問題轉(zhuǎn)化為“兩向量數(shù)量積為0”的問題,當(dāng)然也可用其它的證證明:建立空間直角坐標系如圖,并設(shè)AB=2,則A(0,0,0),D(0,2,0),A1(0,0,2)
D1(0,2,2),E(2,0,1),F(1,2,0)
?????????
(1)AD?(0,2,0),D1F?(1,0,?2)
?????????
? AD?D1F=0×1+2×1+0×(-2)=0, ?AD⊥D1F
??????????????????(2)AE=(2,0,1)D1F=(1,0,-2),|AE|?,|D1F|?設(shè)AE與D1F的夾角為θ,則 cosθ1?
2?1?0?0?1?(?2)
5?0
所以,直線AE與D1F所成的角為90°(3)由(1)知D1F⊥AD,由(2)知D1F⊥AE,又AD∩AE=A,?D1F⊥平面AED,∵D1F?平面A1FD1M
?平面AED⊥平面A1FDB
例5已知AB是圓O的直徑,PA垂直于?O所在的平面,C是圓周上不同于A,B的任一
點,求證:平面PAC?平面PBC.
分析:根據(jù)“面面垂直”的判定定理,要證明兩平面互相垂直,只要在其中一個平面中尋找一條與另解:∵AB是圓O的直徑,∴AC?BC,又∵PA垂直于?O所在的平面,∴PA?BC,∴BC?平面PAC,又BC在平面PBC中,所以,平面PAC?平面PBC. 點評:由于平面PAC與平面PBC相交于PC,所以如果平面PAC?平面PBC,則在平面PBC中,垂直于PC的直線一定垂直于平面PAC小結(jié):
1垂直問題來處理或在兩直線上分別取它們的方向向量,然后證它們的數(shù)量積為0
2面垂直的判定定理,證明直線垂直于平面內(nèi)的兩條相交直線,當(dāng)然再證這直線(這平面)與已知直線(或平面)重合,有時侯將線面垂直問題轉(zhuǎn)化為證面面垂直問題,也許會給你帶來意想不到的收獲 3如證面面垂直可轉(zhuǎn)化為證明一個平面經(jīng)過另一個平面的垂線
用向量法證明垂直,就是證有關(guān)向量的數(shù)量積為1“直線l垂直于平面α內(nèi)的無數(shù)條直線”是“l(fā)⊥α”的 AB
CD 答案:B①直線上有兩點到平面的距離相等,則此直線與平面平行②夾在兩個平行平面間的兩條異面線段的中點連線平行于這兩個平面③直線m⊥平面α,直線n⊥m,則n∥α④a、b是異面直線,則存在唯一的平面α,使它與a、b都平行且與a、b距離相等 ABCD 解析:①錯誤與平面相交如下圖,平面α∥β,A∈α,C∈α,D∈β,B∈β且E、F分別為AB、CD的中點,過C作CG∥AB交平面β于G,連結(jié)BG、GD設(shè)H是CG的中點,則EH∥BG,HF∥GD∴EH∥平面β,HF∥平面β
∴平面EHF∥平面β∥平面α∴EF∥α,EF∥β
③錯誤直線n可能在平面α內(nèi)④正確AB是異面直線a、b的公垂線段,E為AB的中點,過E作a′∥a,b′∥b,則a′、b′確定的平面即為與a、b都平行且與a、b距離相等的平面,并且它是唯一確定的答案:D
3在正方形SG1G2G3中,E、F分別是G1G2、G2G3的中點,D是EF的中點,沿SE、SF及EF把這個正方形折成一個四面體,使G1、G2、G3三點重合,重合后的點記為G,那么,在四面體S—EFG中必有 A⊥平面EFGB⊥平面EFG C⊥平面SEF D⊥平面SEF
解析:注意折疊過程中,始終有SG1⊥G1E,SG3⊥G3F,即SG⊥GE,SG⊥GF,所以SG⊥平面EFGA答案:A
4PA垂直于以AB為直徑的圓所在的平面,C為圓上異于A、B的任一點,則下列關(guān)系不正確的是 A⊥BCB⊥平面PACC⊥PB D⊥BC 解析:由三垂線定理知AC⊥PB,故選答案:C 5ABC的三個頂點A、B、C到平面α的距離分別為2 cm、3 cm、4 cm,且它們在α的同側(cè),則△ABC的重心到平面α的距離為解析:如下圖,設(shè)A、B、C在平面α上的射影分別為A′、B′、C′,△ABC的重心為G,連結(jié)CG交
AB于中點E,又設(shè)E、G在平面α上的射影分別為E′、G′,則E′∈A′B,G′∈C′E,EE′=A′
A+B′B)=,CC′=4,CG∶GE=2∶1,在直角梯形EE′C′C中可求得GG′=3答案:3 cm
6ABCD—A1B1C1D1中,當(dāng)?shù)酌嫠倪呅蜛BCD滿足條件_______時,有A1C⊥B1D1認為正確的一種條件即可,不必考慮所有可能的情況)答案:A1C1⊥B1D1或四邊形A1B1C1D1為菱形等 7ABCD—A1B1C1D1的棱長為1,則(1)A點到CD1的距離為________;(2)A點到BD1的距離為________;
(3)A點到面BDD1B1的距離為_____________;(4)A點到面A1BD的距離為_____________;(5)AA1與面BB1D1D的距離為__________6622(2)(3)(4)(5)232
328△ABC在平面α內(nèi)的射影是△A1B1C1,設(shè)直角邊AB∥α,則△A1B1C1的形狀是_____________三角形答案:(1)
解析:根據(jù)兩平行平面的性質(zhì)及平行角定理,知△A1B1C的形狀仍是Rt△答案:直角 4ABCD—A1B1C1D1中,M為CC1的中點,AC交BD于點O,求證:A1O⊥平面MBD證明:連結(jié)MO ∵DB⊥A1A,DB⊥AC,A1A∩AC=A,∴DB⊥平面A1ACC1又A1O?平面A1ACC1,∴A1O⊥DB
(1)解:當(dāng)a=2時,ABCD為正方形,則BD⊥AC又∵PA⊥底面ABCD,BD?平面ABCD,∴BD⊥PA∴BD⊥平面故當(dāng)a=2時,BD⊥平面PAC(2)證明:當(dāng)a=4時,取BC邊的中點M,AD邊的中點N,連結(jié)AM、DM、BMN∵ABMN和DCMN都是正方形,∴∠AMD=∠AMN+∠DMN=45°+45°=90°,即DM⊥AM又PA⊥底面ABCD,由三垂線定理得,PM⊥DM,故當(dāng)a=4時,BC邊的中點M使PM⊥DM(3)解:設(shè)M是BC邊上符合題設(shè)的點M,∵PA⊥底面ABCD,∴DM⊥AM因此,M點應(yīng)是以AD為直徑的圓和BC邊的一個公共點,則AD≥2AB,即a≥4點評:本題的解決中充分運用了平面幾何的相關(guān)知識因此,立體幾何解題中,要注意有關(guān)的平面幾何知識的運用事實上,立體幾何問題最終是在一個或幾個平面中得以解決的在矩形A1ACC1中,tan∠AA1O=
22,tan∠MOC=,22
∴∠AA1O=∠MOC,則∠A1OA+∠MOC=90A1O⊥OM∵OM∩DB=O,∴A1O⊥平面9S—ABC中,N是S在底面ABC上的射影,且N在△ABC的AB邊的高CD上,點M∈SC,截面MAB和底面ABC所成的二面角M—AB—C等于∠NSC,求證:SC⊥截面證明:∵CD是SC在底面ABC上的射影,AB⊥CD,∴AB⊥SCMD∵∠MDC=∠NSC,∴DM⊥SCAB∩DM=D,∴SC⊥截面MABABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M為AB邊上的一個動點,求PM的最小值解:∵P是定點,要使PM的值最小,只需使PM⊥AB即可 要使PM⊥AB,由于PC⊥平面ABC,∴只需使CM⊥AB即可
∵∠BAC=60°,AB=8,∴AC=AB·cos60°=4
∴CM=AC·sin60°=4·
=2
B
∴PM=PC2?CM2=?
12P—ABCD中,底面ABCD是矩形,AB=2,BC=a,又側(cè)棱PA⊥底面ABCD(1)當(dāng)a為何值時,BD⊥平面PAC?試證明你的結(jié)論(2)當(dāng)a=4時,求證:BC邊上存在一點M,使得PM⊥(3)若在BC邊上至少存在一點M,使PM⊥DM,求a的取值范圍分析:本題第(1)問是尋求BD⊥平面PAC的條件,即BD垂直平面PAC內(nèi)兩相交直線,易知BD⊥PA,問題歸結(jié)為a為何值時,BD⊥AC,從而知ABCD為正方形-4-