欧美色欧美亚洲高清在线观看,国产特黄特色a级在线视频,国产一区视频一区欧美,亚洲成a 人在线观看中文

  1. <ul id="fwlom"></ul>

    <object id="fwlom"></object>

    <span id="fwlom"></span><dfn id="fwlom"></dfn>

      <object id="fwlom"></object>

      第61課時線面垂直、面面垂直(五篇范文)

      時間:2019-05-12 17:22:22下載本文作者:會員上傳
      簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《第61課時線面垂直、面面垂直》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《第61課時線面垂直、面面垂直》。

      第一篇:第61課時線面垂直、面面垂直

      課題:線面垂直、面面垂直

      教學(xué)目標(biāo):掌握線面垂直、面面垂直的證明方法,并能熟練解決相應(yīng)問題.(一)主要知識及主要方法:

      1.線面垂直的證明:?1?判定定理;?2?如果兩條平行線中一條垂直于一個平面,那么另一條也垂直于這個平面;?3?一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;?4?兩個平面垂直,在一個平面內(nèi)垂直于它們交線的直線垂直于另一個平面.?5?如果兩個相交平面都與第三個平面垂直,那么它們的交線與第三個平面垂直.?6?向量法:

      AP B

      Q

      C???????????????????PQ?AB?PQ?AB?0 PQ?????????????????????????PQ?AC?PQ?AC?0

      2.面面垂直的證明:?1?計算二面角的平面角為90? ;?2?如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面垂直;

      (二)典例分析:

      問題1.(07福建)如圖,正三棱柱ABC?A1B1C

      1的所有棱長都為2,D為CC1中點. A1

      ?1?求證:AB1⊥平面A1BD;?2?略; ?3?略.(要求可用多種方法,至少要用向量法證明)D C1 1

      439

      問題2.(07湖北)如圖,在三棱錐V?ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中點,且AC?BC?a,π??

      ?VDC???0????.

      2??

      ?1?求證:平面VAB⊥VCD;?2?略.CB

      A

      問題3.(07安徽)如圖,在六面體ABCD?A1B1C1D1中,四邊形

      ABCD是邊長為2的正方形,四邊形A1B1C1D1是邊長為1的正方形,DD1?平面A1B1C1D1,DD1?平面ABCD,DD1?2.

      D11求證:與共面,與共面. BDACACBD??1111

      A1?2?求證:平面AACC?平面BBDD;?3?略.1

      440

      (四)課后作業(yè):

      1.如圖所示,正方形ABCD中,E、F分別是AB、AD 的中點,將此正方形沿EF折成直二面角后,異面直線AF 與BE所成角的余弦值為.2.(07屆高三湖北八校聯(lián)考)

      如圖,在四棱錐E?ABCD中,AB?平面BCE,CD?平面BCE,AB?BC?CE?2CD?2,?BCE?120?。?1?求證:平面ADE?平面ABE ;?2?略.A

      E

      B

      441

      (五)走向高考:

      3.(07陜西)如圖,在底面為直角梯形的四棱錐P?ABCD中,AD∥BC,?ABC?90°,PA?平面ABCD.PA?3,AD?

      2,AB?BC?6 ?1?求證:BD?平面PAC;?2?略.

      ABD

      C

      442

      第二篇:第31課時線面垂直、面面垂直

      課題:線面垂直、面面垂直

      教學(xué)目標(biāo):掌握線面垂直、面面垂直的證明方法,并能熟練解決相應(yīng)問題.(一)主要知識及主要方法:

      1.線面垂直的證明:?1?判定定理;?2?如果兩條平行線中一條垂直于一個平面,那么另

      一條也垂直于這個平面;?3?一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;?4?兩個平面垂直,在一個平面內(nèi)垂直于它們交線的直線垂直于另一個平

      面.?5?如果兩個相交平面都與第三個平面垂直,那么它們的交線與第三個平面垂直.2.面面垂直的證明:?1?計算二面角的平面角為90? ;

      ?2?如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面垂直;

      (二)典例分析:

      問題1.如圖,正三棱柱ABC?A1B1C

      1的所有棱長都為2,D為CC1中點. 求證:AB1⊥平面A1BD

      P AB

      A1

      CQ

      C1D

      問題2.如圖,在三棱錐V?ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中點,且AC?BC?a,求證:平面VAB⊥VCD

      V

      C

      AB

      問題3.如圖,在六面體ABCD?ABCD中,四邊形

      ABCD是邊長為2的正方形,四邊形A1B1C1D1是邊長為1的正方形,?1?求證:A1C1與AC共面,B1D1與BD共面. ?2?求證:平面A1ACC1?平面B1BDD1

      (四)課后作業(yè):

      DD1?平面A1B1C1D1,DD1?平面ABCD,DD1?2.

      D11 1A1D

      1.如圖所示,正方形ABCD中,E、F分別是AB、AD 的中點,將此正方形沿EF折成直二面角后,異面直線AF 與BE所成角的余弦值為.A

      2.如圖,在四棱錐E?ABCD中,AB?平面BCE,CD?平面BCE,AB?BC?CE?2CD?2,?BCE?120?。求證:平面ADE?平面ABE

      EB

      第三篇:線面垂直面面垂直專題練習(xí)

      線面垂直專題練習(xí)

      1.設(shè)M表示平面,a、b表示直線,給出下列四個命題:

      a?M?a//b?a?M?a//M?①②③b∥M④M.?b?M?a//b??????b⊥a?b?a?M?b?M?a?b?

      其中正確的命題是()

      A.①②B.①②③C.②③④D.①②④

      2.如圖所示,在正方形ABCD中,E、F分別是AB、BC的中點.現(xiàn)在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三點重合,重合后的點記為P.那么,在四面體P—DEF中,必有()

      第2題圖

      A.DP⊥平面PEFB.DM⊥平面PEFC.PM⊥平面DEFD.PF⊥平面DEF

      3.如果直線l,m與平面α,β,γ滿足:l=β∩γ,l∥α,m?α和m⊥γ,那么必有()

      A.α⊥γ且l⊥mB.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γ

      4有三個命題:

      ①垂直于同一個平面的兩條直線平行;

      ②過平面α的一條斜線l有且僅有一個平面與α垂直;

      ③異面直線a、b不垂直,那么過a的任一個平面與b都不垂直

      其中正確命題的個數(shù)為()A.0B.1C.2D.35.設(shè)l、m為直線,α為平面,且l⊥α,給出下列命題

      ① 若m⊥α,則m∥l;②若m⊥l,則m∥α;③若m∥α,則m⊥l;④若m∥l,則m⊥α,其中真命題的序號是()...

      A.①②③B.①②④C.②③④D.①③④

      6.如圖所示,PA⊥矩形ABCD所在平面,M、N分別是AB、PC的中點.(1)求證:MN∥平面PAD.(2)求證:MN⊥CD.(3)若∠PDA=45°,求證:MN⊥平面PCD.7.如圖所示,正方體ABCD—A′B′C′D′的棱長為a,M是AD的中點,N是BD′上一點,且D′N∶NB=1∶2,MC與BD交于P.(1)求證:NP⊥平面ABCD.(2)求平面PNC與平面CC′D′D所成的角.8.如圖,在正方體ABCD-A1B1C1D1 中.求證:平面ACD1 ⊥平面BB1D1D

      DA

      1D

      A1C1C9、如圖,三棱錐P?ABC中,PA⊥平面ABC,AC⊥BC,求證:平面PAC⊥平面PBC.

      BA

      C10、如圖,三棱錐P?ABC中,PA⊥平面ABC,平面PAC⊥平面PBC.問

      △ABC是否為直角三角形,若是,請給出證明;若不是,請舉

      出反例.

      BA C

      第四篇:線面垂直面面垂直及二面角專題練習(xí)

      線面垂直專題練習(xí)

      一、定理填空:

      1.直線和平面垂直

      如果一條直線和,就說這條直線和這個平面垂直.2.線面垂直判定定理和性質(zhì)定理 線面垂直判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面.判定定理1:如果兩條平行線中的一條于一個平面,那么判定定理2:一條直線垂直于兩個平行平面中的一個平面,那么.性質(zhì)定理3:如果兩條直線同垂直于一個平面,那么這兩條直線.二、精選習(xí)題:

      1.設(shè)M表示平面,a、b表示直線,給出下列四個命題:

      ①a//b?a?M?a?M?a//M???b∥M④??b?M②??a//b③??b⊥M.a?b?a?M?b?M?a?b?

      其中正確的命題是()

      A.①②B.①②③C.②③④D.①②④

      2.如圖所示,在正方形ABCD中,E、F分別是AB、BC的中點.現(xiàn)在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三點重合,重合后的點記為P.那么,在四面體P—DEF中,必有()

      第3題圖

      A.DP⊥平面PEFB.DM⊥平面PEFC.PM⊥平面DEFD.PF⊥平面DEF

      3.設(shè)a、b是異面直線,下列命題正確的是()

      A.過不在a、b上的一點P一定可以作一條直線和a、b都相交

      B.過不在a、b上的一點P一定可以作一個平面和a、b都垂直

      C.過a一定可以作一個平面與b垂直

      D.過a一定可以作一個平面與b平行

      4.如果直線l,m與平面α,β,γ滿足:l=β∩γ,l∥α,m?α和m⊥γ,那么必有()

      A.α⊥γ且l⊥mB.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γ

      5.有三個命題:

      ①垂直于同一個平面的兩條直線平行;

      ②過平面α的一條斜線l有且僅有一個平面與α垂直;

      ③異面直線a、b不垂直,那么過a的任一個平面與b都不垂直

      其中正確命題的個數(shù)為()A.0B.1C.2D.36.設(shè)l、m為直線,α為平面,且l⊥α,給出下列命題

      ① 若m⊥α,則m∥l;②若m⊥l,則m∥α;③若m∥α,則m⊥l;④若m∥l,則m⊥α,其中真命題的序號是()...A.①②③B.①②④C.②③④D.①③④

      7.如圖所示,三棱錐V-ABC中,AH⊥側(cè)面VBC,且H是△VBC的垂心,BE是VC邊上的高.求證:VC⊥AB;

      8.如圖所示,PA⊥矩形ABCD所在平面,M、N分別是AB、PC的中點.(1)求證:MN∥平面PAD.(2)求證:MN⊥CD.(3)若∠PDA=45°,求證:MN⊥平面PCD.9.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中點,求證:AB1⊥A1M.

      10.如圖所示,正方體ABCD—A′B′C′D′的棱長為a,M是AD的中點,N是BD′上一點,且D′N∶NB=1∶2,MC與BD交于P.(1)求證:NP⊥平面ABCD.(2)求平面PNC與平面CC′D′D所成的角.面面垂直專題練習(xí)

      一、定理填空

      面面垂直的判定定理:

      二、精選習(xí)題

      1、正方形ABCD沿對角線AC折成直二面角后,AB與CD所成的角等于

      2、三棱錐P?ABC的三條側(cè)棱相等,則點P在平面ABC上的射影是△ABC的____心.3、一條直線與兩個平面所成角相等,那么這兩個平面的位置關(guān)系為______________

      4、在正三棱錐中,相鄰兩面所成二面角的取值范圍為___________________

      5、已知??l??是直二面角,A??,B??,A、B?l,設(shè)直線AB與?成30角,AB=2,B

      ?

      到A在l上的射影N,則AB與?所成角為______________.6、在直二面角??AB??棱AB上取一點P,過P分別在?,?平面內(nèi)作與棱成 45°角的斜線PC、PD,則∠CPD的大小是_____________

      7、正四面體中相鄰兩側(cè)面所成的二面角的余弦值為___________________.二、解答題:

      8.如圖,在正方體ABCD-A1B1C1D1 中.求證:平面ACD1 ⊥平面BB1D1D

      DA

      1D

      B1

      C1

      C

      A

      B10、如圖,三棱錐P?ABC中,PA⊥平面ABC,AC⊥BC,求證:平面PAC⊥平面PBC.

      BAC11、如圖,三棱錐P?ABC中,PA⊥平面ABC,平面PAC⊥平面PBC.問△ABC是否為直角三角形,若是,請給出證明;若不是,請舉出反例.

      BA

      C

      二面角練習(xí)1210

      1.正方體ABCD-A1B1C1D1中,二面角A-BD1-C的大小是()A.5?2???B.C.D.632

      32.邊長為a的正三角形中,AD⊥BC于D,沿AD折成二面角B-AD-C后,BC=

      a,這時二

      2面角B-AD-C的大小為()A.30°B.45°C.60°D.90°

      3.以等腰直角三角形ABC的斜邊BC上的高為折痕,將△ABC折起,若折起后的三角形ABC為等邊三角形,則二面角C-AD-B的大小為()

      A.30°B.60°C.90°D.120°

      4在空間四邊形ABCD中,AB=CB,AD=CD,E、F、G分別 是AC、AD、CA的中點。求證:平面BEF

      ^平面BEG。

      性質(zhì)定理:若兩個平面互相垂直,則在一個平面內(nèi)垂直于它們交線的直線垂直于另一個平面。

      5.在正方體ABCD—A1B1C1D1中,求A1B和平面A1B1CD所成的角.。

      二面角的基本求法

      (1)定義法:在棱上取點,直。

      9.SA^平面ABC,AB^BC,SA=AB=BC,(1)求證:SB^BC;(2)求二面角S-BC-A和C-SA-B的大??;

      (3)求異面直線SC與AB所成角的余弦值。

      10.在正方體ABCD—A1B1C1D1中,求(1)二面角A-B1C-A1的大小;(2)平面A1DC1與平面ADD1A1所成角的正切值。

      11.正方體ABCD—A1B1C1D1的棱長為1,P是AD的中點,求二面角A-BD1-P的大小。

      (2).三垂線法

      三垂線定理:在平面內(nèi)的一條直線,如果和這個平面的一條斜線的射影垂直,那么它也和這條斜線垂直。三垂線逆定理:在平面內(nèi)的一條直線,如果和這個平垂直。

      12.平面ABCD^平面ABEF,ABCD是 矩形且AF=

      AD=a,G是EF2

      A

      平面AGC^平面BGC;(2)求GBB

      角的正弦值;

      (3)求二面角B-AC-G的大小。

      13.點P在平面ABC外,?ABC是等腰直角三角形,?ABC

      (1)求證:平面PAB^平面APA^BC。?PAB是正三角形,(2)求二面角P-AC-B的大小。

      (3).垂面法

      14.將一副三角板如圖拼接,并沿BC折起成直二面角,設(shè)AB=AC=a, ∠BAC=∠DCB=90°,∠DBC=30°,求二面角B-AD-C的大小 及二面角C-AB-D的正切值。

      C

      第五篇:線面垂直與面面垂直垂直練習(xí)題

      2012級綜合和高中練習(xí)題

      2.3線面垂直和面面垂直

      線面垂直專題練習(xí)

      一、定理填空:

      1.直線和平面垂直

      如果一條直線和,就說這條直線和這個平面垂直.2.線面垂直判定定理和性質(zhì)定理

      線面垂直判定定理: 如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面.判定定理1:如果兩條平行線中的一條垂直于一個平面,那么判定定理2:如果一條直線垂直于兩個平行平面中的一個平面,那么.線面垂直性質(zhì)定理:

      垂直于同一個平面的兩條直線互相平行.性質(zhì)定理1:垂直于同一條直線的兩個平面互相平行。

      二、精選習(xí)題:

      1.設(shè)M表示平面,a、b表示直線,給出下列四個命題:

      ①a//b?a?M?a?M?a//M?②③b∥M④??b?M?a//b?????b⊥M.a?b?a?M?b?M?a?b?

      其中正確的命題是()

      A.①②B.①②③C.②③④D.①②④

      2.如圖所示,在正方形ABCD中,E、F分別是AB、BC的中點.現(xiàn)在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三點重合,重合后的點記為P.那么,在四面體P—DEF中,必有()

      第3題圖

      A.DP⊥平面PEFB.DM⊥平面PEFC.PM⊥平面DEFD.PF⊥平面DEF

      3.設(shè)a、b是異面直線,下列命題正確的是()

      A.過不在a、b上的一點P一定可以作一條直線和a、b都相交

      B.過不在a、b上的一點P一定可以作一個平面和a、b都垂直

      C.過a一定可以作一個平面與b垂直

      D.過a一定可以作一個平面與b平行

      4.如果直線l,m與平面α,β,γ滿足:l=β∩γ,l∥α,m?α和m⊥γ,那么必有()

      A.α⊥γ且l⊥mB.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γ

      5.有三個命題:

      ①垂直于同一個平面的兩條直線平行;

      ②過平面α的一條斜線l有且僅有一個平面與α垂直;

      ③異面直線a、b不垂直,那么過a的任一個平面與b都不垂直

      其中正確命題的個數(shù)為()A.0B.1C.2D.3 6.設(shè)l、m為直線,α為平面,且l⊥α,給出下列命題

      ① 若m⊥α,則m∥l;②若m⊥l,則m∥α;③若m∥α,則m⊥l;④若m∥l,則m⊥α,其中真命題的序號是()...A.①②③B.①②④C.②③④D.①③④

      7.如圖所示,三棱錐V-ABC中,AH⊥側(cè)面VBC,且H是△VBC的垂心,BE是VC邊上的高.求證:VC⊥AB;

      8.如圖所示,PA⊥矩形ABCD所在平面,M、N分別是AB、PC的中點.(1)求證:MN∥平面PAD.(2)求證:MN⊥CD.(3)若∠PDA=45°,求證:MN⊥平面PCD.9.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中點,求證:AB1⊥A1M.

      10.如圖所示,正方體ABCD—A′B′C′D′的棱長為a,M是AD的中點,N是BD′上一點,且D′N∶NB=1∶2,MC與BD交于P.(1)求證:NP⊥平面ABCD.(2)求平面PNC與平面CC′D′D所成的角.11.如果兩條平行直線中的一條垂直于一個平面,那么另一條也垂直于同一個平面.解:已知a∥b,a⊥α.求證:b⊥α.12.已知點P為平面ABC外一點,PA⊥BC,PC⊥AB,求證:PB⊥AC.13.在正方體ABCD—A1B1C1D1中,求直線A1B和平面A1B1CD所成的角.14.如圖,四面體A—BCD的棱長都相等,Q是AD的中點,求CQ與平面DBC所成的角的正弦值.15.如圖11(1),在直四棱柱ABCD—A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)求證:D1C⊥AC1;

      (2)設(shè)E是DC上一點,試確定E的位置,使D1E∥平面A1BD,并說明理由.16.如圖12,在正方體ABCD—A1B1C1D1,G為CC1的中點,O為底面ABCD的中心.求證:A1O⊥平面GBD.17.如圖,已知a、b是兩條相互垂直的異面直線,線段AB與兩異面直線a、b垂直且相交,線段AB的長為定值m,定長為n(n>m)的線段PQ的兩個端點分別在a、b上移動,M、N分別是AB、PQ的中點.求證:(1)AB⊥MN;(2)MN的長是定值.18.如圖,已知在側(cè)棱垂直于底面三棱柱ABC—A1B1C1中,AC=3,AB=5,BC=4,AA1=4,點D是AB的中點.(1)求證:AC⊥BC1;

      (2)求證:AC1∥平面CDB1.面面垂直專題練習(xí)

      一、定理填空

      面面垂直的判定定理:面面垂直的性質(zhì)定理:

      二、精選習(xí)題

      1、正方形ABCD沿對角線AC折成直二面角后,AB與CD所成的角等于

      2、三棱錐P?ABC的三條側(cè)棱相等,則點P在平面ABC上的射影是△ABC的____心.3、一條直線與兩個平面所成角相等,那么這兩個平面的位置關(guān)系為______________

      4、在正三棱錐中,相鄰兩面所成二面角的取值范圍為___________________

      5、已知??l??是直二面角,A??,B??,A、B?l,設(shè)直線AB與?成30角,AB=2,B

      ?

      到A在l上的射影N,則AB與?所成角為______________.6、在直二面角??AB??棱AB上取一點P,過P分別在?,?平面內(nèi)作與棱成 45°角的斜線PC、PD,則∠CPD的大小是_____________

      7、正四面體中相鄰兩側(cè)面所成的二面角的余弦值為___________________.8.如圖,在正方體ABCD-A1B1C1D1 中.求證:平面ACD1 ⊥平面BB1D1D

      DA

      1D

      C1

      C

      A

      B10、如圖,三棱錐P?ABC中,PA⊥平面ABC,AC⊥BC,求證:平面PAC⊥平面PBC.

      BAC11、如圖,三棱錐P?ABC中,PA⊥平面ABC,平面PAC⊥平面PBC.問△ABC是否為直角三角形,若是,請給出證明;若不是,請舉出反例.

      A

      C

      B

      下載第61課時線面垂直、面面垂直(五篇范文)word格式文檔
      下載第61課時線面垂直、面面垂直(五篇范文).doc
      將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
      點此處下載文檔

      文檔為doc格式


      聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

      相關(guān)范文推薦

        線面、面面垂直性質(zhì)測試題

        線面、面面垂直性質(zhì)練習(xí)試題一、選擇題1在空間,如果一個角的兩邊分別與另一個角的兩邊垂直,那么這兩個角的關(guān)系是()A.相等B.互補C.相等或互補D.無法確定2下列命題正確的是……......

        線面垂直、面面垂直同步練習(xí)

        1、若直線l上有兩點P、Q到平面?的距離相等,則直線l與平面?的位置關(guān)系是A、平行B、相交C、平行或相交D、平行、相交或在平面?內(nèi)2、已知a,b,c是直線,?,?是平面,下列條件中,能得出直線a......

        專題二:立體幾何---線面垂直、面面垂直匯總

        專題二:立體幾何---線面垂直、面面垂直 一、知識點 (1)線面垂直性質(zhì)定理(2)線面垂直判定定理(3)面面垂直性質(zhì)定理(2)面面垂直判定定理 線面垂直的證明中的找線技巧 通過計算,運用勾股......

        線面垂直與面面垂直[五篇范文]

        線面垂直與面面垂直一 復(fù)習(xí)上次課內(nèi)容:1.線面平行的判定與性質(zhì):2.面面平行的判定與性質(zhì):3.空間中的兩直線垂直的判定:二 梳理知識(新課內(nèi)容)1.線面垂直判定定理和性質(zhì)定理線面垂直......

        線面垂直 ,面面垂直導(dǎo)學(xué)案

        1.2.3 空間中的垂直關(guān)系第1課時 線面垂直預(yù)習(xí)案主備人:史紅榮【預(yù)習(xí)目標(biāo)】1.掌握直線與平面垂直的定義2.掌握直線與平面垂直的判定定理并能靈活應(yīng)用定理證明直線與平面垂直.【自主......

        專題線面垂直

        專題九: 線面垂直的證明 題型一:共面垂直(實際上是平面內(nèi)的兩條直線的垂直) 例1:如圖在正方體ABCD?A1BC11D1中,O為底面ABCD的中心,E為CC1中點,求證:AO?OE 1題型二:線面垂直證明 (利用......

        第71課面面垂直

        高考直通車·2014屆高考數(shù)學(xué)一輪復(fù)習(xí)備課手冊第71課面面垂直一、考綱要求理解平面與平面垂直的判定定理和性質(zhì)定理,并能夠運用兩個定理證明簡單的面面垂直問題.二、基礎(chǔ)知識回......

        線線垂直、線面垂直、面面垂直的判定 經(jīng)典試題

        線線垂直、線面垂直、面面垂直的判定1、 如圖,在四棱錐P-ABCD中,2、如圖,棱柱PA⊥底面ABCD,AB⊥AD,AC⊥CD,ABC?A1B1C1的側(cè)面 BCC1B1是菱形,B1C?A1B ∠ABC=60°,PA=AB=BC,E是PC的中點.證明:平......