第一篇:怎么證明面面垂直
怎么證明面面垂直證明一個面上的一條線垂直另一個面;首先可以轉(zhuǎn)化成 一個平面的垂線在另一個平面內(nèi),即一條直線垂直于另一個平面 然后轉(zhuǎn)化成
一條直線垂直于另一個平面內(nèi)的兩條相交直線 也可以運用兩個面的法向量互相垂直。這是解析幾何的方法。
證:連接AC,BD.PD垂直面ABCD=>PD垂直AC.ABCD為正方形=>AC垂直BD.而BD是PB在面ABCD內(nèi)的射影=>PB垂直AC.PD垂直AC=>AC垂直面PBD.AC屬于面ACE=>面PBD垂直面ACE 2 1利用直角三角形中兩銳角互余證明
由直角三角形的定義與三角形的內(nèi)角和定理可知直角三角形的兩個銳角和等于90°,即直角三角形的兩個銳角互余。2勾股定理逆定理
3圓周角定理的推論:直徑所對的圓周角是直角,一個三角形的一邊中線等于這邊的一半,則這個三角形是直角三角形。
二、高中部分
線線垂直分為共面與不共面。不共面時,兩直線經(jīng)過平移后相交成直角,則稱兩條直線互相垂直。
1向量法 兩條直線的方向向量數(shù)量積為0 2斜率 兩條直線斜率積為-1 3線面垂直,則這條直線垂直于該平面內(nèi)的所有直線
一條直線垂直于三角形的兩邊,那么它也垂直于另外一邊 4三垂線定理 在平面內(nèi)的一條直線,如果和穿過這個平面的一條斜線在這個平面內(nèi)的射影垂直,那么它也和這條斜線垂直。
5三垂線定理逆定理 如果平面內(nèi)一條直線和平面的一條斜線垂直,那么這條直線也垂直于這條斜線在平面內(nèi)的射影。
3高中立體幾何的證明主要是平行關(guān)系與垂直關(guān)系的證明。方法如下(難以建立坐標系時再考慮):
Ⅰ.平行關(guān)系:
線線平行:1.在同一平面內(nèi)無公共點的兩條直線平行。2.公理4(平行公理)。3.線面平行的性質(zhì)。4.面面平行的性質(zhì)。5.垂直于同一平面的兩條直線平行。
線面平行:1.直線與平面無公共點。2.平面外的一條直線與平面內(nèi)的一條直線平行。3.兩平面平行,一個平面內(nèi)的任一直線與另一平面平行。
面面平行:1.兩個平面無公共點。2.一個平面內(nèi)的兩條相交直線分別與另一平面平行。Ⅱ.垂直關(guān)系:
線線垂直:1.直線所成角為90°。2.一條直線與一個平面垂直,那么這條直線與平面內(nèi)的任一直線垂直。
線面垂直:1.一條直線與一個平面內(nèi)的任一直線垂直。2.一條直線與一個平面內(nèi)的兩條相交直線都垂直。3.面面垂直的性質(zhì)。4.兩條平行直線中的一條垂直與一個平面,那么另一直線也與此平面垂直。5.一條直線垂直與兩個平行平面中的一個,那么這條直線也與另一平面垂直。
面面垂直:1.面面所成二面角為直二面角。2.一個平面過另一平面的垂線,那么這兩個平面垂直。
第二篇:如何證明面面垂直
如何證明面面垂直
設(shè)p是三角形ABC所在平面外的一點,p到A,B,C三點的距離相等,角BAC為直角,求證:平面pCB垂直平面ABC
過p作pQ⊥面ABC于Q,則Q為p在面ABC的投影,因為p到A,B,C的距離相等,所以有QA=QB=QC,即Q為三角形ABC的中心,因為角BAC為直,所以Q在線段BC上,所以在面pCB上有線段pQ⊥平面ABC,故平面pCB⊥平面ABC
2證明一個面上的一條線垂直另一個面;首先可以轉(zhuǎn)化成一個平面的垂線在另一個平面內(nèi),即一條直線垂直于另一個平面
然后轉(zhuǎn)化成一條直線垂直于另一個平面內(nèi)的兩條相交直線
也可以運用兩個面的法向量互相垂直。
這是解析幾何的方法。
2一、初中部分
1利用直角三角形中兩銳角互余證明
由直角三角形的定義與三角形的內(nèi)角和定理可知直角三角形的兩個銳角和等于90°,即直角三角形的兩個銳角互余。
2勾股定理逆定理
3圓周角定理的推論:直徑所對的圓周角是直角,一個三角形的一邊中線等于這邊的一半,則這個三角形是直角三角形。
二、高中部分
線線垂直分為共面與不共面。不共面時,兩直線經(jīng)過平移后相交成直角,則稱兩條直線互相垂直。
1向量法兩條直線的方向向量數(shù)量積為0
2斜率兩條直線斜率積為-1
3線面垂直,則這條直線垂直于該平面內(nèi)的所有直線
一條直線垂直于三角形的兩邊,那么它也垂直于另外一邊
4三垂線定理在平面內(nèi)的一條直線,如果和穿過這個平面的一條斜線在這個平面內(nèi)的射影垂直,那么它也和這條斜線垂直。
5三垂線定理逆定理如果平面內(nèi)一條直線和平面的一條斜線垂直,那么這條直線也垂直于這條斜線在平面內(nèi)的射影。
3高中立體幾何的證明主要是平行關(guān)系與垂直關(guān)系的證明。方法如下(難以建立坐標系時再考慮):
Ⅰ.平行關(guān)系:
線線平行:1.在同一平面內(nèi)無公共點的兩條直線平行。2.公理4(平行公理)。3.線面平行的性質(zhì)。4.面面平行的性質(zhì)。5.垂直于同一平面的兩條直線平行。
線面平行:1.直線與平面無公共點。2.平面外的一條直線與平面內(nèi)的一條直線平行。3.兩平面平行,一個平面內(nèi)的任一直線與另一平面平行。
面面平行:1.兩個平面無公共點。2.一個平面內(nèi)的兩條相交直線分別與另一平面平行。
Ⅱ.垂直關(guān)系:
線線垂直:1.直線所成角為90°。2.一條直線與一個平面垂直,那么這條直線與平面內(nèi)的任一直線垂直。
線面垂直:1.一條直線與一個平面內(nèi)的任一直線垂直。2.一條直線與一個平面內(nèi)的兩條相交直線都垂直。3.面面垂直的性質(zhì)。4.兩條平行直線中的一條垂直與一個平面,那么另一直線也與此平面垂直。5.一條直線垂直與兩個平行平面中的一個,那么這條直線也與另一平面垂直。
面面垂直:1.面面所成二面角為直二面角。2.一個平面過另一平面的垂線,那么這兩個平面垂直。
第三篇:怎樣證明面面垂直
怎樣證明面面垂直
如果一平面經(jīng)過另一平面的垂線,那么這兩個平面垂直。(面面垂直判定定理)
為方便,下面#后的代表向量。
#CD=#BD-#BC,#AC=#BC-#BA,#AD=#BD-#BA.對角線的點積:#AC·#BD=(#BC-#BA)·#BD=#BC·#BD-#BA·#BD
兩組對邊平方和分別為:
AB2+CD2=AB2+(#BD-#BC)2=AB2+BD2+BC2-2#BD·#BC
AD2+BC2=(#BD-#BA)2+BC2=BD2+BA2+BC2-2#BD·#BA
則AB2+CD2=AD2+BC2等價于#BD·#BC=#BD·#BA等價于#AC·#BD=0
所以原命題成立,空間四邊形對角線垂直的充要條件是兩組對邊的平方和相等
證明一個面上的一條線垂直另一個面;首先可以轉(zhuǎn)化成一個平面的垂線在另一個平面內(nèi),即一條直線垂直于另一個平面
然后轉(zhuǎn)化成一條直線垂直于另一個平面內(nèi)的兩條相交直線
也可以運用兩個面的法向量互相垂直。
這是解析幾何的方法。
2一、初中部分
1利用直角三角形中兩銳角互余證明
由直角三角形的定義與三角形的內(nèi)角和定理可知直角三角形的兩個銳角和等于90°,即直角三角形的兩個銳角互余。
2勾股定理逆定理
3圓周角定理的推論:直徑所對的圓周角是直角,一個三角形的一邊中線等于這邊的一半,則這個三角形是直角三角形。
二、高中部分
線線垂直分為共面與不共面。不共面時,兩直線經(jīng)過平移后相交成直角,則稱兩條直線互相垂直。
如果一平面經(jīng)過另一平面的垂線,那么這兩個平面垂直。(面面垂直判定定理)
1向量法兩條直線的方向向量數(shù)量積為0
2斜率兩條直線斜率積為-1
3線面垂直,則這條直線垂直于該平面內(nèi)的所有直線
一條直線垂直于三角形的兩邊,那么它也垂直于另外一邊
4三垂線定理在平面內(nèi)的一條直線,如果和穿過這個平面的一條斜線在這個平面內(nèi)的射影垂直,那么它也和這條斜線垂直。
5三垂線定理逆定理如果平面內(nèi)一條直線和平面的一條斜線垂直,那么這條直線也垂直于這條斜線在平面內(nèi)的射影。
3高中立體幾何的證明主要是平行關(guān)系與垂直關(guān)系的證明。方法如下(難以建立坐標系時再考慮):
Ⅰ.平行關(guān)系:
線線平行:1.在同一平面內(nèi)無公共點的兩條直線平行。2.公理4(平行公理)。3.線面平行的性質(zhì)。4.面面平行的性質(zhì)。5.垂直于同一平面的兩條直線平行。
線面平行:1.直線與平面無公共點。2.平面外的一條直線與平面內(nèi)的一條直線平行。3.兩平面平行,一個平面內(nèi)的任一直線與另一平面平行。
面面平行:1.兩個平面無公共點。2.一個平面內(nèi)的兩條相交直線分別與另一平面平行。
Ⅱ.垂直關(guān)系:
線線垂直:1.直線所成角為90°。2.一條直線與一個平面垂直,那么這條直線與平面內(nèi)的任一直線垂直。
線面垂直:1.一條直線與一個平面內(nèi)的任一直線垂直。2.一條直線與一個平面內(nèi)的兩條相交直線都垂直。3.面面垂直的性質(zhì)。4.兩條平行直線中的一條垂直與一個平面,那么另一直線也與此平面垂直。5.一條直線垂直與兩個平行平面中的一個,那么這條直線也與另一平面垂直。
面面垂直:1.面面所成二面角為直二面角。2.一個平面過另一平面的垂線,那么這兩個平面垂直。
第四篇:面面垂直證明例題
數(shù)學(xué)面面垂直例題
例4答案:
例8答案:取AC的中點為O,連接OP、OB。AO=OC,PA=PC,故PO垂直
AC
第五篇:面面垂直學(xué)案
§2.3.4平面與平面垂直的性質(zhì)
一、學(xué)習目標:
1.掌握平面與平面垂直的性質(zhì)定理的證明及應(yīng)用;
2.掌握空間中的垂直關(guān)系相互轉(zhuǎn)化的方法。
二、學(xué)習過程:
(一)復(fù)習引入
1.平面與平面垂直的定義:
2.面面垂直判定定理:
(二)探索研究
(1)觀察黑板所在的平面和地面,它們是互相垂直的,那么黑板所在的平面里的任意一條直線是否就一定和地面垂直?
(2)觀察長方體ABCD-A`B`C`D`中,平面AA`D`D與平面ABCD垂直,你能否在平面AA`D`D中找一條直線垂直于平面ABCD?
(三)嚴格證明
已知???,????CD,AB??,AB?CD于B.求證:AB??.A
DB
(四)得出定理
面面垂直的性質(zhì)定理:
兩平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直.符號語言表述:
(五)知識應(yīng)用舉例
例
1、已知平面α與β互相垂直,判斷下列命題是否正確:
(1)若b??,則b??。
(2)若???=l,b?l則b??。
(3)若b??,則b垂直于平面?內(nèi)的無數(shù)條直線。
(4)過一個平面內(nèi)任意一點作交線的垂線,則此垂線
必垂直于另一個平面。
例
2、平面?與平面?互相垂直,????m,P??,P?m,判斷:
(1)過點P且垂直于?的直線a是否一定在?內(nèi)?
(2)過點P且垂直于?的直線l與?是什么位置關(guān)系?并證明
例
3、如圖,AB是⊙O的直徑,C是圓周上不同于A,B的任意一點,平面PAC⊥平面ABC,(1)求證:BC⊥平面PAC。(2)判斷平面PBC與平面PAC是否垂直,并證明。
A
O B
練習:如圖,AB是⊙O的直徑,點C是圓上異于A,B的任意一點,PA⊥平面ABC,AF⊥PC于F.求證:AF⊥平面PBC.C
解題反思:
(六)小結(jié)反思
1.面面垂直的性質(zhì)定理
2..空間垂直關(guān)系有那些?如何實現(xiàn)空間垂直關(guān)系的相互轉(zhuǎn)化?請指出下圖中空間垂直關(guān)系轉(zhuǎn)化的定理依據(jù)?
①
②
③
④
(七)家庭作業(yè)《同步導(dǎo)學(xué)》