第一篇:第61課時線面垂直、面面垂直
課題:線面垂直、面面垂直
教學(xué)目標(biāo):掌握線面垂直、面面垂直的證明方法,并能熟練解決相應(yīng)問題.(一)主要知識及主要方法:
1.線面垂直的證明:?1?判定定理;?2?如果兩條平行線中一條垂直于一個平面,那么另一條也垂直于這個平面;?3?一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;?4?兩個平面垂直,在一個平面內(nèi)垂直于它們交線的直線垂直于另一個平面.?5?如果兩個相交平面都與第三個平面垂直,那么它們的交線與第三個平面垂直.?6?向量法:
AP B
Q
C???????????????????PQ?AB?PQ?AB?0 PQ?????????????????????????PQ?AC?PQ?AC?0
2.面面垂直的證明:?1?計算二面角的平面角為90? ;?2?如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面垂直;
(二)典例分析:
問題1.(07福建)如圖,正三棱柱ABC?A1B1C
1的所有棱長都為2,D為CC1中點. A1
?1?求證:AB1⊥平面A1BD;?2?略; ?3?略.(要求可用多種方法,至少要用向量法證明)D C1 1
439
問題2.(07湖北)如圖,在三棱錐V?ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中點,且AC?BC?a,π??
?VDC???0????.
2??
?1?求證:平面VAB⊥VCD;?2?略.CB
A
問題3.(07安徽)如圖,在六面體ABCD?A1B1C1D1中,四邊形
ABCD是邊長為2的正方形,四邊形A1B1C1D1是邊長為1的正方形,DD1?平面A1B1C1D1,DD1?平面ABCD,DD1?2.
D11求證:與共面,與共面. BDACACBD??1111
A1?2?求證:平面AACC?平面BBDD;?3?略.1
440
(四)課后作業(yè):
1.如圖所示,正方形ABCD中,E、F分別是AB、AD 的中點,將此正方形沿EF折成直二面角后,異面直線AF 與BE所成角的余弦值為.2.(07屆高三湖北八校聯(lián)考)
如圖,在四棱錐E?ABCD中,AB?平面BCE,CD?平面BCE,AB?BC?CE?2CD?2,?BCE?120?。?1?求證:平面ADE?平面ABE ;?2?略.A
E
B
441
(五)走向高考:
3.(07陜西)如圖,在底面為直角梯形的四棱錐P?ABCD中,AD∥BC,?ABC?90°,PA?平面ABCD.PA?3,AD?
2,AB?BC?6 ?1?求證:BD?平面PAC;?2?略.
ABD
C
442
第二篇:第31課時線面垂直、面面垂直
課題:線面垂直、面面垂直
教學(xué)目標(biāo):掌握線面垂直、面面垂直的證明方法,并能熟練解決相應(yīng)問題.(一)主要知識及主要方法:
1.線面垂直的證明:?1?判定定理;?2?如果兩條平行線中一條垂直于一個平面,那么另
一條也垂直于這個平面;?3?一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;?4?兩個平面垂直,在一個平面內(nèi)垂直于它們交線的直線垂直于另一個平
面.?5?如果兩個相交平面都與第三個平面垂直,那么它們的交線與第三個平面垂直.2.面面垂直的證明:?1?計算二面角的平面角為90? ;
?2?如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面垂直;
(二)典例分析:
問題1.如圖,正三棱柱ABC?A1B1C
1的所有棱長都為2,D為CC1中點. 求證:AB1⊥平面A1BD
P AB
A1
CQ
C1D
問題2.如圖,在三棱錐V?ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中點,且AC?BC?a,求證:平面VAB⊥VCD
V
C
AB
問題3.如圖,在六面體ABCD?ABCD中,四邊形
ABCD是邊長為2的正方形,四邊形A1B1C1D1是邊長為1的正方形,?1?求證:A1C1與AC共面,B1D1與BD共面. ?2?求證:平面A1ACC1?平面B1BDD1
(四)課后作業(yè):
DD1?平面A1B1C1D1,DD1?平面ABCD,DD1?2.
D11 1A1D
1.如圖所示,正方形ABCD中,E、F分別是AB、AD 的中點,將此正方形沿EF折成直二面角后,異面直線AF 與BE所成角的余弦值為.A
2.如圖,在四棱錐E?ABCD中,AB?平面BCE,CD?平面BCE,AB?BC?CE?2CD?2,?BCE?120?。求證:平面ADE?平面ABE
EB
第三篇:線面垂直面面垂直專題練習(xí)
線面垂直專題練習(xí)
1.設(shè)M表示平面,a、b表示直線,給出下列四個命題:
a?M?a//b?a?M?a//M?①②③b∥M④M.?b?M?a//b??????b⊥a?b?a?M?b?M?a?b?
其中正確的命題是()
A.①②B.①②③C.②③④D.①②④
2.如圖所示,在正方形ABCD中,E、F分別是AB、BC的中點.現(xiàn)在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三點重合,重合后的點記為P.那么,在四面體P—DEF中,必有()
第2題圖
A.DP⊥平面PEFB.DM⊥平面PEFC.PM⊥平面DEFD.PF⊥平面DEF
3.如果直線l,m與平面α,β,γ滿足:l=β∩γ,l∥α,m?α和m⊥γ,那么必有()
A.α⊥γ且l⊥mB.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γ
4有三個命題:
①垂直于同一個平面的兩條直線平行;
②過平面α的一條斜線l有且僅有一個平面與α垂直;
③異面直線a、b不垂直,那么過a的任一個平面與b都不垂直
其中正確命題的個數(shù)為()A.0B.1C.2D.35.設(shè)l、m為直線,α為平面,且l⊥α,給出下列命題
① 若m⊥α,則m∥l;②若m⊥l,則m∥α;③若m∥α,則m⊥l;④若m∥l,則m⊥α,其中真命題的序號是()...
A.①②③B.①②④C.②③④D.①③④
6.如圖所示,PA⊥矩形ABCD所在平面,M、N分別是AB、PC的中點.(1)求證:MN∥平面PAD.(2)求證:MN⊥CD.(3)若∠PDA=45°,求證:MN⊥平面PCD.7.如圖所示,正方體ABCD—A′B′C′D′的棱長為a,M是AD的中點,N是BD′上一點,且D′N∶NB=1∶2,MC與BD交于P.(1)求證:NP⊥平面ABCD.(2)求平面PNC與平面CC′D′D所成的角.8.如圖,在正方體ABCD-A1B1C1D1 中.求證:平面ACD1 ⊥平面BB1D1D
DA
1D
A1C1C9、如圖,三棱錐P?ABC中,PA⊥平面ABC,AC⊥BC,求證:平面PAC⊥平面PBC.
BA
C10、如圖,三棱錐P?ABC中,PA⊥平面ABC,平面PAC⊥平面PBC.問
△ABC是否為直角三角形,若是,請給出證明;若不是,請舉
出反例.
BA C
第四篇:線面垂直面面垂直及二面角專題練習(xí)
線面垂直專題練習(xí)
一、定理填空:
1.直線和平面垂直
如果一條直線和,就說這條直線和這個平面垂直.2.線面垂直判定定理和性質(zhì)定理 線面垂直判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面.判定定理1:如果兩條平行線中的一條于一個平面,那么判定定理2:一條直線垂直于兩個平行平面中的一個平面,那么.性質(zhì)定理3:如果兩條直線同垂直于一個平面,那么這兩條直線.二、精選習(xí)題:
1.設(shè)M表示平面,a、b表示直線,給出下列四個命題:
①a//b?a?M?a?M?a//M???b∥M④??b?M②??a//b③??b⊥M.a?b?a?M?b?M?a?b?
其中正確的命題是()
A.①②B.①②③C.②③④D.①②④
2.如圖所示,在正方形ABCD中,E、F分別是AB、BC的中點.現(xiàn)在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三點重合,重合后的點記為P.那么,在四面體P—DEF中,必有()
第3題圖
A.DP⊥平面PEFB.DM⊥平面PEFC.PM⊥平面DEFD.PF⊥平面DEF
3.設(shè)a、b是異面直線,下列命題正確的是()
A.過不在a、b上的一點P一定可以作一條直線和a、b都相交
B.過不在a、b上的一點P一定可以作一個平面和a、b都垂直
C.過a一定可以作一個平面與b垂直
D.過a一定可以作一個平面與b平行
4.如果直線l,m與平面α,β,γ滿足:l=β∩γ,l∥α,m?α和m⊥γ,那么必有()
A.α⊥γ且l⊥mB.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γ
5.有三個命題:
①垂直于同一個平面的兩條直線平行;
②過平面α的一條斜線l有且僅有一個平面與α垂直;
③異面直線a、b不垂直,那么過a的任一個平面與b都不垂直
其中正確命題的個數(shù)為()A.0B.1C.2D.36.設(shè)l、m為直線,α為平面,且l⊥α,給出下列命題
① 若m⊥α,則m∥l;②若m⊥l,則m∥α;③若m∥α,則m⊥l;④若m∥l,則m⊥α,其中真命題的序號是()...A.①②③B.①②④C.②③④D.①③④
7.如圖所示,三棱錐V-ABC中,AH⊥側(cè)面VBC,且H是△VBC的垂心,BE是VC邊上的高.求證:VC⊥AB;
8.如圖所示,PA⊥矩形ABCD所在平面,M、N分別是AB、PC的中點.(1)求證:MN∥平面PAD.(2)求證:MN⊥CD.(3)若∠PDA=45°,求證:MN⊥平面PCD.9.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中點,求證:AB1⊥A1M.
10.如圖所示,正方體ABCD—A′B′C′D′的棱長為a,M是AD的中點,N是BD′上一點,且D′N∶NB=1∶2,MC與BD交于P.(1)求證:NP⊥平面ABCD.(2)求平面PNC與平面CC′D′D所成的角.面面垂直專題練習(xí)
一、定理填空
面面垂直的判定定理:
二、精選習(xí)題
1、正方形ABCD沿對角線AC折成直二面角后,AB與CD所成的角等于
2、三棱錐P?ABC的三條側(cè)棱相等,則點P在平面ABC上的射影是△ABC的____心.3、一條直線與兩個平面所成角相等,那么這兩個平面的位置關(guān)系為______________
4、在正三棱錐中,相鄰兩面所成二面角的取值范圍為___________________
5、已知??l??是直二面角,A??,B??,A、B?l,設(shè)直線AB與?成30角,AB=2,B
?
到A在l上的射影N,則AB與?所成角為______________.6、在直二面角??AB??棱AB上取一點P,過P分別在?,?平面內(nèi)作與棱成 45°角的斜線PC、PD,則∠CPD的大小是_____________
7、正四面體中相鄰兩側(cè)面所成的二面角的余弦值為___________________.二、解答題:
8.如圖,在正方體ABCD-A1B1C1D1 中.求證:平面ACD1 ⊥平面BB1D1D
DA
1D
B1
C1
C
A
B10、如圖,三棱錐P?ABC中,PA⊥平面ABC,AC⊥BC,求證:平面PAC⊥平面PBC.
BAC11、如圖,三棱錐P?ABC中,PA⊥平面ABC,平面PAC⊥平面PBC.問△ABC是否為直角三角形,若是,請給出證明;若不是,請舉出反例.
BA
C
二面角練習(xí)1210
1.正方體ABCD-A1B1C1D1中,二面角A-BD1-C的大小是()A.5?2???B.C.D.632
32.邊長為a的正三角形中,AD⊥BC于D,沿AD折成二面角B-AD-C后,BC=
a,這時二
2面角B-AD-C的大小為()A.30°B.45°C.60°D.90°
3.以等腰直角三角形ABC的斜邊BC上的高為折痕,將△ABC折起,若折起后的三角形ABC為等邊三角形,則二面角C-AD-B的大小為()
A.30°B.60°C.90°D.120°
4在空間四邊形ABCD中,AB=CB,AD=CD,E、F、G分別 是AC、AD、CA的中點。求證:平面BEF
^平面BEG。
性質(zhì)定理:若兩個平面互相垂直,則在一個平面內(nèi)垂直于它們交線的直線垂直于另一個平面。
5.在正方體ABCD—A1B1C1D1中,求A1B和平面A1B1CD所成的角.。
二面角的基本求法
(1)定義法:在棱上取點,直。
9.SA^平面ABC,AB^BC,SA=AB=BC,(1)求證:SB^BC;(2)求二面角S-BC-A和C-SA-B的大??;
(3)求異面直線SC與AB所成角的余弦值。
10.在正方體ABCD—A1B1C1D1中,求(1)二面角A-B1C-A1的大小;(2)平面A1DC1與平面ADD1A1所成角的正切值。
11.正方體ABCD—A1B1C1D1的棱長為1,P是AD的中點,求二面角A-BD1-P的大小。
(2).三垂線法
三垂線定理:在平面內(nèi)的一條直線,如果和這個平面的一條斜線的射影垂直,那么它也和這條斜線垂直。三垂線逆定理:在平面內(nèi)的一條直線,如果和這個平垂直。
12.平面ABCD^平面ABEF,ABCD是 矩形且AF=
AD=a,G是EF2
A
平面AGC^平面BGC;(2)求GBB
角的正弦值;
(3)求二面角B-AC-G的大小。
13.點P在平面ABC外,?ABC是等腰直角三角形,?ABC
(1)求證:平面PAB^平面APA^BC。?PAB是正三角形,(2)求二面角P-AC-B的大小。
(3).垂面法
14.將一副三角板如圖拼接,并沿BC折起成直二面角,設(shè)AB=AC=a, ∠BAC=∠DCB=90°,∠DBC=30°,求二面角B-AD-C的大小 及二面角C-AB-D的正切值。
C
第五篇:線面垂直與面面垂直垂直練習(xí)題
2012級綜合和高中練習(xí)題
2.3線面垂直和面面垂直
線面垂直專題練習(xí)
一、定理填空:
1.直線和平面垂直
如果一條直線和,就說這條直線和這個平面垂直.2.線面垂直判定定理和性質(zhì)定理
線面垂直判定定理: 如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面.判定定理1:如果兩條平行線中的一條垂直于一個平面,那么判定定理2:如果一條直線垂直于兩個平行平面中的一個平面,那么.線面垂直性質(zhì)定理:
垂直于同一個平面的兩條直線互相平行.性質(zhì)定理1:垂直于同一條直線的兩個平面互相平行。
二、精選習(xí)題:
1.設(shè)M表示平面,a、b表示直線,給出下列四個命題:
①a//b?a?M?a?M?a//M?②③b∥M④??b?M?a//b?????b⊥M.a?b?a?M?b?M?a?b?
其中正確的命題是()
A.①②B.①②③C.②③④D.①②④
2.如圖所示,在正方形ABCD中,E、F分別是AB、BC的中點.現(xiàn)在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三點重合,重合后的點記為P.那么,在四面體P—DEF中,必有()
第3題圖
A.DP⊥平面PEFB.DM⊥平面PEFC.PM⊥平面DEFD.PF⊥平面DEF
3.設(shè)a、b是異面直線,下列命題正確的是()
A.過不在a、b上的一點P一定可以作一條直線和a、b都相交
B.過不在a、b上的一點P一定可以作一個平面和a、b都垂直
C.過a一定可以作一個平面與b垂直
D.過a一定可以作一個平面與b平行
4.如果直線l,m與平面α,β,γ滿足:l=β∩γ,l∥α,m?α和m⊥γ,那么必有()
A.α⊥γ且l⊥mB.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γ
5.有三個命題:
①垂直于同一個平面的兩條直線平行;
②過平面α的一條斜線l有且僅有一個平面與α垂直;
③異面直線a、b不垂直,那么過a的任一個平面與b都不垂直
其中正確命題的個數(shù)為()A.0B.1C.2D.3 6.設(shè)l、m為直線,α為平面,且l⊥α,給出下列命題
① 若m⊥α,則m∥l;②若m⊥l,則m∥α;③若m∥α,則m⊥l;④若m∥l,則m⊥α,其中真命題的序號是()...A.①②③B.①②④C.②③④D.①③④
7.如圖所示,三棱錐V-ABC中,AH⊥側(cè)面VBC,且H是△VBC的垂心,BE是VC邊上的高.求證:VC⊥AB;
8.如圖所示,PA⊥矩形ABCD所在平面,M、N分別是AB、PC的中點.(1)求證:MN∥平面PAD.(2)求證:MN⊥CD.(3)若∠PDA=45°,求證:MN⊥平面PCD.9.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中點,求證:AB1⊥A1M.
10.如圖所示,正方體ABCD—A′B′C′D′的棱長為a,M是AD的中點,N是BD′上一點,且D′N∶NB=1∶2,MC與BD交于P.(1)求證:NP⊥平面ABCD.(2)求平面PNC與平面CC′D′D所成的角.11.如果兩條平行直線中的一條垂直于一個平面,那么另一條也垂直于同一個平面.解:已知a∥b,a⊥α.求證:b⊥α.12.已知點P為平面ABC外一點,PA⊥BC,PC⊥AB,求證:PB⊥AC.13.在正方體ABCD—A1B1C1D1中,求直線A1B和平面A1B1CD所成的角.14.如圖,四面體A—BCD的棱長都相等,Q是AD的中點,求CQ與平面DBC所成的角的正弦值.15.如圖11(1),在直四棱柱ABCD—A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)求證:D1C⊥AC1;
(2)設(shè)E是DC上一點,試確定E的位置,使D1E∥平面A1BD,并說明理由.16.如圖12,在正方體ABCD—A1B1C1D1,G為CC1的中點,O為底面ABCD的中心.求證:A1O⊥平面GBD.17.如圖,已知a、b是兩條相互垂直的異面直線,線段AB與兩異面直線a、b垂直且相交,線段AB的長為定值m,定長為n(n>m)的線段PQ的兩個端點分別在a、b上移動,M、N分別是AB、PQ的中點.求證:(1)AB⊥MN;(2)MN的長是定值.18.如圖,已知在側(cè)棱垂直于底面三棱柱ABC—A1B1C1中,AC=3,AB=5,BC=4,AA1=4,點D是AB的中點.(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1.面面垂直專題練習(xí)
一、定理填空
面面垂直的判定定理:面面垂直的性質(zhì)定理:
二、精選習(xí)題
1、正方形ABCD沿對角線AC折成直二面角后,AB與CD所成的角等于
2、三棱錐P?ABC的三條側(cè)棱相等,則點P在平面ABC上的射影是△ABC的____心.3、一條直線與兩個平面所成角相等,那么這兩個平面的位置關(guān)系為______________
4、在正三棱錐中,相鄰兩面所成二面角的取值范圍為___________________
5、已知??l??是直二面角,A??,B??,A、B?l,設(shè)直線AB與?成30角,AB=2,B
?
到A在l上的射影N,則AB與?所成角為______________.6、在直二面角??AB??棱AB上取一點P,過P分別在?,?平面內(nèi)作與棱成 45°角的斜線PC、PD,則∠CPD的大小是_____________
7、正四面體中相鄰兩側(cè)面所成的二面角的余弦值為___________________.8.如圖,在正方體ABCD-A1B1C1D1 中.求證:平面ACD1 ⊥平面BB1D1D
DA
1D
C1
C
A
B10、如圖,三棱錐P?ABC中,PA⊥平面ABC,AC⊥BC,求證:平面PAC⊥平面PBC.
BAC11、如圖,三棱錐P?ABC中,PA⊥平面ABC,平面PAC⊥平面PBC.問△ABC是否為直角三角形,若是,請給出證明;若不是,請舉出反例.
A
C
B